스마트폰 센서를 이용한 담러닝 기반 실내 이동 거리 추정
오지수, 김승구*
*충북대학교
js4804@cbnu.ac.kr, *kimsk@cbnu.ac.kr

Deep learning based indoor distance estimation with smartphone sensors
Oh Ji Soo, Kim Seungku*
*Chungbuk National Univ.

요 약
스마트폰의 사용양이 증가함에 따라 위치 인식 기술 연구가 활발하게 진행되고 있다. 위치 인식 기술에는 Global Positioning System(GPS)가 가장 보편적으로 활용되고 높은 정확도를 갖는다. 하지만 실내에서 사용할 수 없다는 단점이 있다. 본 논문에서는 실내에서 이동 거리를 예측하기 위해 스마트폰의 IMU 센서를 활용한다. (1) 헬드폰을 손에 들고 헤드폰을 머리에 착용한 상태, (2) 헬드폰을 손에 들고 휴대폰을 가진 상태에서 실내에서 IMU 센서 신호를 수집하고 GPS로 속도를 계산하여 데이터 세트를 만든 뒤, CNN 모델을 사용하여 이동 거리를 예측하는 방법을 제안한다. 제안하는 방법은 스마트폰 IMU 센서와 GPS를 사용하기 때문에 추가 비용을 들지 않는다. 그리고 가속도 센서만 사용하여 학습시킨 경우와 비교했을 때 같은 시간 동안 더 많은 데이터를 수집하여 학습하기 때문에 오차가 작다.

제안하는 방법은 신뢰할 수 있는 GPS를 사용하여 실외에서 2가지 시나리오로 검토한 1차에 따라 가속도 센서, 자이로 센서, GPS를 측정한다. 여기에 2가지 시나리오는 (1) 헬드폰을 손에 들고 헤드폰을 머리에 착용한 상태, (2) 헬드폰을 손에 들고 휴대폰을 가진 상태에서 가진 상태를 의미한다. 신호의 오차를 최소화하기 위해 Kalman Filter 알고리즘(Kalman Filter Algorithm)을 사용하여 CNN 모델로 학습하여 평균 속도와 이동 시간을 계산하여 이동 거리를 예측한다.

본 논문의 구성은 다음과 같다. 본문에서는 가속도 센서를 이용하여 실내에서 이동 거리를 예측한 센서 연구를 분석한다. 그리고 본 논문에서 제안하는 데이터 수집 및 처리 과정과 학습에 사용한 모델에 대해 설명한 다. 마지막으로 성능 평가 후 결론을 냄는다.

I. 서론
스마트폰 사용자의 증가와 실내공간에서 보내는 시간이 많아지며 따라 실내위치 인식 기술 연구가 논의되고 있다. 실외에서 거리를 예측하는 방
법 중 GPS를 사용하는 방법이 가장 보편적으로 활용되고 있는 정확도를 가
저지만 실내에서 사용할 수 없다는 단점이 있다. 이에 실내에서 거리를 예
측하는 방법으로는 와이파이를 이용한 방법[1]과 IMU 센서를 이용한 방
법[2] 등이 있다. 본 논문에서는 실외에서 검토하면서 동일한 시간에 측정
된 가속도 센서, 자이로 센서, GPS 신호를 수집하고 데이터 세트를 만든
뒤, CNN 모델로 학습하여 이동 거리를 예측하는 방법을 제안한다. 제안
하는 방법은 스마트폰 IMU 센서와 GPS를 사용하기 때문에 추가 비용을
들지 않는다. 그리고 가속도 센서만 사용하여 학습시킨 경우와 비교했을
때 같은 시간 동안 더 많은 데이터를 수집하여 학습하기 때문에 오차가
작다.

제안하는 방법은 신뢰할 수 있는 GPS를 사용하여 실외에서 2가지 시나
리오로 검토한 1차에 따라 가속도 센서, 자이로 센서, GPS를 측정한다. 여기에 2가지 시나리오는 (1) 헬드폰을 손에 들고 헤드폰을 머리에 착용한 상태, (2) 헬드폰을 손에 들고 휴대폰을 가진 상태에서 가진 상태를 의미한다. 신호의 오차를 최소화하기 위해 Kalman Filter 알고리즘(Kalman Filter Algorithm)을 사용하여 CNN 모델로 학습하여 평균 속도와 이동 시간을 계산하여 이동 거리를 예측한다.

본 논문의 구성은 다음과 같다. 본문에서는 가속도 센서를 이용하여 실
내에서 이동 거리를 예측한 센서 연구를 분석한다. 그리고 본 논문에서 제
안하는 데이터 수집 및 처리 과정과 학습에 사용한 모델에 대해 설명한 다.
마지막으로 성능 평가 후 결론을 냄는다.

II. 본론
A. 선행 연구 분석
[3]에서는 3축 가속도 센서를 이용해 이동 경로를 파악한 후 해당 이동
시간 동안 3축 가속도의 변화를 데이터화한 후 이동 경로를 통해 이동
거리를 예측하였다. 실제 경로 13km를 측정하였을 때 약 33-39%의 오차
를 보였다. [4]에서는 스마트폰에 탑재되어있는 가속도 센서의 데이터를
분석하여 사용자의 보행을 계산하였고, 걸음 속도에 따른 가속도를 고려
한 식을 사용하여 오차를 줄였다. 그 결과 6m 이동 거리를 기준으로 10회
측정하였을 때 평균 10%의 오차를 보였다. 이러한 가속도 센서를 이용하
여 이동 거리 예측 오차를 줄이기 위한 연구가 계속되고 있다. 하지만 콜
은 거리에는 여전히 오차가 크기 때문에 본 논문에서는 오차를 줄이기
위해 스마트폰에 내장된 가속도 센서와 GPS로 데이터를 사용하여 실
외에서 데이터를 수집하고, CNN 모델로 학습하여 실내에서 이
동 거리를 예측한다.
B. 데이터 수집 및 전처리
실험을 위해서 자동으로 수집된 스마트폰의 GPS, 3축 가속도 센서, 3
축 자이로 센서의 신호를 학습의 데이터로 사용한다. 데이터 수집은 센
서 신호를 측정하여 log 파일 형태로 스마트폰 내장 메모리에 저장되는
Android application(App)도 개발하여 측정하였다. 실험의 주요 시나리오
는 (1) 헬드폰을 손에 들고 헤드폰을 머리에 착용한 상태, (2) 헬드폰을 손에 들
고 휴대폰을 가진 상태이다. 데이터를 수집하는 동안 발생한 예외시, 일명
에 의한 오차로 데이터에 반영하였다. 가속도 센서와 자이로 센서는
100Hz 샘플링 속도로 측정하였으며, GPS를 사용하여 1초마다 속도를 계
산하였다. 속도는 현재 위치와 이전 위치 사이의 변화를 사용하여 계산한
고 [1]의 방정식을 사용하였다. 여기서 $d(t)$는 변화를 의미하고
$v(t)$는 속도를 의미한다, Δx, Δy, Δz는 시간에 따른 GPS의 위치 변화
도 값이다.

$$
\begin{align*}
 d(t) &= \sqrt{(\Delta x(t) - \Delta x(t-1))^2 + (\Delta y(t) - \Delta y(t-1))^2 + (\Delta z(t) - \Delta z(t-1))^2} \\
 \Delta x(t) &= \frac{d}{t - (t-1)} \\
 v(t) &= \frac{\Delta x(t)}{t - (t-1)}
\end{align*}
$$

(1)

가속도 센서 신호의 오차를 최소화하기 위해 필터를 적용하여 보정
하였고, 중력의 영향을 제거한 후 일차 회귀계를 변환하였다. 자이로 센
서와 GPS의 각각의 필터를 적용하여 오차를 최소화하였다.
그럼 1은 다양한 속도 변화에 따른 가속도 센서와 자이로 센서의 3축 그
제목은 실험에서 60초 동안 측정하였으며, 평균 0.3m/s, 0.5m/s, 1.0m/s, 1.3m/s, 1.6m/s의 속도로 점했다. 그 결과 속도의 변화에 따라 가속도 센서와 자이로 센서의 신호가 비례하게 변화하는 것을 확인하였다. 이를 통해 속도가 자이로 센서에도 영향을 준다는 사실을 알 수 있었고, 가속도 센서와 함께 속도를 측정하기 위한 조로 사용하였다.

![그림 1. 속도 변화에 따른 가속도 센서와 자이로 센서](image)

C. 1D-Convolutional Neural Networks(1D CNN)

실에서는 수입한 데이터를 사용하여 신경망을 통해 학습한다. 학습에 사용된 데이터 세트는 각 시간(1초)별로 측정된 가속도 센서, 자이로 센서의 신호로 구성하였고 보정된 GPS를 사용하여 구한 속도(m/s)를 라벨로 저장하였다. 신경망 모델은 회귀 모델(regression)을 사용하여 속도를 예측하였다. 또한 1D-CNN과 Max Pooling을 사용하여 특징을 추출하여 학습하였다. Optimizer는 RMSprop을 사용하고 회귀 문제를 사용하였으므로 순실 함수는 mse를 사용하였다. 활성화 함수를 적용하면 출력값의 범위를 제한하기 때문에 사용하지 않았다.

일반적으로 모델을 평가하기 위해 데이터를 훈련 세트와 검증 세트로 나누는 것이 학습을 하기 쉬운 방법이며 K-fold 검증을 사용하였다. 훈련 단계에 K개의 데이터를 K개의 모델을 만들고, K개의 모델을 사용하여 K-1개의 모델에서 추출한 나머지 부분에서 평가하였다. 본 논문에서는 K를 값 5로 설정하였다.

III. 성능 평가

데이터 세트를 구성하기 위해 개발한 App을 스마트폰에 다운로드하고 실험에서 약 1시간 정도 걸으면서 센서 신호를 수집하였다. (1) 헬드폰을 손에 들고 화면을 보고 가는 경우, (2) 헬드폰을 손에 들고 헬드폰이 가는 상황에서 실험을 진행하였고 약 4100개의 데이터를 수집하였다. 성능 평가 방법은 자이로 센서의 유무가 나뉘어 진행하였고 가속도 센서와 자이로 센서의 상호 사용을 위해 약 2600개 (가속도 센서 : 2600개)의 데이터로 학습했고, 가속도 센서와 자이로 센서의 상호 사용을 위해 약 4100개 (가속도 센서 : 2600개)의 데이터로 학습했었다.

실에서 시나리오 (1) 방법으로 60m의 목표를 측정한 속도로 10번 걸으면서 가속도 센서와 자이로 센서 신호를 수집하여 데이터 세트로 만들어 이동 거리를 예측하였는데 거리 오차는 표 1과 같이 나타났다. 동일한 시간 단위에서 데이터를 수집하였을 때 자이로 센서가 사용한 경우 속도를 예측하는 데 효과적인 데이터를 2배 더 수집할 수 있었고 또한 결과는 표 1과 같이 나타났다. 가속도 센서만 사용한 실험의 이동 거리 오차는 3.23m로 약 3.3%의 오차를 보였고, 가속도 센서와 자이로 센서를 같이 사용한 실험의 이동 거리 오차는 1.9m로 가속도 센서만 사용했을 때보다 2.2% 적은 오차를 보였다.

<table>
<thead>
<tr>
<th>횟수</th>
<th>가속도</th>
<th>가속도 + 자이로</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.25m</td>
<td>1.36m</td>
</tr>
<tr>
<td>2</td>
<td>2.38m</td>
<td>2.19m</td>
</tr>
<tr>
<td>3</td>
<td>2.22m</td>
<td>0.52m</td>
</tr>
<tr>
<td>4</td>
<td>1.24m</td>
<td>0.34m</td>
</tr>
<tr>
<td>5</td>
<td>0.91m</td>
<td>0.15m</td>
</tr>
<tr>
<td>6</td>
<td>0.47m</td>
<td>1.13m</td>
</tr>
<tr>
<td>7</td>
<td>3.52m</td>
<td>2.0m</td>
</tr>
<tr>
<td>8</td>
<td>1.28m</td>
<td>1.43m</td>
</tr>
<tr>
<td>9</td>
<td>1.11m</td>
<td>0.25m</td>
</tr>
<tr>
<td>10</td>
<td>2.66m</td>
<td>0.98m</td>
</tr>
<tr>
<td>평균</td>
<td>3.22m</td>
<td>1.9m</td>
</tr>
</tbody>
</table>

표 1. 60m에 대한 이동 거리 오차

IV. 결론

본 논문에서는 가속도 센서를 이용하여 이동 거리를 추정한 방법보다 가속도 센서와 자이로 센서를 사용한 방법이 2.2%의 낮은 거리오차를 보였다. 이 이유는 동일한 시간 내에서 데이터를 수집하는 경우 가속도 센서만 사용했을 때보다 가속도 센서와 자이로 센서를 같이 사용했을 때 속도를 예측할 수 있는 정보가 더 많아지기 때문이다. 본 논문에서는 가속도 센서와 자이로 센서에 대해서 데이터를 수집하였지만 각각의 다양한 환경에서 실험을 진행하여 오차를 줄이기 노력할 것이다.

ACKNOWLEDGMENT

이 (성파물)은 산업통상자원부 '산업전문인력역량강화사업'의 재원으로 한국산업기술진흥원(KIAT)의 지원을 받아 수행된 연구임. (2020년 임베디드SW 전문인력 양성사업, 과제번호 : N0001884)

참고 문헌