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Messages from Program Chairs

International Conference on Information Security and Cryptology (ICISC 2023) is held from 
November 29 – December 1, 2023. This year’s conference is hosted by the KIISC (Korea Institute of 
Information Security and Cryptology).

The aim of this conference is to provide an international forum for the latest results of research, 
development, and applications within the field of information security and cryptology. This year, 
we received 78 submissions and were able to accept 31 papers at the conference. The challenging 
review and selection processes were successfully conducted by program committee (PC) members 
and external reviewers via the EasyChair review system. For transparency, it is worth noting that 
each paper underwent a blind review by at least three PC members. For the LNCS post-proceeding, 
the authors of selected papers had a few weeks to prepare for their final versions, based on the 
comments received from the reviewers.  

The conference features three invited talks, given by Prof. Rei Ueno, Dr. Tung Chou, and Dr. 
Anubhab Baksi. We thank the invited speakers for their kind acceptances and respectable 
presentations. We would like to thank all authors who have submitted their papers to ICISC 2023, 
as well as all PC members. It is a truly wonderful experience to work with such talented and 
hardworking researchers. We also appreciate the external reviewers for assisting the PC members. 
Finally, we would like to thank all attendees for their active participation and the organizing 
members who successfully managed this conference. We look forward to seeing you again at next 
year’s ICISC.

November 2023
HwaJeong Seo, Suhri Kim 

Program Chairs

ICISC 2023 | November 29 (Wed) ~ December 1 (Fri), 2023
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Organization

GENERAL CHAIR
• Yoojae Won (Chungnam National University, Korea)

ORGANIZING CHAIRS
• Young-Ho Park (Sejong Cyber University, Korea)
• Junbeom Hur (Korea University, Korea)

ORGANIZING COMMITTEE
• Daewan Han (National Security Research Institute, Korea)
• Hyun-O Kwon (Korea Internet & Security Agency, Korea)
• Jeong Nyeo Kim (Electronics and Telecommunications Research Institute, Korea)
• Jungsuk Song (Korea Institute of Science and Technology Information, Korea)
• Kihyo Nam (UMLogics, Korea)
• Jonghwan Park (Sangmyung University, Korea)
• Jongsung Kim (Kookmin University, Korea)
• Youngjoo Shin (Korea University, Korea)
• Dongyoung Koo (Hansung University, Korea)
• Changhee Hahn (Seoul National University of Science and Technology, Korea)
• Hyunsoo Kwon (Inha University, Korea)

PROGRAM CHAIRS
• HwaJeong Seo (Hansung University, Korea)
• Suhri Kim (Sungshin Women's University, Korea)

PROGRAM COMMITTEE
• Wenling Wu (Institute of Software Chinese Academy of Sciences, China)
• Zhenfu Cao (East China Normal University (ECNU), China)
• Swee-Huay Heng (Multimedia University, Malaysia)
• Taehwan Park (National Security Research Institute, Korea)
• Toshihiro Yamauchi (Okayama University, Japan)
• Jiqiang Lu (Beihang University, China)
• Joonsang Baek (University of Wollongong, Australia)
• Katsuyuki Okeya (Hitachi High-Tech Corporation, Japan)
• Keita Emura (Kanazawa University, Japan)
• Bimal Roy (ASU, Indian Statistical Institute, India)
• Dongseong Kim (University of Queensland, Australia)

The 26th Annual International Conference on Information Security and Cryptology



6

C

M

Y

CM

MY

CY

CMY

K

무제-1.pdf   8   2018-11-12   오전 10:51:56

ICISC 2023 | November 29 (Wed) ~ December 1 (Fri), 2023

• Donghoon Chang (IIIT-Delhi, India)
• Hung-Min Sun (National Tsing Hua University, Taiwan)
• Iraklis Leontiadis (Inpher, USA)
• Baodong Qin (School of Cyberspace Security, Xi'an University of Posts and Telecommunications, China)
• Xinyi Huang (Fujian Normal University, China)
• Sherman S. M. Chow (Chinese University of Hong Kong, Hong Kong)
• Daniel Slamanig (Universität der Bundeswehr München, Germany)
• Reza Azarderakhsh (Florida Atlantic University, USA)
• Ben Lee Wai Kong (Gachon university, Korea)
• Anubhab Baksi (Nanyang Technological University, Singapore)
• Olivier Sanders (Orange Labs, France)
• Kwangsu Lee (Sejong University, Korea)
• Munkyu Lee (Inha University, Korea)
• Jooyoung Lee (KAIST, Korea)
• SeogChung Seo (Kookmin University, Korea)
• Jaehong Seo (Hanyang University, Korea)
• Jihye Kim (Kookmin University, Korea)
• Jongsung Kim (Kookmin University, Korea)
• Aaram Yun (Ewha Woman's University, Korea)
• Taekyoung Youn (DanKook University, Korea)
• Jungyeon Hwang (Sungshin Women's University, Korea)
• Minhye Seo (Duksung Women's University, Korea)
• Dohyun Kim (Catholic University of Pusan, Korea)
• Seongmin Kim (Sungshin Women's University, Korea)
• Haehyun Cho (Soongsil University, Korea)
• Myungseo Park (Kangnam University, Korea)
• Dongyoung Koo (Hansung University, Korea)
• Hyojin Jo (Soongsil University, Korea)
• Wonsuk Choi (Korea University, Korea)
• Daehee Jang (Kyunghee University, Korea)
• Yeonjoon Lee (Hanyang University, Korea)
• Jonghwan Park (Sangmyung University, Korea)
• Seungkwang Lee (Dankook University, Korea)
• Yongwoo Lee (Inha University, Korea)
• Konwoo Kwon (Hongik University, Korea)
• Youngjoo Shin (Korea University, Korea)

Organization
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The 26th Annual International Conference on Information Security and Cryptology

• Ilgu Lee (Sungshin Women's University, Korea)
• Joohee Lee (Sungshin Women's University, Korea)
• Joonwoo Lee (Chungang University, Korea)
• Dongyoung Roh (National Security Research Institute, Korea)
• Changmin Lee (Korea Institute for Advanced Study, Korea)
• Heeseok Kim (Korea University, Korea)
• Seunghyun Park (Hansung University, Korea)
• Kiwoong Park (Sejong University, Korea)
• Sokjoon Lee (Gachon University, Korea)
• Byoungjin Seok (Seoul National University of Science and Technology, Korea)
• Taejin Lee (Hoseo University, Korea)
• Donghyun Kwon (Pusan National University, Korea)
• Kyunbaek Kim (Chonnam National University, Korea)
• Dooho Choi (Korea University, Korea)
• Seongkwang Kim (Samsung SDS, Korea)
• Jihoon Kwon (Samsung SDS, Korea)
• Seunghyun Seo (Hanyang University, Korea)
• Namsu Chang (Sejong Cyber University, Korea)

Organization
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Wednesday (2023-11-29)
KST 09:30 – 09:40
UTC 12:30 – 12:40 Opening Remarks

KST 09:40 – 11:00
UTC 12:40 – 02:00

Session 1 : Cryptanalysis & Quantum Cryptanalysis I
(Session Chair : Prof. Suhri Kim (Sungshin Women's University))
Enhancing the Related-Key Security of PIPO through New Key Schedules

Seungjun Baek, Giyoon Kim, Yongjin Jeon and Jongsung Kim
Optimized Quantum Implementation of SEED

Yujin Oh, Kyoungbae Jang, Yu-Jin Yang and Hwajeong Seo
Depth-Optimized Quantum Implementation of ARIA

Yu-Jin Yang, Kyung-bae Jang, Yu-jin Oh and Hwa-Jeong Seo
Finding Shortest Vector using Quantum NV Sieve on Grover

Hyunji Kim, Kyoungbae Jang, Yujin Oh, Woojin Seok, Wonhuck Lee, Kwangil Bae, Ilkwon Sohn and Hwajeong Seo
KST 11:00 – 11:10
UTC 02:00 – 02:10 Break Time 

KST 11:10 – 12:10
UTC 02:10 – 03:10

Session 2 : Side Channel Attack I
(Session Chair : Dr. Byoungjin Seok (Seoul National University of Science and Technology))
Extended Attacks on ECDSA with Noisy Multiple Bit Nonce Leakages

Shunsuke Osaki and Noboru Kunihiro
Single Trace Analysis of Comparison Operation based Constant-Time CDT Sampling and Its Countermeasure

Keonhee Choi, Ju-Hwan Kim, Jaeseung Han, Jae-Won Huh and Dong-Guk Han
A Lattice Attack on CRYSTALS-Kyber with Correlation Power Analysis

Yen-Ting Kuo and Atsushi Takayasu
KST 12:10 – 13:30
UTC 03:10 – 04:30 Break Time (Lunch Time in Korea)

KST 13:30 – 14:30
UTC 04:30 – 05:30

Session 3 : Cyber Security I
(Session Chair : Prof. Seung-Hyun Seo (Hanyang University))
A Comparative Analysis of Rust-Based SGX Frameworks: Implications for building SGX applications

Heekyung Shin, Jiwon Ock, Hyeon No and Seongmin Kim
BTFuzzer: a profile-based fuzzing framework for Bluetooth protocols

Min Jang, Yuna Hwang, Yonghwi Kwon and Hyoungshick Kim
mdTLS: How to make middlebox-aware TLS more efficient?

Taehyun Ahn, Jiwon Kwak and Seungjoo Kim
KST 14:30 – 14:40
UTC 05:30 – 05:40 Break Time 

KST 14:40 – 15:40
UTC 05:40 – 06:40

Session 4 : Cyber Security II & Side Channel Attack II 
(Session Chair : Prof. Kwangsu Lee (Sejong University))
PHI: Pseudo-HAL Identification for Scalable Firmware Fuzzing

Seyeon Jeong, Eunbi Hwang, Yeongpil Cho and Taekyoung Kwon
Lightweight Anomaly Detection Mechanism based on Machine Learning Using Low-Cost Surveillance Cameras

Yeon-Ji Lee, Na-Eun Park and Il-Gu Lee
Side-Channel Analysis on Lattice-Based KEM using Multi-feature Recognition - The Case Study of Kyber

Yuan Ma, Xinyue Yang, An Wang, Congming Wei, Tianyu Chen and Haotong Xu
KST 15:40 – 15:50
UTC 06:40 – 06:50 Break Time 

KST 15:50 – 17:10
UTC 06:50 – 08:10

Session 5 : Applied Cryptography I
(Session Chair : Dr. Dongyoung Roh (National Security Research Institute))
Enhancing Prediction Entropy Estimation of RNG for On-the-Fly Test

Yuan Ma, Weisong Gu, Tianyu Chen, Na Lv, Dongchi Han and Shijie Jia
Leakage-Resilient Attribute-based Encryption with Attribute-hiding

Yijian Zhang, Yunhao Ling, Jie Chen and Luping Wang
Constant-Deposit Multiparty Lotteries on Bitcoin for Arbitrary Number of Players and Winners

Shun Uchizono, Takeshi Nakai, Yohei Watanabe and Mitsugu Iwamoto
Single-Shuffle Card-Based Protocols with Six Cards per Gate

Tomoki Ono, Kazumasa Shinagawa, Takeshi Nakai, Yohei Watanabe and Mitsugu Iwamoto

Conference Program

ICISC 2023 | November 29 (Wed) ~ December 1 (Fri), 2023
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Conference Program

Thursday (2023-11-30)

KST 10:00 – 11:00
UTC 01:00 – 02:00

[Invited Talk I]
(Session Chair : Prof. Hwajeong Seo (Hansung University))
Title: Secure Implementation of Post-Quantum Cryptography: Challenges and Opportunities
Prof. Rei Ueno (Tohoku University)

KST 11:00 – 11:10
UTC 02:00 – 02:10 Break Time

KST 11:10 – 12:10
UTC 02:10 – 03:10

Session 6 : Signature Schemes
(Session Chair : Prof. Mun-Kyu Lee (Inha University))

1-out-of-n Oblivious Signatures: Security Revisited and a Generic Construction with an Efficient Communication Cost
Masayuki Tezuka and Keisuke Tanaka

Compact Identity-based Signature and Puncturable Signature from SQISign
Surbhi Shaw and Ratna Dutta

High Weight Code-based Signature Scheme from QC-LDPC Codes
Chik How Tan and Theo Fanuela Prabowo

KST 12:10 – 13:30
UTC 03:10 – 04:30 Break Time (Lunch Time in Korea)

KST 13:30 – 14:30
UTC 04:30 – 05:30

[Invited Talk II]
(Session Chair : Prof. Joonwoo Lee (Chungang University))
Title: CryptAttackTester: Formalizing Attack A nalyses
Dr. Tung Chou (Academia Sinica)

KST 14:30 – 14:40
UTC 05:30 – 05:40 Break Time

KST 14:40 – 16:00
UTC 05:40 – 07:00

Session 7 : Applied Cryptography II & Quantum Cryptanalysis II
(Session Chair : Prof. Yongwoo Lee (Inha University))

Efficient Result-Hiding Searchable Encryption with Forward and Backward Privacy
Takumi Amada, Mitsugu Iwamoto and Yohei Watanabe

Finsler Encryption
Tetsuya Nagano and Hiroaki Anada

Experiments and Resource Analysis of Shor's Factorization Using a Quantum Simulator
Junpei Yamaguchi, Masafumi Yamazaki, Akihiro Tabuchi, Takumi Honda, Tetsuya Izu and Noboru Kunihiro 

Quantum Circuits for High-Degree and Half Multiplication For Post-Quantum Analysis
Rini Wisnu Wardhani, Dedy Septono Catur Putranto and Howon Kim

KST 16:00 – 16:10
UTC 07:00 – 07:10 Break Time

KST 16:10 – 17:10
UTC 07:10 – 08:10

Session 8 : Korean Post Quantum Cryptography
(Session Chair : Prof. Seongmin Kim (Sungshin Women's University))

Theoretical and Empirical Analysis of FALCON and SOLMAE using their Python Implementation
Kwangjo Kim

Security Evaluation on KpqC Round 1 Lattice-based Algorithms Using Lattice Estimator
Suhri Kim, Eunmin Lee, Joohee Lee, Minju Lee and Hyun A Noh

On the security of REDOG
Tanja Lange, Alex Pellegrini and Alberto Ravagnani

KST 17:10 – 18:00
UTC 08:10 – 09:00 Break Time

KST 18:00 – 20:30
UTC 09:00 – 11:30 Banquet (Hotel Koreana Diamond Hall 2F)

The 26th Annual International Conference on Information Security and Cryptology
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Conference Program

Friday (2023-12-01)

KST 10:00 – 11:00
UTC 01:00 – 02:00

[Invited Talk Ⅲ]
(Session Chair : Prof. Hwajeong Seo (Hansung University))
Title: Hash Based Signatures and Ascon-Sign
Dr. Anubhab Baksi (Nanyang Technological University)

KST 11:00 – 11:10
UTC 02:00 – 02:10 Break Time

KST 11:10 – 12:30
UTC 02:10 – 03:30

Session 9 : Cryptanalysis & Applied Cryptography III
(Session Chair : Dr. Taehwan Park (National Security Research Institute))

Distinguisher and Related-Key Attack on HALFLOOP-96
Jinpeng Liu and Ling Sun

Not optimal but efficient: a distinguisher based on the Kruskal-Wallis test
Yan Yan, Elisabeth Oswald and Arnab Roy

Feasibility Analysis and Performance Optimization of the Conflict Test Algorithms for Searching Eviction Sets
Zhenzhen Li, Xue Zihan and Wei Song

Revisiting Key Switching Techniques with Applications to Light-Key FHE
Ruida Wang, Zhihao Li, Benqiang Wei, Chunling Chen, Xianhui Lu and Kunpeng Wang

Farewell

ICISC 2023 | November 29 (Wed) ~ December 1 (Fri), 2023

ICISC 2023 On-Line Proceeding Download
URL   http://www.icisc.org/ > Proceeding Tap Click! 

PW   2324
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Conference Information

Conference Location 
ICISC 2023 Conference is held at Koreana Hotel(2th floor).

Lunch 
Free Lunch for Day 1, Day 2 are provided at the Diamond hall, Koreana hotel (2th floor), in the form 
of a Lunch box. 

Banquet 
In the evening of day 2 (Nov. 30) free banquet is scheduled. It will be held at the Diamond hall , 
Koreana hotel (2th floor) from 18:00.
 
Internet Access 
Free Wi-Fi access is provided during the conference.

11

The 26th Annual International Conference on Information Security and Cryptology



사이버 무빙 트랩은 5G 서비스를 위협하는 사이버 공격 대응을 위한 가상화 기술 기반의 기만
기술로 악성코드 확산 자가 대응 기술 도구 입니다. IoT 디바이스들의 식별 정보 노출을 사전
차단하고 식별정보를 재 생성하는 디바이스 동적 변이 시스템을 탑재하여 네트워크 자산을
능동적으로 보호 합니다.

5G Massive 네트워크
사이버 공격 기만 도구

 주변환경 스캔을 통해 주변 자산과 유사한 가
상화 기반 능동형 사이버 트랩을 생성하여 공
격자의 능동적인 유인을 구현

 다양한 IoT 디바이스에 적용할 수 있는 다중
디바이스 식별정보 동적 변이 기술로 공격자
정보수집 지연을 구현

 가상화 트랩으로 유인된 봇넷 악성코드 및
APT 공격 행위 등의 데이터 수집 기술

지능형 사이버 무빙 트랩

 공격자 기만을 위한 유도장치(Decoy)를 사
용하여 공격자를 트랩(Trap)으로 유도

 공격자 접속 식별 및 공격 정보 수집/모니터
링

 악성코드 감염 원인분석 기법 및 자동 격리
기술 기법 제공

 모니터링을 통해 실제 자산 및 무빙 트랩과
유도장치를 배포하고 지속적으로 관리

사이버 무빙 트랩의 유도 기술 및 모니터링

쿤텍 주식회사
031-751-9088  |  marketing@coontec.com





DX 융합보안 전문기업 쿤텍은
파라오의 무덤을 지킨 것으로

알려진 고대 고양이처럼,

진화하는 보안 위협에 대한
빠르고 전문적인 대응방안을 제시하여
다양한 환경의 고객 자산을 보호합니다.

www.coontec.com

DX 융합보안 전문기업
쿤텍 주식회사

임베디드보안공급망보안 OT보안
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Invited Talk 1

INVITED TALK 1

INVITED TALK 1 : Prof. Rei Ueno (Tohoku University)
Title :  Secure Implementation of Post-Quantum Cryptography: Challenges and 

Opportunities

Biography
Rei Ueno received the B.E. degree in information engineering and the M.S. and Ph.D. degrees in information 
sciences from Tohoku University, Japan, in 2013, 2015, and 2018, respectively. He is an Assistant Professor 
at the Research Institute of Electrical Communication, Tohoku University, and had been joined the JST as a 
researcher for a PRESTO project for 2018–2022. His research interests include arithmetic circuits, cryptographic 
implementations, formal verification, and hardware security. Dr. Ueno received the Kenneth C. Smith Early Career 
Award in Microelectronics at ISMVL 2017.

Abstract
Post-quantum cryptography (PQC), which is public key cryptography based on quantum-resistant mathematical 
problems, is emerging as the recent development of quantum computers. Many studies have been devoted 
to the design and security analysis of PQC schemes, while their efficient and secure implementation are also 
very active research topics. Recently, side-channel attacks on re-encryption, which is employed by most post-
quantum CCA-secure key encapsulation mechanisms (KEMs), have attracted much attention due to its generality 
and practicality. This talk introduces attacks and defenses on post-quantum cryptographic implementations, with 
a focus on re-encryption.
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Invited Talk

INVITED TALK 2

INVITED TALK 2 : Dr. Tung Chau (Academia Sinica)
Title : CryptAttackTester: formalizing attack analyses

Biography
Tung Chou is an assistant research fellow at Academia Sinica, Taiwan. He received his Ph.D. degree from Eindhoven University 
of Technology. Many of his works were about fast software implementations for post-quantum cryptosystems. His recent 
works are mainly about cryptanalysis and novel ways to reduce signature sizes.
Tung Chou is one of the designers of Classic McEliece, a post-quantum key encapsulation mechanism. Classic McEliece is 
currently considered by NIST for standardization. He is the main implementer for the 4 official software implementations.
He is also the designer of the 5 `f' parameter sets, which allow faster key generation. Tung Chou is also one of the designers of 
MEDS, a post-quantum signature scheme. MEDS is a candidate for NIST's recent call for additional signatures.

Abstract
Quantitative analyses of the costs of cryptographic attack algorithms play a central role in comparing cryptosystems, 
guiding the search for improved attacks, and deciding which cryptosystems to standardize. Unfortunately, these analyses 
often turn out to be wrong. This talk presents a case study demonstrating the feasibility and value of successfully 
formalizing what state-of-the-art attack analyses actually do. The formalization process enforces clear definitions, 
systematically accounts for all algorithm steps,
simplifies review, improves reproducibility, and reduces the risk of error. Concretely, our CryptAttackTester (CAT) software 
includes formal specifications of (1) a general-purpose model of computation and cost metric, (2) various attack 
algorithms, and (3) formulas predicting the cost and success probability of each algorithm. The software includes general-
purpose simulators that systematically compare the predictions to the observed attack behavior in the same model.

INVITED TALK 3

INVITED TALK 3 : Dr. Anubhab Baksi (Nanyang Technological University)
Title : Hash Based Signatures and Ascon-Sign

Biography
Anubhab Baksi did PhD from Nanyang Technological University, Singapore in 2021. Before that, he finished BSc 
(Statistics) and BTech (Computer Science & Engineering). Currently he is employed as a Post-Doctoral researcher. His 
research interest lies in various aspects of cryptography/cyber security and quantum computing.

Abstract
Digital signatures are among the most commonly used cryptographic tool. However, it is believed that the security 
of existing state-of-the-art signatures would face a serious challenge against an attacker equipped with a functional 
quantum computer. To overcome this issue, a relatively new direction of research, which aims at designing signatures 
secured against the quantum attacks, is currently going on in full swing. One such candidate, called the hash based 
signatures, is based on the cryptographic hash functions. In this talk, we will go through the basic construction of the 
hash based signatures. We shall also briefly talk about ciphers like SPHINCS+, SPHINCS-alpha and specially Ascon-Sign.
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Enhancing the Related-Key Security of
PIPO through New Key Schedules⋆

Seungjun Baek1, Giyoon Kim1, Yongjin Jeon1, and Jongsung Kim1,2

1 Department of Financial Information Security, Kookmin University, Republic of
Korea

{hellosj3,gi0412,idealtop18,jskim}@kookmin.ac.kr
2 Department of Information Security, Cryptology, and Mathematics, Kookmin

University, Republic of Korea

Abstract. In this paper, we present new key schedules for the PIPO block
cipher that enhance its security in the related-key setting. While PIPO has
demonstrated noteworthy resistance against attacks in the single-key set-
ting, its security in the related-key setting is very vulnerable owing to its
simple key schedule. Given the lightweight property of PIPO, we tweak
the key schedule algorithm of PIPO by applying computation only within
a single register or from one register to another in key states. By adopt-
ing our new key schedules, the tweaked version of PIPO achieves better
resistance to related-key attacks and demonstrates competitive imple-
mentation results in an 8-bit AVR environment. We expect that this
paper will contribute to a better understanding of the PIPO block ci-
pher.

Keywords: symmetric-key cryptography · PIPO · block cipher · related-
key attacks · key schedule

1 Introduction

Plug-In Plug-Out (PIPO) [11], proposed at ICISC 2020, is a lightweight block
cipher with a substitution permutation network (SPN) structure that supports
64-bit block size and 128- and 256-bit keys. PIPO was designed to be suitable
for the AVR embedded processor, which is a typical 8-bit microcontroller. PIPO-
128 achieved the highest speed in an 8-bit AVR environment among lightweight
block ciphers such as SIMON [3], CRAFT [5], PRIDE [1], and RECTANGLE [19].
PIPO is also a block cipher standard that was approved by the Telecommuni-
cations Technology Association (TTA) of Korea in 2022 [16]. Since PIPO was
developed, its security has been scrutinized by several cryptographers, and its
full-round security has not yet been broken in the single-key setting.

⋆ This work was supported by Institute for Information & communications Technology
Promotion (IITP) grant funded by the Korea government (MSIT) (No.2017-0-00520,
Development of SCR-Friendly Symmetric Key Cryptosystem and Its Application
Modes).
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In designing a lightweight block cipher, related-key attacks are often dis-
missed because, from a practical perspective, they are unlikely to occur. Never-
theless, a block cipher vulnerable to a related-key attack presents some security
concerns. It may not be suitable for other cryptographic primitives that use
block ciphers as building blocks, e.g., block cipher-based hash functions. A con-
crete real-world example is the use of a hash function based on the block cipher
TEA [10]. Microsoft’s Xbox architecture employed a Davies–Meyer hash func-
tion instantiated with TEA, and a security vulnerability related to related-key
characteristics of TEA was exploited in a hacking [18]. Another security concern
arises when secret keys are frequently updated in protocols or when differences
can be incorporated through fault attacks.

Recently, several analyses [17,14] of related-key characteristics for PIPO have
been proposed. In these analyses, researchers have reported PIPO’s full-round
characteristics based on iterative characteristics with a high probability. This
weakness is attributed to PIPO’s simple key schedule. Given that cryptographers
repeatedly analyze the related-key security of PIPO, enhancing its resistance
against related-key attacks might give them confusions. Furthermore, considering
that PIPO is designed for embedded processors, it could also be employed to
construct a hash function, which motivates us to scrutinize its security in the
context of related-key setting.

Our Contributions. In this paper, we propose tweaks to the key schedule
algorithm of PIPO-128. We take into account two conditions for tweaking PIPO-
128’s key schedule. First, our proposed tweaks must ensure better related-key
security than the original PIPO-128. This is achieved by rotating the registers of
key states in the key schedule algorithm to break the 2-round iterative related-
key differential characteristics that occur. We also add additional bit-rotation
within a register to further improve security. Second, we strive to ensure that
the tweaked PIPO algorithm has minimal overhead in an 8-bit AVR environment.
To inherit the lightweight nature of PIPO-128 while keeping implementation cost
low, we completely exclude nonlinear operators, such as AND or OR gates, in the
proposed tweaks. Instead, we mainly apply computation within a single register
or from one register to another.

We evaluate the related-key security of our tweaks in terms of the number
of active S-boxes in a characteristic. We first construct a Mixed Integer Linear
Programming (MILP) model for PIPO-128 and evaluate the number of active
S-boxes. Comparing our tweak to the original PIPO-128, we achieve more than
twice the number of active S-boxes in characteristics with large rounds. For exam-
ple, the 10-round characteristic of the original PIPO-128 had five active S-boxes,
while ours has 11. While this measurement may not yield the characteristic with
the lowest probability, it is sufficient to demonstrate the related-key security of
PIPO-128. We also examine the implementation efficiency of our tweaks in an
8-bit AVR environment. Even though our tweaks involve slightly more compu-
tation compared to the original PIPO-128, their overhead is minimal. Thus, we
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preserve the lightweight property of PIPO-128. Furthermore, we confirm that
our tweaks are useful for PIPO-256 as well.

Paper Organization. Section 2 describes the specifications of PIPO and related-
key differential attacks. Section 3 describes our new tweaks for PIPO’s key sched-
ule. Section 4 describes security analysis for the tweaked PIPO in the related-key
setting. Section 5 describes our implementation results for the tweaked PIPO in
an 8-bit AVR environment. Section 6 presents our conclusion.

2 Preliminaries

2.1 Description of PIPO

Figure 1 depicts the process of PIPO [11,12]. The internal state of PIPO is
represented by an 8 × 8 bit matrix. In the bit matrix, the least significant bit
(LSB) is located at the top right and is filled from right to left. When one row
is filled, the next row is filled again from the right.

The plaintext is XORed with the whitening key and then undergoes a se-
quence of r rounds. For PIPO-128, r is 13, while for PIPO-256, r is 17. Each
round consists of three layers: S-layer, R-layer, and round key and constant
XOR additions.

Fig. 1. Description of PIPO
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S-Layer (SL). PIPO uses the defined 8-bit S-box as shown in Table 1. Each
column in the state is independently substituted using eight S-boxes. The top
bit of the state becomes the LSB of the S-box input value.

Table 1. PIPO S-box

_0 _1 _2 _3 _4 _5 _6 _7 _8 _9 _A _B _C _D _E _F

0_ 5E F9 FC 00 3F 85 BA 5B 18 37 B2 C6 71 C3 74 9D
1_ A7 94 0D E1 CA 68 53 2E 49 62 EB 97 A4 0E 2D D0
2_ 16 25 AC 48 63 D1 EA 8F F7 40 45 B1 9E 34 1B F2
3_ B9 86 03 7F D8 7A DD 3C E0 CB 52 26 15 AF 8C 69
4_ C2 75 70 1C 33 99 B6 C7 04 3B BE 5A FD 5F F8 81
5_ 93 A0 29 4D 66 D4 EF 0A E5 CE 57 A3 90 2A 09 6C
6_ 22 11 88 E4 CF 6D 56 AB 7B DC D9 BD 82 38 07 7E
7_ B5 9A 1F F3 44 F6 41 30 4C 67 EE 12 21 8B A8 D5
8_ 55 6E E7 0B 28 92 A1 CC 2B 08 91 ED D6 64 4F A2
9_ BC 83 06 FA 5D FF 58 39 72 C5 C0 B4 9B 31 1E 77
A_ 01 3E BB DF 78 DA 7D 84 50 6B E2 8E AD 17 24 C9
B_ AE 8D 14 E8 D3 61 4A 27 47 F0 F5 19 36 9C B3 42
C_ 1D 32 B7 43 F4 46 F1 98 EC D7 4E AA 89 23 10 65
D_ 8A A9 20 54 6F CD E6 13 DB 7C 79 05 3A 80 BF DE
E_ E9 D2 4B 2F 0C A6 95 60 0F 2C A5 51 6A C8 E3 96
F_ B0 9F 1A 76 C1 73 C4 35 FE 59 5C B8 87 3D 02 FB

R-Layer (RL). RL rotates each row of the state to the left. The rotation values
from the top row to the bottom row are 0, 7, 4, 3, 6, 5, 1, and 2, respectively.

Round Key and Constant XOR Additions. This layer XORs round con-
stants and the round keys to the internal state. We denote the i-th round key as
Ki. We also denote the j-th row of Ki is kij , i.e., Ki = ki7||ki6|| · · · ||ki0. In PIPO,
there is a whitening key, and we treat it as the 0-th round key K0.

ci is the i-th round constant, defined as ci = i. This definition includes the
case of i = 0 (i.e., c0 = 0). Since ci cannot be higher than 19, the constant XOR
addition only affects the 0-th row of the internal state.

Key Schedule. For PIPO-128, the master key MK is split into two 64-bit states
and used alternately (see Figure 2). Let MK = MK1||MK0 for 64-bit values
MK0 and MK1. The i-th round key Ki is defined by Ki = MKi (mod 2).

For PIPO-256, the master key MK is split into four 64-bit states and used in
sequence. That is, Ki = MKi (mod 4) where MK = MK3||MK2||MK1||MK0

for 64-bit values MK0, MK1, MK2, and MK3.
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Fig. 2. Key schedule of PIPO-128

2.2 Related-Key Differential Attack

Related-key attack, independently introduced by Biham [6] and Knudsen [13],
is a powerful cryptanalytic tool for the analysis of block ciphers. In this attack,
the adversary can obtain the encryption of plaintexts under several related keys,
where the relationship between the keys is known to (or can be chosen by) the
adversary. Kelsey et al. [9] introduced the related-key differential attack. The
adversary can ask for the encryption of plaintext pairs with a chosen difference
of α, using unknown keys that have a difference of ∆K in a manner that is known
or chosen by the adversary. To attack an n-bit cipher, the adversary exploits a
related-key differential characteristic α → β for target (sub-)cipher E with a
probability p larger than 2−n, i.e.,

Pr(P,K)[EK(P )⊕ EK⊕∆K(P ⊕ α) = β] = p > 2−n,

where P represents a plaintext. Here, the adversary’s task is to find a related-key
characteristic with as high a probability as possible. This attack is based on the
key schedule and on the encryption/decryption algorithms, so a cipher with a
weak key schedule may be vulnerable to this kind of attack.

3 New Key Schedules of PIPO

In this section, we propose new key schedules of PIPO to enhance the security
in the related-key setting. We first observe the existing iterative related-key dif-
ferential characteristics for PIPO-128 and PIPO-256. Here, we omit the constant
addition, as it is not relevant to our analysis.
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3.1 Related-Key differential characteristics of PIPO

Yadav and Kumar [17] showed a 2-round iterative related-key differential char-
acteristic with probability 2−4 and constructed a full-round characteristic with
probability 2−24 for PIPO-128. Soon after, Sun and Wang [14] reported full-round
differential characteristics of PIPO-256 for the first time. Due to the simple key
schedule of PIPO, we can construct several related-key differential characteristics
containing only a few active S-boxes. Concretely, 2-round iterative related-key
differential characteristics can be found straightforwardly (see Figure 3).

SL RL

SL RL

Xr−1

Kr−1 Xr Yr Zr

Kr Xr+1 Yr+1 Zr+1

Kr+1 Xr+2

Fig. 3. 2-round iterative related-key differential characteristics of PIPO-128

In the transition Xr
SL−→ Yr

RL−−→ Zr, the 2-round characteristic is constructed
by setting ∆Xr and ∆Zr as iterative keys. Considering the differential distri-
bution table (DDT) of PIPO, there are 224 entries with probability 2−4 (see
Table 2). Since the difference of Xr can also be placed in the remaining seven
columns, there are a total of 224× 8 = 1792 characteristics.

Table 2. Distribution of non-trivial probabilities in DDT of PIPO’s S-box

DDT value 2 4 6 8 10 12 16
# of entries 12552 6226 651 951 9 7 224
probability 2−7 2−6 2−5.415 2−5 2−4.678 2−4.415 2−4
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SL RL

SL RL

SL RL

SL RL

Xr−1

Kr−1 Xr Yr Zr

Kr Xr+1 Yr+1 Zr+1

Kr+1 Xr+2 Yr+2 Zr+2

Kr+2 Xr+3 Yr+3 Zr+3

Kr+3 Xr+4

Fig. 4. 4-round iterative related-key differential characteristics of PIPO-256

Similarly, there exists a full-round differential characteristic with probability
2−16 for PIPO-256 based on the 4-round iterative differential characteristic (see
Figure 4).

3.2 Introducing New Key Schedules: KS1 and KS2

We propose new key schedules for PIPO-128. There are two factors to consider
in order to simultaneously satisfy the related-key security and implementation
efficiency of our key schedules. Note that we are not considering changing the
entire algorithm of PIPO-128; we are only changing the key schedule. Our con-
siderations for these tweaks are as follows:
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1. Increasing resistance against related-key differential attacks - In
PIPO-128’s key schedule, the master key is divided into two 64-bit key states,
and the attacker determines the difference of the two states by selecting the
difference of the master key. Given this simple key schedule, the initially
selected difference remains fixed within the two key states and is XORed
throughout the entire algorithm every two rounds. Ultimately, there are 2-
round iterative differential characteristics resulting from this property, so
our main goal is to prevent such characteristics from occurring. To increase
resistance against related-key differential attacks, we induce diffusion within
the key schedule in the column-wise as well as row-wise directions. Specif-
ically, we measure the minimum number of active S-boxes using the MILP
tool. This number enables us to establish the bounds on the probability of
differential characteristics, considering the best probability of 2−4 from the
PIPO S-box’s DDT table.

2. Achieving minimal overhead - When considering tweaks to the key sched-
ule, one might choose to apply various operators to induce diffusion of dif-
ferences within key states. Recall that PIPO-128 is a block cipher optimized
for 8-bit microcontrollers, so it primarily relies on computations in terms of
register level throughout the encrypting/decrypting process. To inherit this
advantage, we strictly limit our key schedule tweaks to computing within a
single register or from one register to another. Specifically, to preserve the
low implementation cost, we completely exclude nonlinear operators such as
AND or OR gates. Finally, we tweak the key schedule in a way that ensures
security while minimizing the overhead in an 8-bit AVR environment.

Now we introduce two new key schedules of PIPO-128, which we refer to as
KS1 and KS2. We refer to the original key schedule of PIPO-128 as KS0. The
evaluation of their related-key security is discussed in Section 4.

KS1. KS1 is our first proposal for PIPO-128’s key schedule. Our aim is to elim-
inate the 2-round iterative characteristics of PIPO-128 (see Figure 3) in KS1. To
do this, we simply rotate each row register within each of the two key states
by 1 in the upward direction. For the first two rounds, two key states are in-
put as MK0 and MK1, but from then on, rotation is applied to each register
every two rounds. If we apply this operation to the key schedule, a 2-round
iterative pattern is easily broken due to the RL of PIPO-128. In Figure 5, we
describe one example demonstrating our claim. We distinguish the differences
between two key states: one represented by the color orange and the other by the
color blue. In addition, we use hatch patterns to denote all possible differences.
Here, we can see that the difference cancellation does not occur in the transition
X2

SL−→ Y2
RL−−→ Z2 → X3. This is because the possible differences caused by ∆X2

are not canceled out, mainly due to the rotation of the key state. In this way,
difference cancellation patterns are prevented by applying rotations of registers.
Therefore, KS1 can amplify the diffusion of key differences more than the original
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SL RL

SL RL

SL RL

X0

K0 X1 Y1 Z1

K1 X2 Y2 Z2

K2 X3 Y3 Z3

K3 X4

Rotate up by 1

Rotate up by 1

Fig. 5. Breaking the occurrence of the 2-round iterative characteristic of PIPO-128

one. KS1 is represented as follows:

(Kr−1,Kr) = (kr−1
7 ||kr−1

6 || · · · ||kr−1
0 , kr7||kr6|| · · · ||kr0)

2 rounds−−−−−−→ (Kr+1,Kr+2) = (kr+1
0 ||kr+1

7 || · · · ||kr+1
1 , kr+2

0 ||kr+2
7 || · · · ||kr+2

1 ).

In the rotation of two key states, one may consider rotating or changing
only a few registers in each state. Let the attacker choose a key difference in
the unchanged registers in one key state, typically one bit, and then set the
difference determined by the RL operation in the unchanged registers in the
other state. Since the differences in the unchanged registers are fixed, a 2-round
characteristic occurs repeatedly. This is not a desirable proprety for us, so we
do not adopt this method.

KS2. While KS1 offers better related-key security compared to KS0, there is
still room for further improvement in security. The focus of KS2 is to improve
the related-key security of KS1 by applying bit-rotation to one register in each
key state. In KS1, there is no row-wise directional diffusion of the key difference,
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allowing us to consider bit-rotation within the registers. Since our goal is to
minimize overhead in an 8-bit AVR environment, we consider the optimized 8-
bit rotation operations presented in [11] based on [7]. We mainly consider 1-bit
and 4-bit left rotations, which require 2 and 1 clock cycles, respectively (see
Table 3). The remaining bit-rotation operations require 3 to 5 clock cycles, so
we do not take into account other cases. We also apply bit-rotation to only one
upper register to keep the implementation efficient. Surprisingly, according to our
examinations, applying 4-bit rotation yields better results than 1-bit rotation,
even though 4-bit rotation is less expensive. Thus, we adopt the 4-bit rotation
for KS2. KS2 is represented as follows:

(Kr−1,Kr) = (kr−1
7 ||kr−1

6 || · · · ||kr−1
0 , kr7||kr6|| · · · ||kr0)

2 rounds−−−−−−→ (Kr+1,Kr+2) = (kr+1
0 ||kr+1

7 || · · · ||(kr+1
1 ≪ 4), kr+2

0 ||kr+2
7 || · · · ||(kr+2

1 ≪ 4)).

Table 3. 8-bit rotations on 8-bit AVR

≪ 1 ≪ 2 ≪ 3 ≪ 4 ≪ 5 ≪ 6 ≪ 7

LSL X1
ADC X1, ZERO

LSL X1
ADC X1, ZERO
LSL X1
ADC X1, ZERO

SWAP X1
BST X1, 0
LSR X1
BLD X1, 7

SWAP X1
SWAP X1
LSL X1
ADC X1, ZERO

SWAP X1
LSL X1
ADC X1, ZERO
LSL X1
ADC X1, ZERO

BST X1, 0
LSR X1
BLD X1, 7

2 cycles 4 cycles 4 cycles 1 cycle 3 cycles 5 cycles 3 cycles

4 MILP-based Search for Related-Key Characteristics
for PIPO with New Key Schedules

Now, we present a security analysis for new key schedules for PIPO-128. We
adopt the MILP framework for bit-oriented ciphers proposed by Sun et al. [15]
and describe the MILP model for PIPO-128. To optimize the model, we use
the Gurobi MILP solver. We utilized the MILES tool [17] for generating linear
inequalities of the PIPO-128 S-box. Finally, we apply our MILP model to search
for related-key characteristics for PIPO-128 with new key schedules and present
the results. We also present some results for PIPO-256.

4.1 MILP model for PIPO

Generating Linear Inequalities of S-box. Yadav and Kumar [17] proposed
the MILES tool to minimize the number of linear inequalities for large S-boxes.
Minimizing the number of inequalities directly affects the efficiency of MILP
model. Thus, we utilize the MILES tool to generate linear inequalities of the
PIPO S-box. As described in [17], we obtain 4474 linear inequalities for the S-
box, and 35792 inequalities are needed for the SL of one round of PIPO.
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Variables and Constraints. We represent the difference of all cells in each
round as a set of binary variables xi. Each variable xi can take on values
0 or 1, signifying inactive and active bits, respectively. The binary variables
x0, x1, · · · , x63 represent a 64-bit plaintext difference, and the difference for the
next round state is updated as x64, x65, · · · , x127, and so on. To reduce the num-
ber of variables in the MILP model, the output bits of SL in the first round are
set to the variables in the next round with RL−1 applied, and the process is re-
peated for each subsequent round. This process in the first round is represented
as follows:




x7 x6 x5 x4 x3 x2 x1 x0

x15 x14 x13 x12 x11 x10 x9 x8

x23 x22 x21 x20 x19 x18 x17 x16

x31 x30 x29 x28 x27 x26 x25 x24

x39 x38 x37 x36 x35 x34 x33 x32

x47 x46 x45 x44 x43 x42 x41 x40

x55 x54 x53 x52 x51 x50 x49 x48

x63 x62 x61 x60 x59 x58 x57 x56




SL−−−−−→
1-round




x71 x70 x69 x68 x67 x66 x65 x64

x78 x77 x76 x75 x74 x73 x72 x79

x83 x82 x81 x80 x87 x86 x85 x84

x90 x89 x88 x95 x94 x93 x92 x91

x101 x100 x99 x98 x97 x96 x103 x102

x108 x107 x106 x105 x104 x111 x110 x109

x112 x119 x118 x117 x116 x115 x114 x113

x121 x120 x127 x126 x125 x124 x123 x122




Here, we construct linear inequalities based on the input and output variables
of SL. Since SL is applied column-wise, the linear inequalities are also constructed
in such a manner.

To search a related-key differential characteristics, we represent the difference
of the master key as a set of binary variables ki. For PIPO-128, its 128-bit key is
represented by k0, k1, · · · , k127 and for PIPO-256, the 256-bit key is represented
by k0, k1, · · · , k255.

In our model, the XOR operation of the difference is used for XORing the
internal state and the key to generate a new internal state. xin and kin are the
state bit and corresponding key bit, respectively, and xout is the corresponding
output bit. The following inequalities are used to describe the XOR operation:




xin + kin − xout ≥ 0,
xin − kin + xout ≥ 0,
−xin + kin + xout ≥ 0,
xin + kin + xout ≤ 2.

In addition, we use the following set of the inequalities to check the number
of active S-boxes of a characteristic:
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x64·(r−1)+i + x64·(r−1)+i+8 + x64·(r−1)+i+16 + x64·(r−1)+i+24

+x64·(r−1)+i+32 + x64·(r−1)+i+40 + x64·(r−1)+i+48 + x64·(r−1)+i+56 − a(r,i) ≥ 0,
a(r,i) − x64·(r−1)+i ≥ 0,
a(r,i) − x64·(r−1)+i+8 ≥ 0,
a(r,i) − x64·(r−1)+i+16 ≥ 0,
a(r,i) − x64·(r−1)+i+24 ≥ 0,
a(r,i) − x64·(r−1)+i+32 ≥ 0,
a(r,i) − x64·(r−1)+i+40 ≥ 0,
a(r,i) − x64·(r−1)+i+48 ≥ 0,
a(r,i) − x64·(r−1)+i+56 ≥ 0,

where a(r,i) denotes whether the i-th column from the right is active.

Objective Function. Our goal is to minimize the number of active S-boxes
of a characteristic. Thus, when finding a r-round characteristic, our objective
function is

Minimize


Round 1

a(1,i) +


Round 2

a(2,i) + · · ·+


Round r

a(r,i).

4.2 Results

We apply our MILP model to PIPO-128 with KS0, KS1, and KS2. Due to the
large search space, we only compare these results up to 10 rounds of PIPO-128.
In the case of KS2 in round 10, we were unable to prove that this is the best
result since the MILP solver did not terminate within a reasonable amount of
time. We imposed a one-month time constraint for this case and ran the solver.
Our results are summarized in Table 4.

We can observe that in rounds 1 to 2, the results for three key schedules are
identical since the first two key states are the same as K0 and K1. The change
occurs starting from round 5, which is due to the differential diffusion resulting
from additional operations on key states. In particular, in KS0, there are rounds
where active S-boxes do not exist every two rounds, whereas, in KS1 and KS2,
after round 3, there is at least one active S-box in each round. In comparing KS0
and KS1, the difference in the number of active S-boxes begins to appear from
round 9, and considering the results up to round 10, this difference is expected to
increase as the number of rounds increases. This difference is more pronounced
when comparing KS0 and KS2. Furthermore, even if the number of active S-
boxes in round 10 of KS2 may not be optimal, we need to consider at least three
additional active S-boxes to reach a full-round PIPO. Thus, by adopting KS2 as
the key schedule for the tweaked version of PIPO, we expect that there will be
no related-key differential characteristics with a probability higher than 2−64.
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Table 4. Comparison of related-key differential characteristics for PIPO-128 according
to KS0, KS1, and KS2

Round KS0 KS1 KS2
#(Active S-box) − log2 p #(Active S-box) − log2 p #(Active S-box) − log2 p

1 0 0 0 0 0 0
2 0 0 0 0 0 0
3 1 4 1 4 1 4
4 2 8 2 8 2 8
5 2 8 3 13 3 13
6 3 12 4 22.415 4 23
7 3 12 5 29 5 30
8 4 16 6 33.415 6 36.415
9 4 16 7 38.415 8 46.415
10 5 20 8 47.415 11∗ 60.830

KS0 represents the original key schedule of PIPO-128.
*Number of active S-boxes are not confirmed to be optimal.

On the Results for PIPO-256. We try to apply the approach of the key
schedule KS1 to PIPO-256, and we refer to it as KS1∗. That is, we simply rotate
each row register within each of the four key states by 1 in the upward direction.
In the same way as with PIPO-128, four key states are input as MK0, MK1,
MK2, and MK3 in the first four rounds. As a result, we see that even when
KS1∗ is adopted for PIPO-256, we can achieve better related-key security than
the original key schedule (see Table 5).

We also attempted to apply the approach of KS2 to PIPO-256. However, due
to the larger search space, the MILP solver did not termininate after 14 rounds.
Furthermore, the results are either the same as or inferior to those obtained
using KS1. Thus, we only present the results adopting KS1∗.

5 Implementations

In this section, we compare our implementation results with the original PIPO-
128 and other lightweight block ciphers. We used Atmel Studio 6.2 and com-
piled all implementations with optimization level 3. Our target processor was
an ATmega128 running at 8 MHz, as in [11]. Since we could not find a refer-
ence assembly code for PIPO-128, we developed the code and analyzed it for a
fair comparison. We also adopted a metric to measure overall performance on
low-end devices, RANK, which is calculated as

RANK = (106/CPB)/(ROM + 2×RAM),

where the code size represents ROM. Table 6 compares results for PIPO-128 on 8-
bit AVR environment according to key schedules. Results for other block ciphers
can be found in [11].
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Table 5. Comparison of related-key differential characteristics for PIPO-256 according
to KS0∗, KS1∗

Round KS0∗ KS1∗

#(Active S-box) − log2 p #(Active S-box) − log2 p

1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
4 0 0 0 0
5 1 4 1 4
6 1 4 1 4
7 1 4 1 4
8 2 8 2 8
9 2 8 3 13
10 2 8 4 20.415
11 2 8 4 22
12 3 12 6 31.415
13 3 12 8 39
14 3 12 10 51.245
15 3 12 11 60.660
16 4 16 12 67

*We refer to the original key schedule of PIPO-256 as KS0∗.

Table 6. Comparison of PIPO-128 on 8-bit AVR according to key schedules with other
lightweight block ciphers

Block cipher Code size
(bytes)

RAM
(bytes)

Execution time
(cycles per byte) RANK

PIPO-64/128(KS0) 354 31 197 12.09
SIMON-64/128 [3] 290 24 253 11.69
PIPO-64/128(KS1) 354 31 249 8.85
PIPO-64/128(KS2) 354 31 251 8.78

RoadRunneR-64/128 [2] 196 24 477 8.59
RECTANGLE-64/128 [19] 466 204 403 2.84

PRIDE-64/128 [1] 650 47 969 1.39
SKINNY-64/128 [4] 502 187 877 1.30

PRESENT-64/128 [8] 660 280 1,349 0.61
CRAFT-64/128 [5] 894 243 1,504 0.48
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We also implemented PIPO-256 with KS0∗ and KS1∗ in the same environment.
Both cases require the same code size and RAM: 354 bytes of code and 47 bytes
of RAM. With regard to the execution time, PIPO-256 with KS0∗ requires 253
CPB, whereas with KS1∗, it requires 321 CPB. Therefore, the RANK metrics for
them are 8.82 and 6.95, respectively.

6 Conclusion

In this paper, we presented two new key schedules, KS1 and KS2, for the PIPO block
cipher, aiming to enhance PIPO’s related-key security. By applying KS1 and KS2
to PIPO-128, we achieved better related-key security compared to original PIPO-
128. We also applied KS1 to PIPO-256 and obtained interesting results regarding
security. We obtained comparative implementation results in an 8-bit AVR envi-
ronment by completely excluding nonlinear operators and only applying compu-
tation within a single register or from one register to another. The significance
of this study lies in enhancing related-key security of PIPO without significantly
increasing the implementation cost.
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Abstract. With the advancement of quantum computers, it has been
demonstrated that Grover’s algorithm enables a potential reduction in
the complexity of symmetric key cryptographic attacks to the square root.
This raises increasing challenges in considering symmetric key cryptogra-
phy as secure. In order to establish secure post-quantum cryptographic
systems, there is a need for quantum post-quantum security evalua-
tions of cryptographic algorithms. Consequently, NIST is estimating the
strength of post-quantum security, driving active research in quantum
cryptographic analysis for the establishment of secure post-quantum
cryptographic systems.
In this regard, this paper presents a depth-optimized quantum circuit
implementation for SEED, a symmetric key encryption algorithm included
in the Korean Cryptographic Module Validation Program (KCMVP).
Building upon our implementation, we conduct a thorough assessment
of the post-quantum security for SEED. Our implementation for SEED
represents the first quantum circuit implementation for this cipher.

Keywords: Quantum Circuit · SEED · Korean Block Cipher · Grover
Algorithm.

1 Introduction

Quantum computers are the new and upcoming computing paradigm which are
based on quantum mechanical principles (such as superposition and entangle-
ment), and will be able to solve certain classes of problems significantly faster
than the classical computers. Quantum computers are being developed by many
top-tier companies and research institutions.

The introduction of the Shor algorithm [1], which is known for its ability
to solve the integer factorization problem and the discrete logarithm problem
in polynomial time, poses significant risks to public-key cryptography designed
based on these problems. Similarly, the Grover search algorithm [2], known for
its ability to reduce the complexity of data search by a square root factor, can
have a significant impact on the security of symmetric key cryptography.

NIST has proposed criteria for estimating the quantum attack complexity
on the AES family and a parameter called MAXDEPTH, which represents the
maximum circuit depth that a quantum computer can execute, in its evaluation
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criteria document for post-quantum cryptography standardization [3,4]. Both of
these aspects need to be considered to evaluate the quantum security strength of
a cipher. Detailed explanations on these topics will be provided in Section 2.4, 5.

Based on these NIST criteria, continuous efforts have been made to estimate
the complexity of Grover’s key search for symmetric-key ciphers and evaluate
post-quantum security [5,6, 7]. In addition to AES, research has also been con-
ducted on estimating quantum resources for well-known lightweight block ciphers
such as SPECK, GIFT, and PRESENT [8, 9, 10], as well as lightweight block
ciphers selected as finalists in the Lightweight Cryptography (LWC) competition,
including SPARKLE [11,12] and ASCON [13,14].

In this paper, we propose an optimized quantum circuits for SEED, which
is a symmetric key encryption algorithms included as validation subjects in
the Korean Cryptographic Module Validation Program (KCMVP). Since these
cryptographic algorithms are widely used in cryptographic modules in Korea, it
is of great importance to estimate quantum resources and measure the quantum
security strength of these ciphers. Using the proposed quantum circuit as a basis,
we assess the post-quantum security strength of SEED in accordance with NIST
criteria.

1.1 Our Contribution

The contribution in this paper is manifold and can be summarized as follows:

1. Quantum Circuit Implementation of SEED. We demonstrate the first
implementation of a quantum circuit for SEED, which is the one of Korean
cipher.

2. Low-Depth Implementation of SEED. In our quantum circuit implemen-
tation of SEED, we focus to optimize a low Toffoli depth and full depth. We
implement the Itoh-Tsujii algorithm for S-box optimization. For the imple-
mentation, we utilize the WISA’22 quantum multiplication, and a squaring
based on PLU factorization. Further, we enhance the efficiency of depth
optimization by using an optimal quantum adder(which is called CDKM
adder) and implementing parallelization for applicable components.

3. Post-quantum Security Assessment of SEED. We estimate the cost
of Grover’s key search using an our implemented quantum circuit for SEED
in order to assess the quantum security of SEED. During this assessment,
we compare the estimated cost of Grover’s key search for SEED with the
security levels defined by NIST.

2 Preliminaries

2.1 SEED Block Cipher

SEED is a block cipher of Feistel structure operates on 128-bit block and 128-bit
key. It consists of 16 rounds and each round has a round function F .
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A 128-bit block is divided into 64-bit blocks, and the right 64-bit block (R0)
serves as the input to the F function with 64-bit round key. The output of F
function is XORed to the left 64-bit block (L0). The overall structure of SEED
cipher is shown in Figure 1.

Fig. 1: Overall structure of SEED cipher.

F Function The input of F function (Figure 2) is 64-bit block and 64-bit round
key RKi = (Ki,0,Ki,1). The 64-bit block is divided into two 32-bit blocks (C,D)
and each block is XORed with the round key. The F function consists of XOR
operations (⊕), modular additions (⊞), and G functions.

Fig. 2: Process of the F function.

The 26th Annual International Conference on Information Security and Cryptology

ICISC 202338

Session 1 - 2



4 Yujin Oh, Kyungbae Jang, Yujin Yang, and Hwajeong Seo

G Function The 32-bit input block of the G function (Figure 3) is divided into
8-bit blocks (X0−3) and each block becomes input for the S-boxes.

To compute the output of an S-box, it involves exponentiation of x ∈ F28/(x
8+

x6 + x5 + x+ 1), matrix-vector multiplication, and XORing a single constant.
Specifically, two distinct S-boxes (S1 and S2) are employed, each using its own
corresponding set of matrices (A(1) or A(2)), exponentiation values (x247 or x251),
and constant values (169 or 56), which are as follows:

S1(x) = A(1) · x247 ⊕ 169, S2(x) = A(2) · x251 ⊕ 56 (1)

The output values of the S-boxes are ANDed (&) with the constants m0−3,
and the results of these AND operations are XORed with each other to compute
the final output (i.e., Z0−3).

Fig. 3: Process of the G function.

Key Schedule In the key schedule (Figure 4), the 128-bit key is divided into four
blocks (A∥B∥C∥D, where ∥ denotes concatenation), and key constnt values(KCi)
are utilized. Additionally, operations such as shift (≫, ≪), modular addition,
modular subtraction (⊟), and G function are applied.
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Fig. 4: Process of the key schedule

2.2 Quantum Gates

This section describes commonly used quantum gates (Figure 5) for implementing
quantum circuits of block ciphers (note that this is not an exhaustive list of all
possible gates that can be used).

The X gate acts like a NOT operation on a classical computer, reversing
the state of the qubit that goes through it. The Swap gate exchanges the states
of two qubits. The CNOT gate behaves like an XOR operation on a classical
computer. In CNOT(a, b), the input qubit a is the control qubit, and b is the
target qubit. When the control qubit a is in the state 1, the target qubit b is
flipped. As a result, the value of a⊕ b is stored in the qubit b (i.e., b = a⊕ b),
while the state of qubit a remains unchanged. The Toffoli gate, represented as
Toffoli(a, b, c), acts like an AND operation on a classical computer. It requires
three input qubits, with the first two qubits (a and b) serving as control qubits.
Only when both control qubits are in the state 1, the target qubit c is flipped.
The result of the operation a & b is XORed with the qubit c (i.e., c = c⊕ (a &
b)), while the states of qubits a and b are preserved.

2.3 Grover’s Key Search

Grover’s algorithm searches for a specific data from an unsorted set of N with a
search complexity of O(

√
N). In cryptography, for an encryption scheme that

uses a k-bit key, a classical computer requires a search of O(2k) complexity for
exhaustive key search. However, using Grover’s algorithm, a quantum computer
can perform this search with a complexity of only O(

√
2k), which is reduced by

a square root. In this section, we divide the progress of Grover’s key search into

The 26th Annual International Conference on Information Security and Cryptology

ICISC 202340

Session 1 - 2



6 Yujin Oh, Kyungbae Jang, Yujin Yang, and Hwajeong Seo

a X ∼ a a × b

b × a

a • a

b a⊕ b

a • a

b • b

c c⊕ (a · b)

Fig. 5: Quantum gates: X (left top), Swap (right top), CNOT (left bottom) and Toffoli
(right bottom) gates.

three stages: Input Setting, Oracle, and Diffusion Operator, and describe them as
follows.

1. Input Setting : Prepare a k-qubit key in a superposition state using Hadamard
gates. In this case, equal amplitudes are generated for all 2k possible states.

H⊗k |0⟩⊗k
= |ψ⟩ =

( |0⟩+ |1⟩√
2

)
=

1

2k/2

2k−1∑
x=0

|x⟩ (2)

2. In the oracle, the target encryption algorithm(Enc) is implemented through
a quantum circuit. This circuit encrypts a known plaintext(p) in a superposi-
tion state using a pre-prepared key (as set in the input setting), producing
ciphertexts for every possible key value. Subsequently, these generated cipher-
texts are compared with the known ciphertexts (performed in f(x)). Upon
discovering a match (i.e., when f(x) = 1 in Equation (3)), the sign of the
desired key state to be recovered is negated (i.e., (−1)f(x) in Equation (4)).
Finally, the implemented quantum circuit reverses the generated ciphertexts
back to the known plaintext for the next iteration.

f(x) =

{
1 if Enckey(p) = c

0 if Enckey(p) ̸= c
(3)

Uf (|ψ⟩ |−⟩) = 1

2k/2

2k−1∑
x=0

(−1)f(x) |x⟩ |−⟩ (4)

3. The Diffusion Operator serves to amplify the amplitude of the target key state
indicated by the oracle, identifying it by flipping the sign of said amplitude
to negative. The quantum circuit for the diffusion operator is typically
straightforward and does not require any special techniques to implement.
Additionally, the overhead of the diffusion operator is usually negligible
compared to the oracle, and therefore it is generally ignored when estimating
the cost of Grover’s algorithm [5,7,15]. Lastly, the Grover’s algorithm provides
a high probability of measuring the solution key by performing a sufficient
number of iterations of the oracle and the diffusion operator to amplify the
amplitude of the target key state.
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2.4 NIST Security Criteria

NIST establishes security levels and estimates the required resources for block
cipher and hash function attack costs for post-quantum security [3]. The estimates
provided by NIST for the security levels defined and the number of classical and
quantum gates for the attacks are as follows:

– Level 1: Any attempt to breach the defined security standards should
necessitate computational capabilities equal to or greater than those required
to perform a key search on a 128-bit key block cipher, such as AES128.
(2170 → 2157).

– Level 3: Any attempt to breach the defined security standards should
necessitate computational capabilities equal to or greater than those required
to perform a key search on a 192-bit key block cipher, such as AES192.
(2233 → 2221).

– Level 5: Any attempt to breach the defined security standards should
necessitate computational capabilities equal to or greater than those required
to perform a key search on a 256-bit key block cipher, such as AES256.
(2298 → 2285).

Level 1, 3, and 5 are based on the Grover’s key search cost for AES, while
Level 2 and 4 rely on the collision attack cost for SHA3. Additionally, for Levels
2 and 4, estimates are provided only for classical gates, not quantum attacks.
In our implementation of SEED, which is a symmetric key cipher, we primarily
focus on Levels 1, 3, and 5.

NIST sets the Grover’s key search cost for AES-128, 192, and 256 based on
the quantum circuits implemented by Grassl et al. [5], resulting in Levels 1, 3,
and 5. During the execution of the Grover’s key search, the number of gates
and depth continue to increase, while the number of qubits remains constant.
Therefore, the estimates provided by NIST are derived from the product of the
total gates and total depth of the quantum circuit, excluding the number of
qubits(AES-128, 192, and 256 as 2170, 2233, 2298, respectively).

The estimates for Grover’s key search on the quantum circuit from [5], which
NIST used as a basis for setting security levels, are notably high. Subsequent
efforts to optimize AES quantum circuits have led to a reduction in the cost of
quantum attacks. In 2019, Jaques et al. presented optimized quantum circuits for
AES at Eurocrypt ’20 [16]. Based on this, NIST redefines the quantum attack
costs for AES-128, 192, and 256 as 2157, 2221, 2285, respectively [4].

Moreover, NIST proposes a restriction on circuit depth known as MAXDEPTH.
This restriction stems from the challenge of executing highly prolonged sequential
computations. In other words, it arises from the challenge of prolonged calculations
due to sequential repetitions of quantum circuits in Grover’s key search (especially
in the Grover oracle). The MAXDEPTH specified by NIST is as follows. (240 <
264 < 296)
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3 Proposed Quantum Implementation of SEED

In this section, we present our optimized quantum circuit implementation of
SEED. Our optimization goal in implementation is to minimize the depth while
allowing a reasonable number of qubits.

3.1 Implementation of S-box

In quantum computers,the utilization of look-up table-based methods for imple-
menting S-boxes is not appropriate. Thus, we employ quantum gates to implement
the S-boxes based on Boolean expression of Equation 1. We use x247 or x251 in
the S-box implementation, and these values can be expressed using primitive
polynomials in F28/(x

8 + x6 + x5 + x+ 1) as follows: The S-boxes are in GF(28),
so they can be modified with inversion as follows:

(x−1)8 ≡ x247 mod p(x)

(x−1)4 ≡ x251 mod p(x)

p(x) = x8 + x6 + x5 + x+ 1

(5)

We can obtain the value by multiplying the inverse by the square. And then,
following the Itoh Tsujii inversion algorithm [17], the x−1 can be computed:

x−1 = x254 = ((x · x2) · (x · x2)4 · (x · x2)16 · x64)2 (6)

To compute the inversion of x, squaring and multiplication are used (as
shown in Equation 6). In squaring, modular reduction can be employed PLU
factorization because it is a linear operation. By using PLU factorization, it
can be implemented without allocating additional ancilla qubits (i.e., in-place),
using only the CNOT gates. Upon applying the PLU factorization, we obtain
the following:




0 0 0 0 1 1 1 0
0 0 0 0 1 1 0 0
0 1 0 0 0 1 0 1
0 0 0 0 0 1 1 0
0 0 1 0 0 0 1 0
0 0 0 0 1 1 0 1
0 0 0 1 1 1 0 1
0 0 0 0 0 1 0 0




=




1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0




·




1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 1 1 0
0 0 0 0 1 0 0 1




·




1 0 0 0 1 1 1 0
0 1 0 0 0 1 0 1
0 0 1 0 0 0 1 0
0 0 0 1 1 1 0 1
0 0 0 0 1 1 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




(7)

These three matrices consist of a permutation matrix, a lower triangular
matrix, and an upper triangular matrix, respectively. Figure 6 demonstrates the
implementation of quantum circuit of squaring using only CNOT gates, utilizing
these three matrices.
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x0 x0

x1 x2

x2 x4

x3 x6

x4 • • • x1

x5 • • • • • x3

x6 • • • x7

x7 • • x5

Fig. 6: Squaring in F28/(x
8 + x6 + x5 + x+ 1)

For implementing multiplication in quantum, we adopt the method proposed
in [18], which employs the Karatsuba multiplication instead of schoolbook multi-
plication [19]. The Karatsuba algorithm, when applied in the context of quantum
computers, can lead to a reduction in the number of Toffoli gates (as it decrease
the number of AND operations). This efficiency makes it a valuable technique
for quantum computing.

In [18], a special Karatsuba algorithm is used, which enables the quantum
multiplication with a Toffoli depth of one. By applying the Karatsuba algorithm
recursively, all the AND operations for multiplication become independent. Ad-
ditionally, by allocating more ancilla qubits, it becomes possible to operate all
Toffoli gates in parallel, leading to a Toffoli depth of one.

Actually, allocating additional ancilla qubits is a known overhead in their
method [18]. However, it is important to note that their method is more effective
when used in conjunction with other operations rather than as a stand-alone
multiplication. The authors of [18] mention that the ancilla qubits allocated for
multiplication can be initialized (i.e., clean state) using reverse operations. This
means that if it is not a stand-alone multiplication, the ancilla qubits can be
reused in ongoing operations.

In Equation 6, multiple multiplications are performed to compute the inverse
of the input x. Indeed, the method proposed in [18] is well-suited for implementing
quantum circuits for inversion. Concretely, in our implementation, ancilla qubits
are allocated only once for the initial multiplication (x · x2), and for subsequent
multiplications, the initialized ancilla qubits are reused without incurring any
additional cost.

As a result, we successfully optimize the number of qubits and the Toffoli-
related metrics such as, the number of Toffoli gates, Toffoli depth, and full
depth1.

Using these methods of squaring and multiplication, we can obtain the
exponentiation values (x247 and x251). And then, we compute the multiplication
of the exponentiation values (x247 and x251) and the matrices (A(1) and A(2)).
Since the matrices A(1) and A(2) are constant, the matrix-vector multiplication
(classical-quantum) can be implemented in-place without requiring additional

1The full depth is naturally reduced thanks to the reduction in the Toffoli depth.
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qubits. We apply the PLU factorization to the matrices A(1) and A(2), similar to
how we implemented the quantum circuit for squaring (Equation 7).

3.2 Implementation of G function

In the G function, four S-boxes (two S1 and two S2) are used, and the imple-
mentation of these S-boxes follows the method described in Section 3.1. Each
S-box requires 38 ancilla qubits, which can be initialized using reverse operations,
enabling their reuse. Therefore, if the four S-boxes are implemented sequentially,
the number of ancilla qubits can be saved by using only 38 of them. However, in
this case, the depth of the circuit increases due to the sequential operations. Thus,
considering the trade-off, we implement the four S-boxes in parallel to reduce
the circuit depth. This is achieved by allocating a total of 152 (38× 4) ancilla
qubits at first. Additionally, these ancilla qubits are initialized (i.e., returning
to 0), allowing the 4 sets of ancilla qubits to be reused in the G function of the
next round.

3.3 Implementation of Key Schedule

Algorithm 1 describes the proposed quantum circuit implementation of the key
schedule. In the key schedule, two 32-qubit subkeys (Ki,0 and Ki,1) are generated.
To reduce the circuit depth, the implementation is parallelized by operating two
processes simultaneously. For this, we allocate two sets of 152 ancilla qubits to
implement two G functions in parallel. Also, for parallel processing, the operations
with KeyConstant values of quantum state also need to be implemented in parallel.
To enable parallel processing, two pairs of qubits (32 × 2) are allocated to store
the KeyConstant values (using on Ki,0,Ki,1 respectively) in our implementation.

Due to the different KeyConstant values used in each round, it is necessary
to allocate and store new qubits every time. Instead of allocating new qubits in
each round, we utilize reverse operations to initialize and reuse the qubits. The
reverse operation for the KeyConstant of quantum state involves only X gates,
which have a trivial overhead on the circuit depth. Thanks to this approach, we
can effectively parallelize the quantum circuit for the key schedule, resulting in a
reduced circuit depth while using a reasonable number of qubits.

For implementing addition in quantum, we utilize the CDKM adder [20], an
enhanced version of the quantum ripple-carry adder, which is implemented using
X, CNOT, and Toffoli gates. The CDKM adder proves to be effective for n-qubit
addition when n ≥ 4, making it a suitable choice for SEED, where n = 8. This
adder requires only one ancilla qubit and optimizes the circuit depth. Specifically,
it utilizes one ancilla qubit, (2n− 3) Toffoli gates, (5n− 7) CNOT gates, (2n− 6)
X gates, and achieves a circuit depth of (2n+ 3).

In Shift operation, it can be implemented using swap gates, but in our
approach, we utilize logical swaps that change the index of qubits, avoiding the
use of quantum gates.
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Optimized Quantum Implementation of SEED 11

Algorithm 1: Quantum circuit implementation of SEED Key Schedule.

Input: A, B, C, D, c0, c1 ancilla0, ancilla1

Output: key0, key1, C, D
//Each operation in parallel.
1: for 0 ≤ i ≤ 16 do
2: KC Q0 ← Constant XOR(KC[i], KC Q0)
3: KC Q1 ← Constant XOR(KC[i], KC Q1)

4: C2 ← allocate new 32 qubits
5: D2 ← allocate new 32 qubits

6: C2 ← Copy32(C, C2)
7: D2 ← Copy32(D, D2)

8: C2 ← CDKM(A, C2,c0)
9: D2 ← CDKM minus(B, D2, c1)

10: C2 ← CDKM minus(KC Q0, C2, c0)
11: D2 ← CDKM(KC Q1, D2, c1)

12: key0 ← G function(C2, ancilla0)
13: key1 ← G function(D2, ancilla1)

14: //Initialize qubitsthrough reverse to reuse.
15: KC Q0 ← Constant XOR(KC[i], KC Q0)
16: KC Q1 ← Constant XOR(KC[i], KC Q1)

17: if i % 2 == 0 then
18: RightShift(A, B) ▷ logical Swap
19: else
20: LeftShift(C, D) ▷ logical Swap

21: return key0, key1, C, D

4 Performance of the Proposed Quantum Circuits

In this part, we present the performance of our SEED quantum circuit imple-
mentation. Our proposed quantum circuits of cryptographys are implemented
using the ProjectQ tool provided by IBM. ProjectQ provides ClassicalSimula-
tor, which can simulate simple quantum gates mentioned in Section 2.2, and
ResourceCounter, which can measure circuit resources, as internal libraries. Clas-
sicalSimulator has the advantage of providing enough quantum resources to run
our proposed quantum circuit. Real quantum computers still provide limited
quantum resources that are not sufficient to run cryptography. Therefore, the
circuits are run through the simulator provided by ProjectQ and the quantum
resources are measured.

Table 1 and 2 show the quantum resources required to implement our SEED
quantum circuits. Table 1 provides a comprehensive analysis of quantum resources
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Table 1: Required quantum resources for SEED quantum circuit implementation

Cipher #X #CNOT #Toffoli Toffoli depth #Qubit Depth TD-M cost

SEED 8116 409,520 41,392 321 41,496 11,837 13,320,216

Table 2: Required decomposed quantum resources for SEED quantum circuit imple-
mentation

Cipher #Clifford #T T -depth #Qubit Full depth FD-M cost

SEED 748,740 289,680 1,284 41,496 34,566 1,434,350,736

at the NCT (NOT, CNOT, Toffoli) level. The Toffoli gate can be decomposed
into 8 Clifford gates and 7 T gates and Table 2 presents the decomposed quantum
resource costs for the quantum circuit implementation of SEED. Additionally,
our implementation focuses on optimizing the circuit depth while considering the
trade-off for using qubit, and we also perform metrics to evaluate these trade-offs
such as Toffoli depth × qubit count (TD × M) and full depth × qubit count
(FD ×M).

5 Evaluation of Grover’s Search Complexity

We adopt the methodology detailed in Section 2.3 to estimate the cost of Grover’s
key search for SEED. Grover’s search can be estimated based on our implemented
SEED quantum circuit. Since the overhead of the diffusion operator can be
considered insignificant compared to the oracle when most of the quantum
resources are used for implementing the target cipher in the quantum circuit, it
can be disregarded.

Additionally, the Grover oracle is comprised of two consecutive executions
of the SEED quantum circuit. The first one constitutes the encryption circuit,
while the second one is the reverse operation of encryption circuit to return
back to the state prior to encryption. Therefore, the oracle requires twice the
cost of implementing a quantum circuit, not including of qubits. The number
of iterations of Grover key search for k-bit key length is about

√
2k. In [21],

Grover’s key search algorithm was analyzed in detail and the optimal number of
iterations was suggested to be ⌊π

4

√
2k⌋. In conclusion, including Grover iterations,

the Grover’s key search cost for SEED is approximately Table 2 ×2× ⌊π
4

√
2k⌋,

as shown in Table 3.

6 Conclusion

We can assess the post-quantum security of SEED based on the cost of Grover’s
key search obtained earlier (in Section 5). In 2016, NIST defined post-quantum
security levels by considering the estimated costs of Grover’s key search attacks
on AES-128, 192, and 256. Nevertheless, with the declining costs of AES attacks,
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Table 3: Cost of the Grover’s key search for SEED

Cipher Total gates Total depth
Cost

#Qubit TD-M cost FD-M cost
(complexity)

SEED 1.559 · 284 1.657 · 279 1.291 · 2164 41,497 1.246 · 288 1.049 · 295

NIST revised the cost assessments to align with the respective security levels in
2019.

According to Table 3, the Grover’s key search attack cost for SEED is
calculated to be 1.291 · 2164. This leads to the assessment that SEED attains
post-quantum security Level 1.

In summary, this paper presents the first implementation of a quantum circuit
for SEED. We focus on optimizing Toffoli and full depths utilizing parallelization
and optimized multiplication, squaring and an adder. By analyzing the cost of
Grover’s key search attack, we confirm that SEED achieves post-quantum security
Level 1. Furthermore, we provide TD ×M and FD ×M costs to consider the
trade-off between depth and qubits.
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Abstract. The advancement of large-scale quantum computers poses
a threat to the security of current encryption systems. In particular,
symmetric-key cryptography significantly is impacted by general attacks
using the Grover’s search algorithm. In recent years, studies have been
presented to estimate the complexity of Grover’s key search for symmetric-
key ciphers and assess post-quantum security. In this paper, we propose
a depth-optimized quantum circuit implementation for ARIA, which is a
symmetric key cipher included as a validation target the Korean Cryp-
tographic Module Validation Program (KCMVP). Our quantum circuit
implementation for ARIA improves the depth by more than 88.8% and
Toffoli depth by more than 98.7% compared to the implementation pre-
sented in Chauhan et al.’s SPACE’20 paper. Finally, we present the cost
of Grover’s key search for our circuit and evaluate the post-quantum secu-
rity strength of ARIA according to relevant evaluation criteria provided
NIST.

Keywords: Depth-Optimized Quantum Circuit · Korean Block Ciphers
· ARIA · Grover’s Search Algorithm.

1 Introduction

Quantum computers, built upon principles of quantum mechanics like quantum
superposition and entanglement, have the capability to solve specific problems
at a faster rate compared to classical computers. As a result, many companies
and research institutions are concentrating on quantum computer development.
However, it is known that the advancement of large-scale quantum computers has
the potential to pose a threat to the security of current cryptographic systems.
In particular, symmetric-key cryptography can be significantly compromised
by general attacks using the Grover’s search algorithm, which can reduce the
data search complexity. As a result, in recent years, studies have been presented
to estimate the complexity of recovering secret keys in existing symmetric-key
ciphers using the Grover’s search algorithm and evaluate post-quantum security
based on these findings [8, 10, 11, 14, 15, 22, 25].

ARIA is a symmetric-key cryptography algorithm optimized for ultra-light
environments and hardware implementation, and is included as a validation
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target in the Korean Cryptographic Module Validation Program (KCMVP). This
means that ARIA is widely used in verified cryptographic modules, so it is very
important to measure ARIA’s quantum security strength for future preparedness
against emerging threats. Fortunately, there is already a study that measured
the quantum security strength of ARIA in 2020 [2]. However, since [2] primarily
focuses on qubit optimization, there is also a need for research that addresses
the recent emphasis on optimizing depth.

In a document guiding evaluation criteria for post-quantum cryptography
standardization, NIST provided a criteria for estimating quantum attack complex-
ity and proposed a parameter called MAXDEPTH, which refers to the maximum
circuit depth that a quantum computer can execute. In order to evaluate the
strength of quantum security, not only the quantum attack complexity but also
the MAXDEPTH related to execution must be considered. Further elaboration
on this topic can be found in Sections 2.4 and 4.

The paper is structured as follows. Section 2 offers the background for this
paper. Section 2.1 provides an introduction to ARIA. In Section 2.2, the quantum
gates utilized to implement quantum circuits are covered. In Section 2.3 Grover’s
key search is examined because it relates to measuring quantum resources, and in
Section 2.4, NIST post-quantum security and MAXDEPTH are covered because
they are crucial for estimating security strength. Following this, in Sections 3, the
design of quantum circuits for ARIA is suggested, drawing upon the information
presented in Section 2. Section 4.2 presents the cost of Grover’s key search for
our circuit and evaluates ARIA’s post-quantum security strength based on the
estimates. Lastly, Section 5 delves into the summarizing conclusions and outlines
potential directions for future research.

1.1 Our Contribution

This paper makes the following contributions:

1. Low depth quantum implementation of ARIA. In our implementation
of the ARIA quantum circuit, our main focus is minimizing the Toffoli depth
and ensuring full depth. We achieve a reduction in Toffoli depth and full
depth through various techniques for optimization.

2. Various techniques for optimization. We utilize various techniques for
optimization to reduce the depth. For optimizing binary field operations, we
choose a multiplication optimizer that implements the Karatsuba algorithm
in parallel and a squaring method using linear layer optimization methods
(PLU factorization, XZLBZ). Furthermore, we enhance implementing parallel
processing for applicable components.

3. Evaluation of post-quantum security. We estimate the resources required
for implementing quantum circuits for ARIA. The resource estimation for the
ARIA quantum circuit also includes the comparison with previous research.
Furthermore, we evaluate the quantum security of ARIA by estimating the
cost of Grover’s key search based on the implemented quantum circuit and
comparing them with the security levels provided by NIST.

2
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2 Background

2.1 ARIA Block Cipher

ARIA [17], which stands for Academy, Research Institute, and Agency, is a
Korean symmetric key block cipher jointly developed by the three organizations
mentioned above. Since the adoption of ARIA as a national standard encryption
algorithm in 2004, it has been widely used for secure communication and data
protection. Especially, ARIA holds significance as symmetric key ciphers included
in the validation subjects of the KCMVP. ARIA has an interface similar to
AES, a symmetric key block cipher standard, because its designers considered
the design principles of AES during its development. It has an Involutional
Substitution-Permutation Network (ISPN) structure optimized for lightweight
hardware implementation. The input/output size of ARIA is fixed at 128-bit,
and only the key size is different as 128, 192, and 256-bit.

Round Function The round function is made of three main operations: Ad-
dRoundKey, Substitution layer, and Diffusion layer.

In the AddRoundKey, the round key suitable for each round is XORed to
intermediate state.

In the Substitution layer, the input 128-bit state is divided into 8-bit units,
and substitutions are performed using the S-boxes. ARIA employs a total of four
S-boxes (S1, S

−1
1 , S2, S

−1
2 ) , which include the inverse S-boxes. The S1, S

−1
1 are

identical to the ones used in AES, and the S2, S
−1
2 are newly designed S-boxes

specifically for ARIA. These S-boxes used in ARIA are generated by applying an
affine transformation to the functions x−1 and x247 over GF (28). The S-boxes
S1(x), S2(x) are obtained by performing multiplication between 8×8 non-singular
matrix (A or B) and the function(x−1 or x247), followed by XOR with 8 × 1
vector. This can be expressed as follows:

S1(x) = A · x−1 ⊕ [1, 1, 0, 0, 0, 1, 1, 0]T,

S2(x) = B · x247 ⊕ [0, 1, 0, 0, 0, 1, 1, 1]T

where A =




1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1




and B =




0 1 0 1 1 1 1 0
0 0 1 1 1 1 0 1
1 1 0 1 0 1 1 1
1 0 0 1 1 1 0 1
0 0 1 0 1 1 0 0
1 0 0 0 0 0 0 1
0 1 0 1 1 1 0 1
1 1 0 1 0 0 1 1




(1)

ARIA features two types of S-box layers consisting of four S-boxes. Type 1
comprises four 32-bit sets consisting of S1, S2, S

−1
1 , and S−1

2 in this order. Since
the two types are the inverse relationship to each other, Type 2 is the inverse of

3
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Type 1 (i.e., Type1−1 = Type2). Type 1 is used for odd rounds and Type 2 for
even rounds in the round function. The two types of S-box layers in ARIA are
shown in Figure 1.

8		 8		 8		 8		 8		 8		 8		 8		 8		 8		 8		 8		 8		 8		 8		 8		
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Fig. 1: Two types of S-box layers in ARIA

The Diffusion layer performs byte-wise matrix multiplication by multiplying
the given 16 × 16 involution binary matrix with the output of the substitution
layer. The involution binary matrix does not require a separate implementation
of the inverse matrix during the decryption process, as its inverse matrix is the
same as itself.

The detailed composition of the round function differs depending on whether
the round is odd, even, or final. The main difference between odd and even rounds
lies in the type of the S-box layer used: odd rounds use a Type 1, whereas even
rounds use a Type 2. In the final round, the diffusion step is omitted and the
AddRoundKey is performed once more. A brief outline of the round function of
ARIA is shown in Figure 2.

⨁ 𝑒𝑒𝑒𝑒

Diffusion layer

128

128

⨁ 𝑒𝑒𝑒𝑒
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128
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⨁ 𝑒𝑒𝑒𝑒
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⨁ 𝑒𝑒𝑒𝑒
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S-box layer (type 1) S-box layer (type 2) S-box layer (type 2)

𝑎𝑎 	𝐹𝐹! 𝑏𝑏 	𝐹𝐹" 𝑐𝑐 	𝐹𝐹#

Fig. 2: Brief outline of round function of ARIA.
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Key Schedule In the key initialization step (Figure 3), 128-bit initial constants
W0,W1,W2, and W3 are generated as essential components for generating a
round key . During this step, the round functions Fo and Fe are utilized.

KL||KR = MK||0 · · · 0. (2)

Equation 2 represents the formula used to generate the input values KL and
KR in the key initialization step. This equation is derived from the master key
MK. Since the concatenated result of KL and KR, which are each 128-bit, is
fixed to 256-bit (i.e., KL||KR), if MK is smaller than 256, padding is performed
to match the size by filling the insufficient bits with 0s. The 128-bit initial round
constant keys CK1,2,3 are the 128-bit constant values of the rational part of π−1.
The order of using the 128-bit initial round constant keys CK1,2,3 depends on
the length of MK. Figure 3 shows the key initialization step.

𝐶𝐶𝐶𝐶!

⨁

𝑊𝑊"

𝐶𝐶𝐿𝐿 𝐶𝐶𝑅𝑅
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⨁

𝐹𝐹%

𝐹𝐹%

𝐶𝐶𝐶𝐶&

⨁

𝑊𝑊!

𝑊𝑊$

𝑊𝑊&

Fig. 3: Key Initialization of ARIA

In the key generation phase, a round key is generated and used as the key for
each round. The round keys ek1∼17 are obtained by applying rotations (≪,≫)
and XOR operations to the initial constants W0∼3 generated during the key
initialization step.

The round key in all ARIA instances has a size of 128 bits. The number of
rounds for ARIA-128, 192, and 256 are 12, 14, and 16, respectively. Additionally,
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an extra round key is used in the AddRoundKey operation for the final round,
resulting in a total of 13, 15, and 17 round keys for ARIA-128, 192, and 256,
respectively. The round keys eki are generated as follows:

ek1 = (W0)⊕ (W1 ≫ 19), ek2 = (W1)⊕ (W2 ≫ 19)
ek3 = (W2)⊕ (W3 ≫ 19), ek4 = (W0 ≫ 19)⊕ (W3)
ek5 = (W0)⊕ (W1 ≫ 31), ek6 = (W1)⊕ (W2 ≫ 31)
ek7 = (W2)⊕ (W3 ≫ 31), ek8 = (W0 ≫ 31)⊕ (W3)
ek9 = (W0)⊕ (W1 ≪ 61), ek10 = (W1)⊕ (W2 ≪ 61)
ek11 = (W2)⊕ (W3 ≪ 61), ek12 = (W0 ≪ 61)⊕ (W3)
ek13 = (W0)⊕ (W1 ≪ 31), ek14 = (W1)⊕ (W2 ≪ 31)
ek15 = (W2)⊕ (W3 ≪ 31), ek16 = (W0 ≪ 31)⊕ (W3)
ek17 = (W0)⊕ (W1 ≪ 19)

(3)

2.2 Quantum Gates

Since in the quantum computer environment they do not provide logic gates such
as AND, OR, and XOR, quantum gates are used as replacements for logic gates.
This section describes commonly used quantum gates (Figure 4) for implementing
quantum circuits of block ciphers (note that this is not an exhaustive list of all
possible gates that can be used).

The X gate acts like a NOT operation on a classical computer, reversing
the state of the qubit that goes through it. The Swap gate exchanges the states
of two qubits. The CNOT gate behaves like an XOR operation on a classical
computer. In CNOT(a, b), the input qubit a is the control qubit, and b is the
target qubit. When the control qubit a is in the state 1, the target qubit b is
flipped. As a result, the value of a⊕ b is stored in the qubit b (i.e., b = a⊕ b),
while the state of qubit a remains unchanged. The Toffoli gate, represented as
Toffoli(a, b, c), acts like an AND operation on a classical computer. It requires
three input qubits, with the first two qubits (a and b) serving as control qubits.
Only when both control qubits are in the state 1, the target qubit c is flipped.
The result of the operation a & b is XORed with the qubit c (i.e., c = c⊕ (a &
b)), while the states of qubits a and b are preserved. The Toffoli gate consists of
8 Clifford gates and 7 T gates. The T -count of the standard Toffoli gate [18] is 7
and the T -depth is 6. Many studies are reporting the implementation of Toffoli
gate circuits with minimized depth and T -depth [1, 7, 16, 21, 23].

2.3 Grover’s Key Search

Grover’s search algorithm is a quantum algorithm that enables rapid searching
for specific data within an unstructured database set N , reducing the search
complexity from O(N) to O(

√
N). When applied to an n-bit secret key search in

symmetric key encryption, it reduces the search complexity from O(2n) resulting
from a brute-force attack to O(2n/2), halving the security level in theory. Grover’s
key search algorithm operates in three sequential steps as follows:
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a X ∼ a a × b

b × a

a • a

b a⊕ b

a • a

b • b

c c⊕ (a · b)

Fig. 4: Quantum gates: X (left top), Swap (right top), CNOT (left bottom) and Toffoli
(right bottom) gates.

1. Initialization: Input the n-qubit key into the Hadamard gate to create a
superposition of states |ψ⟩ in which all 2n computational basis states have
equal amplitudes.

H |0⟩ =
( |0⟩+ |1⟩√

2

)
(4)

|ψ⟩ = (H |0⟩)⊗n =
( |0⟩+ |1⟩√

2

)⊗n

=
1√
2n

2n−1∑
x=0

|x⟩ (5)

2. Oracle Operator : The quantum circuit for the target cipher encrypts the
known plaintext using keys (prepared keys) generated through a superposition
of states in the Oracle and produces ciphertext for all key values. Within the
Oracle operator (Uf ), the function f(x) in Equation 6 compares the ciphertext
generated by the circuit to the known ciphertext. The function f(x) returns
0 if the generated ciphertext and the known ciphertext do not match and 1
if they do. When a match is identified, the state of the corresponding key in
Equation 7, i.e., its amplitude, becomes negative because f(x) is equal to 1.
If no match is found, (−1)0 equals 1, so the amplitude remains positive.

f(x) =

{
1 if Enckey(p) = c

0 if Enckey(p) ̸= c
(6)

Uf (|ψ⟩ |−⟩) = 1√
2n

2n−1∑
x=0

(−1)f(x) |x⟩ |−⟩ (7)

3. Diffusion Operator : The diffusion operator (D) serves the purpose of trans-
forming a key state (target key state) with a negative amplitude into a
symmetric state. This transformation involves computing the average value
of all key states (|s⟩) and then subtracting this average value from each key
state element (I). During the second step, if the amplitude of the key state is
initially negative, subtracting a negative number results in a positive value,
thereby amplifying only the amplitude of that value.

D = 2 |s⟩ ⟨s| − I (8)
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In order to increase the probability of measuring the solution key, steps 2 and
3 must be repeated sufficiently. In general, when the number of repetitions is
π
4

√
2k, it has the highest measurement probability.

2.4 NIST Post-quantum Security and MAXDEPTH

In order to analyze the algorithms submitted during the post-quantum cryptog-
raphy standardization, NIST provided security standards based on the security
strength range specified in the existing NIST standard for symmetric cryptogra-
phy in a related document [19, 20]. This post-quantum security baseline is based
on the complexity of quantum attacks against AES and SHA-2/3 variants. The
following is a summary of the criteria for estimating the complexity of quantum
attacks provided in NIST’s document [20] :

• Level 1: Any attempt to compromise the applicable security definition
should demand computational resources that are equal to or exceed the
resources needed to conduct a key search on a 128-bit key block cipher, such
as AES-128.

• Level 3: Any attempt to compromise the applicable security definition
should demand computational resources that are equal to or exceed the
resources needed to conduct a key search on a 192-bit key block cipher, such
as AES-192.

• Level 5: Any attempt to compromise the applicable security definition
should demand computational resources that are equal to or exceed the
resources needed to conduct a key search on a 256-bit key block cipher, such
as AES-256.

Grover’s search algorithm is recognized as one of the most efficient quantum
attacks for targeting symmetric key ciphers, and NIST also acknowledges this
fact. The difficulty presented by attacks at Levels 1, 3, and 5 is assessed according
to the cost needed for Grover’s key search on AES-128, 192, and 256, respectively.
This cost is determined by multiplying the total gate count by the depth of
Grover’s key search circuit. Through studies published over the past few years
that optimized AES quantum circuits to reduce Grover’s key search costs, NIST
has defined the costs for Levels 1, 3, and 5 as 2157, 2221, and 2285, respectively
in their recent document [20] by citing the costs of depth-optimized quantum
circuit implementations for AES [15] presented by Jaques et al. at Eurocrypt’20.

It should be mentioned that the quantum circuit implementation by Jaques
et al. [15] has a few programming-related problems. Nevertheless, Jang et al.
addressed and examined these issues in their research [11], showing that the cost
values mentioned in [15] can be roughly achieved using their optimized AES
quantum circuits. As far as our current understanding goes, the most notable
outcomes are detailed in [11] (Level 1, 3, and 5 cost 2157,2192,2274).

Additionally, we must also consider an approach called MAXDEPTH. NIST
introduced a parameter called MAXDEPTH, which signifies the maximum circuit
depth the quantum computer is able to execute, as an excessively large depth can
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lead to execution challenges in terms of time. The depth limits (i.e. MAXDEPTH)
for quantum attacks provided by NIST range as follows: (no more than 240, 264,
296).

3 Proposed Quantum Implementation of ARIA

This section describes our optimized quantum circuit implementation of ARIA.
We compare the results of the previous work [2], which implemented ARIA as a
quantum circuit, and examine the optimized components.

3.1 Implementation of S-box

In classical computers, the S-box of most block ciphers, including AES, employs
a predefined look-up table. However, in a quantum computing environment, it is
more efficient to implement the S-box using multiplicative inversion and affine
transformation, primarily because of the limited number of qubits [5].

While the tool LIGHTER-R [6] efficiently constructs quantum circuits based
on existing S-boxes, it has a limitation in its applicability, as it can only be
used with 4-bit S-boxes, making it unsuitable for ARIA’s S-box. The recent
studies [4, 26] aim to enhance LIGHTER-R tools to build quantum circuits for
S-boxes that are previously beyond its reach. However, since these tools also
concentrate on 4-bit S-boxes, they cannot be employed to implement quantum
circuits for ARIA’s S-box. Therefore, it is necessary to obtain the multiplicative
inverse and perform the affine transformation to implement the quantum circuit
of ARIA’s S-box.

In order to find ARIA’s S-box S1 and S2, The inverse of x (i.e., x−1) and the
exponentiation value x247 of Equation 1 in Section 2.1 must be obtained. x247

in S2 can be expressed as follows using the primitive polynomial m(x) in the
environment of GF (28):

x247 ≡ (x−1)8 ≡ (((x−1)2)2)2 mod m(x)
m(x) = x8 + x4 + x3 + x+ 1

(9)

Likewise, the multiplicative inverse of x in the environment of GF (28) is
equal to x254 The multiplicative inverse can be efficiently obtained using the
Itoh-Tsujii algorithm [9]. Therefore, by applying the Itoh-Tsuji algorithm, it can
be expressed as an expression consisting of square and multiplication as follows:

x−1 = x254 = ((x · x2) · (x · x2)4 · (x · x2)16 · x64)2 (10)

In order to increase the operation speed, the squaring operation is generally
performed by converting the irreducible polynomial having linearity through
modular reduction into a matrix form. Since this corresponds to a linear operation,
it can be implemented as an in-place structure using only the XOR operation
by using the XZLBZ [24], a heuristic search algorithm based on factorization in
binary matrices.
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The squaring operation in ARIA is implemented using CNOT gates and
SWAP gates through modular reduction and XZLBZ [24]. This implementation
utilizes 10 CNOT gates and has a circuit depth of 7. Figure 5 depicts the quantum
circuit for the squaring operation in ARIA.

x0 x0

x1 x4

x2 x1

x3 x5

x4 • • • x2

x5 • • • x6

x6 • • x3

x7 • • x7

Fig. 5: Quantum circuit implementation for Squaring in F28/(x
8 + x4 + x3 + x+ 1)

For multiplication, Jang et al.’s Toffoli-depth optimized Karatsuba quantum
multiplication [13], first announced at WISA’22, is used. By employing the
Karatsuba algorithm, which is known for reducing the number of multiplications,
the number of Toffoli gates required for a multiplication can be reduced. Jang et
al.’s multiplication applies the Karatsuba algorithm recursively to perform all
multiplications, i.e., AND operations, independently. In order to achieve a Toffoli
depth of 1, more ancilla qubits are allocated to execute Toffoli gates in parallel.
This method is only used for multiplications between quantum-quantum values.

Compared to the previous quantum implementation of ARIA [2], squaring
uses the same method, so the resources used are the same, but the multiplication
operation differs. In [2], the authors employed the schoolbook multiplication
method [3]. In contrast, in our work, by adopting the Toffoli-depth optimized
Karatsuba multiplication [13], we achieve a significant reduction in quantum
resources. Table 1 compares the quantum resources required for multiplication by
adopting different methods [3,13]. In Table 1, we can see that overall quantum
resources have been reduced, and, in particular, Toffoli-depth have been optimized.

Table 1: Quantum resources required for multiplication.

Source #Clifford #T Toffoli depth Full depth

CMMP [2] 435 448 28 195

J++ [13] 390 189 1 28

※: The multiplication size n is 8.
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After obtaining the exponentiation values, matrix-vector multiplication be-
tween the exponentiation and the matrix is computed by applying the XZLBZ
methods because it involves the product of classical and quantum values. Mul-
tiplying vector would have originally required applying 8 CNOT gates, but by
taking advantage of the fact that the given vector is a constant, resources are
saved by applying X gates only to the positions where inversion is necessary.

3.2 Implementation of Diffusion Layer

ARIA’s diffusion function A : GF (28)16 → GF (28)16 is expressed as a 16 × 16
binary matrix multiplication. Since one element of the binary matrix is a byte,
in order to multiply with the input bit, the byte must be converted to a bit unit
and the calculation proceeded. To do so, the calculation proceeds assuming that
the element 0 in the matrix represents an 8× 8 zero matrix, and the element 1 in
the matrix represents an 8× 8 identity matrix. For implementing matrix-vector
multiplication in quantum, we can use linear layer optimization methods (i.e. PLU
Factorization, Gauss-Jordan elimination etc.) [2] employed PLU factorization. In
contrast, we applied XZLBZ [24] to optimize the implementation of the linear
layer for increased efficiency. Table 2 compares the quantum resources used in the
implementation of the Diffusion layer between [2] and our approach. In the case
of [2], since 96 CNOT operations are required per byte, a total of 768 (= 96× 8)
CNOT gates are used. In contrast, for XZLBZ, since 47 CNOT operations are
required per byte, 376 (= 47× 8) CNOT gates are used in total. Consequently,
Table 2 demonstrates a reduction of 51.04% and 45.16% in CNOT gates and
depths, respectively, while maintaining the same number of qubits.

Table 2: Quantum resources required for Diffusion layer.

Source #CNOT qubit Depth

CMMP [2] 768 128 31

XZLBZ [24] 376 128 17

3.3 Implementation of Key Schedule

In the key initialization phase, the 128-qubit W1,W2, and W3 are generated
using round functions. Since KL is used only for the generation of W0, instead
of allocating new qubits for W0, KL is utilized as a substitute, resulting in a
reduction of 128 qubits. In addition, when performing the XOR operation of
KR and W1∼3, since KR is a constant, the X gate are applied to W1 only when
the bit of KR is 1. By replacing the CNOT gates with cheaper X gates, the
number of gates and gate cost are reduced. In contrast, our implementation in
the key initialization stage employs 192 X gates and 87544 CNOT gates, leading
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to a reduction of approximately 49% in X gates and about 45% in CNOT gates
compared to [2].

In the key generation stage, a round key ek used as an encryption key for
each round is generated using W0∼3. If W0 is used in the generation of ek, we
reduce the gate cost by applying the X gates instead of the CNOT gates as in
the generation of W0.

Since the value of ek is different for each round, new qubits must be allocated
and stored each time. However, instead of allocating new qubits for ek every
round, we initialize and reuse the qubits by performing a reverse operation on
the round key generation at the end of every round. Since the reverse operation
on key generation, which is related to CNOT gates and X gates, has little effect
on the depth, it is more efficient to perform the reverse operation than to allocate
128 ancilla qubits every round.

Algorithm 1: Quantum circuit implementation of key schedule for ARIA.

Input: master key MK, key length l, vector a, b, ancilla qubit anc, round number r
Output: round key ek

▷ Key Initialization
1: W1 ← Fo(MK[: 128], a, b, anc) ▷ MK[: 128] is KL
2: Constant XOR(W1[l − 128 : 128], MK[l − 128 : l]) ▷ MK[l − 128 : l] is KR

3: W2 ← Fe(W1, a, b, anc)
4: W2 ← CNOT128(MK[: 128],W2)

5: W3 ← Fo(W2, a, b, anc)
6: W3 ← CNOT128(W1,W3)

7: num = [19, 31, 67, 97, 109] ▷ Key Generation
8: for i ← 0 to r do
9: if i = 0 (mod 4) then
10: Constant XOR(ek, MK[: 128])

11: else
12: ek ←CNOT128(W(i%4), ek)

13: ek ← CNOT128(W(i+1)%4 ≫ num[i%4], ek)

14: return ek

4 Evaluation

In this section, we estimate and analyze the quantum circuit resources for ARIA.
The proposed quantum circuits cannot yet be implemented in large-scale quantum
computers. Therefore, we use ProjectQ, a quantum programming tool, on a
classical computer instead of real quantum computer to implement and simulate
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quantum circuits. A large number of qubits can be simulated using ProjectQ’s
own library, ClassicalSimulator, which is restricted to simple quantum gates
(such as X, SWAP, CNOT, and Toffoli). With the aid of this functionality, the
ClassicalSimulator is able to test the implementation of a quantum circuit by
classically computing the output for a particular input. For the estimation of
quantum resources, another internal library called ResourceCounter is needed.
ResourceCounter solely counts quantum gates and circuit depth, doesn’t run
quantum circuits, in contrast to ClassicalSimulator.

4.1 Performance of the Proposed Quantum Circuit

Table 3 and 4 represent the quantum resources required to implement our proposed
quantum circuits for ARIA. These tables compare the quantum resources between
the quantum circuit proposed by Chauhan et al. [2] and our proposed quantum
circuit. Table 3 shows quantum resources for ARIA at the NCT (NOT, CNOT,
Toffoli) gate level, while Table 4 presents quantum resources for ARIA at the
Clifford+T level, achieved by decomposing the Toffoli gate. In [2], the decomposed
quantum resources were not explicitly provided, so the quantum resources in
Table 4 are extrapolated based on the information provided in the paper [2].
Furthermore, our implementation places a primary emphasis on circuit depth
optimization while carefully considering the balance with qubit utilization. We
conduct assessments that encompass circuit complexity metrics, such as TD-M
cost and FD-M cost, where TD-M cost represents the multiplication of Toffoli
depth (TD) and the number of qubits (M), while FD-M cost signifies the
multiplication of Full depth (FD) and the number of qubits (M).

Table 3: Required quantum resources for ARIA quantum circuit implementation

Cipher Source #X #CNOT #Toffoli Toffoli depth #Qubit Depth TD-M cost

ARIA-128
CS [2] 1,595 231,124 157,696 4,312 1,560 9,260 6,726,720

This work 1,408 272,392 25,920 60 29,216 3,091 1,752,960

ARIA-192
CS [2] 1,851 273,264 183,368 5,096 1,560 10,948 7,949,760

This work 1,624 315,144 29,376 68 32,928 3,776 2,239,104

ARIA-256
CS [2] 2,171 325,352 222,208 6,076 1,688 13,054 10,256,288

This work 1,856 352,408 32,832 76 36,640 4,229 2,784,640

4.2 Evaluation of Grover’s Search Complexity

In this section, we evaluate the quantum security of ARIA by estimating the
cost of Grover’s key search for this algorithm. As described in Section 2.3, the
overhead of the diffusion operator can be considered insignificant compared to
the overhead of the oracle, so it is disregarded when estimating the cost of the
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Table 4: Required decomposed quantum resources for ARIA quantum circuit imple-
mentation

Cipher Source #Cliford #T T -depth #Qubit Full depth

ARIA-128
CS [2]♢ 1,494,287 1,103,872 17,248 1,560 37,882

This work 481,160 181,440 240 29,216 4,241

ARIA-192
CS [2]♢ 1,742,059 1,283,576 20,376 1,560 44,774

This work 551,776 205,632 272 32,928 5,083

ARIA-256
CS [2]♢ 2,105,187 1,555,456 24,304 1,688 51,666

This work 616,920 229,824 304 36,640 5,693

♢ Extrapolated result

Grover’s key search. Therefore, the optimal number of iterations for Grover’s key
search for a cipher using a k-bit key is approximately ⌊π

4

√
2k⌋.

According to [15], finding a unique key requires r plaintext–ciphertext pairs,
where r needs to be at least ⌈key size/block size⌉. To calculate the quantum
resources required for Grover’s key search in the block cipher, the decomposed
quantum resources need to be multiplied by 2, r, and ⌊π

4

√
2k⌋.

In the case of ARIA with the key size of 192 or 256 bits, the value of r is 2,
indicating that the multiplication by r cannot be omitted. Therefore, the Grover’s
key search cost for ARIA is approximately Table 4 ×r × 2× ⌊π

4

√
2k⌋(see Table

5).

Table 5: Cost of the Grover’s key search for ARIA

Cipher Source Total gates Full depth
Cost

#Qubit TD-M cost
(complexity)

ARIA-128
CS [2] 1.946 · 285 1.816 · 279 1.767 · 2165 1,561 1.26 · 286

This work 1.985 · 283 1.626 · 276 1.614 · 2160 29,217 1.313 · 284

ARIA-192
CS [2] 1.133 · 2119 1.073 · 2113 1.216 · 2232 3,121 1.489 · 2118

This work 1.135 · 2117 1.949 · 2109 1.106 · 2227 65,857 1.677 · 2116

ARIA-256
CS [2] 1.627 · 2150 1.238 · 2145 1.007 · 2296 3,377 1.921 · 2150

This work 1.268 · 2149 1.092 · 2142 1.385 · 2291 73,281 1.043 · 2149

Cost is an indicator that can be compared with the security criteria provided
by NIST. After comparing with the quantum attack cost (2157, 2221, and
2285) described in Section 2.4, it can be confirmed that all instances of ARIA
attain the suitable level of security for their respective key sizes. We conduct
evaluations, including metrics such as TD-M cost, where TD-M cost represents
the multiplication of Toffoli depth(TD) and qubit count(M), to assess these
trade-offs.
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To take NIST’s MAXDEPTH (mentioned in Section 2.4) into account, one
cannot disregard parallelization. When comparing Full depth(FD) and NIST
MAXDEPTH in Table 5, only ARIA-128 meets the MAXDEPTH requirement
(ARIA-128 < 296). If the full depth (FD) exceeds MAXDEPTH, as in the
case of ARIA-192 and ARIA-256, reducing FD by FD/MAXDEPTH requires
Grover instances to operate in parallel by a factor of FD2/MAXDEPTH2. In
this scenario, while MAXDEPTH can be decreased, M increases by a factor of
FD2/MAXDEPTH2, resulting in a final value of (FD2/MAXDEPTH2) ×M .
Ultimately, FD2 −M represents the cost of FD−M , considering parallelization
for Grover search. Similar to FD2 − M , FD2 − M also denotes the cost of
TD − M , considering parallelization for Grover search. However, according
to [12,15], parallelization of Grover’s key search is highly inefficient; therefore, ,
instead of directly imposing a MAXDEPTH limit on the cost, the focus is on
minimizing the costs of relevant metrics (e.g., FD2 −M , TD2 −M).

5 Conclusion

In this paper, we propose optimized quantum circuit for ARIA, focusing on
circuit depth optimization. We utilize various techniques such as optimized
multiplication and squaring methods in binary fields, along with parallelization,
to reduce both Toffoli and full depths while ensuring a reasonable number of
qubits. As a result, our quantum circuit implementation for ARIA achieves the
depth improvement of over 88.8% and Toffoli depth by more than 98.7% compared
to the implementation proposed in Chauhan et al.’s SPACE’20 paper [2]. Based
on our quantum circuits, we estimate the quantum resources and the cost of
Grover’s attacks for the proposed circuit. We then evaluate the security strength
based on the criteria provided by NIST. We demonstrate that ARIA achieves
post-quantum security levels 1, 3, and 5, respectively, for all key sizes: 128, 192,
and 256 bits (according to the recent standards [20]). Additionally, we have shown
that only ARIA-128 satisfies the MAXDEPTH limit.

Our future plan involves optimizing ARIA’s quantum circuits further, with
greater consideration for the MAXDEPTH limit.
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Abstract. Quantum computers, especially those with over 10,000 qubits,
pose a potential threat to current public key cryptography systems like
RSA and ECC due to Shor’s algorithms. Grover’s search algorithm is an-
other quantum algorithm that could significantly impact current cryptog-
raphy, offering a quantum advantage in searching unsorted data. There-
fore, with the advancement of quantum computers, it is crucial to analyze
potential quantum threats.
While many works focus on Grover’s attacks in symmetric key cryptog-
raphy, there has been no research on the practical implementation of
the quantum approach for lattice-based cryptography. Currently, only
theoretical analyses involve the application of Grover’s search to various
Sieve algorithms.
In this work, for the first time, we present a quantum NV Sieve imple-
mentation to solve SVP, posing a threat to lattice-based cryptography.
Additionally, we implement the extended version of the quantum NV
Sieve (i.e., the dimension and rank of the lattice vector). Our extended
implementation could be instrumental in extending the upper limit of
SVP (currently, determining the upper limit of SVP is a vital factor).
Lastly, we estimate the quantum resources required for each specific im-
plementation and the application of Grover’s search.
In conclusion, our research lays the groundwork for the quantum NV
Sieve to challenge lattice-based cryptography. In the future, we aim to
conduct various experiments concerning the extended implementation
and Grover’s search.

Keywords: Shortest Vector Problem · Lattice based cryptography ·
Quantum NV Sieve · Quantum attack · Grover’s search.

1 Introduction

As outlined in IBM’s roadmap 1, if a stable quantum computer with more than
10,000 qubits is developed, public key algorithms (such as Rivest, Shamir, Adle-

1 https://www.ibm.com/quantum/roadmap
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man (RSA) and Elliptic curve cryptography (ECC)) may be decrypted within
polynomial time through Shor algorithm [1].

Additionally, If a search count of O(2k) on a classical computer is required,
Grover’s algorithm can find results with a maximum of O(

√
2n) searches.

As quantum computers developed, the current cryptography system is under
threat. Therefore, migration to a secure cryptography system and analysis of
potential quantum attacks are very important issues.

Among the categories of post-quantum cryptography, there are lattice-based
ciphers (e.g. LWE (Learning with Error)). Currently, much research has been
conducted on estimating the cost of Grover attacks on symmetric key cryptog-
raphy [2,3,4,5,6].

However, research on practical quantum attacks on lattice-based cryptogra-
phy is lacking. As mentioned earlier, to establish a secure post-quantum security
system, it is crucial to analyze potential quantum attacks on various crypto-
graphic methods. Therefore, in this paper, we propose a quantum implemen-
tation for NV Sieve that can solve SVP (Shortest Vector Problem) for lattice-
based cryptography. In addition, we present an implementation considering the
dimension and rank expansion of the lattice and estimate the quantum cost for
an attack through quantum NV Sieve.

1.1 Our Contributions

1. For the first time in our knowledge, Quantum NV Sieve imple-
mentation to solve SVP
There is theoretical research that applies Grover’s search to Sieve algorithms
to solve SVP [7]. However, as far as we know, there is no implementation for
these yet. In this work, we implement NV Sieve, an attack that can threaten
lattice-based cryptosystems by solving SVP, as a quantum circuit. Through
this, an oracle that can be applied to Grover’s search is created.

2. Extension implementation considering multiple conditions (dimen-
sion, rank) of lattice-based cryptography
In addition to the basic NV Sieve implementation, we present an extended
implementation that takes into account the dimension and rank of the lattice.
Our extended implementation can help raise the SVP upper limit that NV
Sieve can solve.

3. Resource estimation for Quantum NV Sieve logic and Grover’s
search
Grover’s search algorithm has an advantage that can compute all possibilities
at once. By applying Grover’s search to NV Sieve, a solution that satisfies
the condition can be found with quantum advantage. This approach requires
an oracle, and our implementation can be used as an oracle for Grover’s
search. In this work, we estimate the quantum cost for each case-specific
implementation.
Based on our quantum circuits, we estimate the required quantum resources
for Grover’s search (on NV Sieve). This is affected by quantum resources
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and the number of iterations. We get the appropriate iteration of Grover’s
search and also get the quantum cost of Grover’s search attack.2

1.2 Organization of the paper

The remainder of this paper is organized as follows. In Section 2, classical NV
Sieve, SVP (Shortest Vector Problem), and background for quantum implemen-
tation are described. In Section 3, the implementation of the quantum NV Sieve
is proposed. Section 4 demonstrates the results of the experiment and further
discussion about that. Finally, Section 5 concludes the paper.

2 Prerequisites

2.1 Lattice

Lattice Lattice (L) is a set of points made up of a linear combination of basis
vectors (B). Since it is made up of points, there can be more than one shortest
vector (e.g. x,−x ∈ L ). Equation 1 represent a lattice, and x is an integer in
Equation 1, and (b1, ..., bn) means the basis vector.

L(b1, ..., bn) = Σn
i=1(xi · bi, xi ∈ Z) (1)

Basis As noted earlier, the lattice is based on basis vectors. A basis vector (B)
is a set of vectors that can constitute all lattice points. The vector (arrow sign)
in Figure 1 represents the basis in the lattice. Each vector (bi) constituting the
basis vector has a length of m and consists of a total of n components. Here, the
length of each vector and the number of vectors constituting the basis vector,
respectively, are called Dimension(m) and Rank(n). Generally, a full-rank lattice
is used (m = n).

Here, the basis vector consisting of one lattice is not unique. As shown in
Figure 1, the basis vectors on a lattice with the same lattice points are different.
If a lattice is created with a vector created by multiplying one basis vector by
another, the two basis vectors create the same lattice.

However, these basis vectors have a good basis and a bad basis. A good
basis is generally composed of a short vector, and a bad basis is created by
multiplying the good basis by a matrix such as an unimodular matrix3 several
times. Therefore, finding a bad basis from a good basis is easy because only
matrix multiplication several times is required. However, in the opposite case,
finding a good basis from a bad basis becomes a very difficult task. This can
be seen as similar to generating a public key from a private key in public key
cryptography. (i.e. obtaining a private key by factorizing a very large public key

2 Detailed estimation of Grover’s search while varying the parameters of the NV sieve
remains for our future work.

3 https://en.wikipedia.org/wiki/Unimodular_matrix
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Fig. 1: Two different basis vectors generating the same lattice.

into prime factors.) Similarly, in lattice-based cryptography, a bad basis is used
as the public key, and a good basis is used as the private key. Here, the good basis
and the bad basis are basis vectors that generate the same lattice. Constructing
the public and private keys in this way makes it difficult to decrypt messages in
lattice-based encryption.

2.2 Shortest Vector Problem (SVP)

SVP, known as the basic problem of lattice-based cryptography, is the problem of
finding the shortest vector on a lattice that is not a zero vector. Miklo’s Ajtai [8]
revealed that SVP is an NP-hard problem. In addition, it was later revealed that
it had almost the same level of difficulty as the Closest Vector Problem (CVP),
which is another lattice-based problem. SVP is a problem of finding the shortest
vector by using the basis of the lattice as input. However, the solution is not
always unique because one vector can have an opposite vector with the same
size.

When a bad basis vector is used as input, the difficulty of solving the SVP
increases. If a good basis is used as an input, there is a high possibility that the
shortest vector will be included in the already input good basis. If a bad basis is
used, the opposite scenario occurs. Additionally, as the rank of the lattice (the
number of vectors constituting the lattice) increases, it becomes more difficult
to solve.

The lattice-based cryptography is generally used when the rank is 500 or
higher. Therefore, solving lattice-based cryptography is a very challenging work.
Furthermore, as mentioned earlier, one can easily derive a bad basis (public
key) from a good basis (private key). However, it is difficult to find a good
basis (private key) from a bad basis (public key) due to information asymmetry.
Thus, solving lattice-based cryptography is challenging due to its reliance on
one-wayness (the computation in one direction is straightforward but difficult in
the reverse direction).

In this way, lattice-based cryptography is based on lattice problems (SVP,
CVP, etc.), and the security level of lattice-based cryptography is based on the
difficulty of solving the lattice problem. For example, RSA’s security strength is
based on the difficulty of prime factorization. In other words, lattice-based cryp-
tography is designed by utilizing one-wayness such as information asymmetry.
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To solve such lattice-based cryptography, the lattice problem must be solved.
Solving SVP, a representative lattice problem, lattice-based cryptosystems such
as LWE can be threatened.

Algorithms to solve SVP Several algorithms, such as AKS and Sieve, have
been proposed to solve the lattice problem, which underpins lattice-based cryp-
tography. However, these algorithms generally target low-dimensional lattices
with a rank of about 50 ∼ 60. There are also algorithms that target high-
dimensional lattices, but finding the shortest vector in a high-dimensional lat-
tice is a very difficult problem. Therefore, there’s a need for an approximate
algorithm that can reduce the problem from a high-dimensional lattice to a low-
dimensional one. As a result, to solve SVP, an exact algorithm that accurately
finds the shortest vector in the low-dimensional lattice is needed and important.

Approximate algorithms that reduce high-dimensional to low-dimensional
lattice (e.g., Lenstra, Lenstra, and Lovász (LLL) [9], block Korkine-Zolotarev
(BKZ) [10]) have also been widely studied. Also, it is efficient in high-dimension
lattices. However, as shown in Figure 2, the method for finding exactly short
vectors belongs to the exact algorithm, and the best practical and theoretical
SVP solution should be accurate and efficient in low dimensions. Therefore,
for now, it is important to take an approach that accurately solves SVP in low
dimensions. It is then important to determine the upper limit (highest dimension
of lattice) that can be solved.

Fig. 2: Flow chart of approximate and exact algorithms for solving SVP.

2.3 Survey on the exact algorithms for SVP

Well-known exact algorithms include AKS [11] and NV Sieve [12]. AKS is the
most famous early exact algorithm, but it has the disadvantage of using many
parameters and having high time and space complexity. Moreover, due to the
absence of optimal parameters, actual implementation, or analysis, it is deemed
an impractical algorithm. Subsequently, NV Sieve, an exact algorithm, was in-
troduced to address these limitations of AKS. It offers benefits such as reduced
time and space complexity, practicality, and the possibility for actual imple-
mentation and evaluation. Additionally, building upon the NV Sieve algorithm,
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several Sieve algorithms, including the List Sieve and Gaussian Sieve, have been
presented [13,14,15,16,17].

However, only the theoretical complexity of the Sieve algorithm on quantum
computers (using Grover’s search) has been calculated [7]. There is no practical
implementation or analysis for this.

2.4 NV Sieve algorithm

Reasons and overview for selecting the NV Sieve algorithm NV Sieve is
more practical and efficient than AKS and serves as the foundation for numerous
Sieve algorithms. So, in our work, NV Sieve is selected as an exact algorithm for
solving the SVP problem. Although there are algorithms with lower time and
space complexity than NV Sieve, quantum computing can incur significant costs
when implementing algorithms that require additional procedures. Of course, a
simple algorithm is not necessarily efficient when executed on a quantum com-
puter.

Algorithm 1: NV Sieve algorithm for finding short lattice vectors

Input: An reduced basis (B) in lattice (L) using the LLL algorithm, a sieve factor γ
( 2
3
< γ < 1), S is an empty set, and a number N

Output: A non-zero short vector of L

1: for i = 1 to N do
2: S ← Sampling B using sampling algorithm
3: end for
4: Remove all zero vectors from S.
5: S0 ← S
6: Repeat
7: S0 ← S
8: S ← latticesieve(S, γR) using Algorithm 2.
9: Remove all zero vectors from S.
10: until S becomes an empty set.
11: Return v0 ∈ S0 such that ||v0|| =min||v||, v ∈ S0

Details of NV Sieve algorithm Algorithm 1 briefly shows the main process
of NV Sieve. The goal of NV Sieve is to find the shortest vector excluding zero
vectors while losing as few vectors as possible. The input is the basis vector of the
lattice reduced through the approximate algorithm (i.e., LLL), and the output is
the shortest vector, not the zero vector. As mentioned earlier, the shortest vector
may not be one. In addition, γR, the sieve factor, is a geometric element in the
range of 2

3 < γR < 1, and the closer it is to 1, the better. The reduction range
of the lattice, which will be explained later, is determined by the corresponding
sieve factor.
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The overall structure is as follows. First, a set S is generated by randomly
sampling from the basis received as input. Next, the zero vector is removed from
S to generate S0, and then the latticesieve is repeatedly performed with S
and γ as input. After this, the output vectors with zero vectors removed are
stored in S0, and the process is repeated until S becomes an empty set. Finally,
it is completed by returning the shortest vector among the vectors belonging to
S0.

Algorithm 2: The latticesieve algorithm in NV Sieve

Input: A subset S in L and sieve factor γ (0.666 < γ < 1)
Output: S′ (Short enough vector, not zero vector)

1: Initialize C, S′ to empty set.
2: R ← maxv∈S ||v||
3: for v ∈ S do
4: if ||v|| ≤ γR then
5: S′ ← S′ ∪ {v}
6: else
7: if ∃c ∈ C||v − c|| ≤ γR then
8: S′ ← S′ ∪ {v − c}
9: else
10: C ← C ∪ {v}
11: end if
12: end if
13: end for
14: return S’

Fig. 3: The core logic in NV Sieve (See line 7 in Algorithm 2).
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Algorithm 2 shows the lattice sieve algorithm in NV Sieve and shows the
detailed process. This sieve algorithm is the core logic of NV Sieve, and its
purpose is as follows.

– In order to minimize the loss for short vectors, a point on the lattice called c is
randomly selected. c is a sufficient number of points on the lattice belonging
to γR < x < R and belongs to the yellow area in Figure 3.

– The search range (γR) is reduced by the sieve factor γ to obtain a vector
shorter. Here, R means the maximum length among the vectors belonging
to the vector set received as input.

The core logic of the NV sieve mentioned earlier in more detail is as follows.

1. First, initialize C and S′. Afterward, vectors with a length shorter than γR
are stored in S′. (S′ is used to store vectors within the γR range.)

2. However, there will be vectors longer than γR. For this, the process as in
line 7 is performed to minimize loss for short vectors on the lattice, which is
the goal of NV Sieve.
A vector longer than γR is subtracted from a point on the lattice called c. If
the result is shorter than γR, then it is stored in S′. If the length is longer
than γR, it is stored in C. In other words, when the vector after subtraction
starts from O (origin point), if it is within the range of γR, it is stored in S′.

3. Finally, by returning S′, vectors with a length shorter than γR are selected.
By performing this process repeatedly, sufficiently short vectors are obtained,
and the shortest vector among them is found.

Important factors related to the complexity The parts that affect the
complexity of NV Sieve’s algorithm are as follows. The first part is measuring
the number of points in c. There are a sufficiently large number of points on
the lattice, and we need to find a point c that can be used to create a vector
with a length shorter than γR. Therefore, it is important to find the number
of c. Next, as the size of the initially given vector set S increases, complexity
increases. As the rank of S increases, the number of c also increases because c is
also a vector on the lattice and a subset of S. This is related to the complexity
related to the number of c mentioned above. Additionally, as mentioned earlier,
lattice problems with large ranks are difficult to solve, so the size of the target
basis vector set affects the complexity of the algorithm.

2.5 Grover’s search algorithm

Grover’s search algorithm is a quantum search algorithm for tasks with n-bit
complexity and has O(

√
2n) of complexity (O(2n) for classical). The data (n-

bit) for the target of the search must exist in a state of quantum superposition,
so given by:

H⊗n |0⟩⊗n
(|ψ⟩) =

( |0⟩+ |1⟩√
2

)
=

1

2n/2

2n−1∑
x=0

|x⟩ (2)
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Thanks to quantum advantage, all search targets are computed simultane-
ously as a probability.

Grover’s algorithm consists of two modules: Oracle and Diffusion operator.
Oracle is a quantum circuit that implements logic that can return a solution to
the problem to be solved. Then it returns a solution by inverting the decision
qubit at the end of the circuit as follows.

f(x) =

{
1 if Oracleψ(n) = Solution

0 if Oracleψ(n) ̸= Solution
(3)

Afterwards, the probability of the returned solution is amplified through the
diffusion operator. By repeating this process, the probability of observing the
correct solution is increased. The number of such repetitions is expressed as
Grover iteration. The most important thing in Grover’s search is the optimal
implementation of the quantum circuit that designs the oracle.

The diffusion operator has a fixed implementation method and is often ex-
cluded from resource estimation [5,18] because the overhead is so small that
it is negligible. Therefore, the final efficiency is determined depending on the
quantum circuit in the oracle.

2.6 Quantum Circuit

Qubits A qubit (quantum bit) is the basic unit of computation in a quantum
computer and can have probabilities of 0 and 1 at the same time (superposition).
So, 2n states can be expressed with n qubits. Additionally, qubits exist in a
superposition state and are calculated, but are determined as a single classical
value the moment they are measured. In quantum computing, classical bits are
used to store the results of measuring the state of the qubit.

Quantum Gates Quantum gates operate as logical gates in quantum circuits.
By applying a quantum gate to a qubit, the state of the qubit can be controlled.
There are several quantum gates (see Figure 4). Each gate can be used to config-
ure superposition, entanglement, invert, and copy, and can be utilized to perform
various operations such as addition and multiplication.

3 Quantum NV Sieve for solving SVP

3.1 System Overview

According to the results of theoretical calculations, Quantum NV Sieve with
Grover’s search is expected to have less time complexity than classical NV Sieve
(log0.4152 to log0.3122 ) [7]. However, no implementation is presented. To the best of
our knowledge, our work presents the first implementation of various cases of the
NV Sieve algorithm for solving SVP using quantum circuits. However, given the
current state of quantum computers in the Noisy Intermediate-Scale Quantum
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Fig. 4: Quantum gates.

(NISQ) era and the challenges encountered during implementation, achieving
results akin to the theoretical complexity remains challenging. Starting with our
work, we plan to further improve our approach, which we remain for our future
work.

As noted earlier, solving SVP, the fundamental problem of lattice-based en-
cryption, can threaten grid-based encryption systems (e.g., LWE). Furthermore,
among several algorithms, the Exact algorithm, that accurately finds short vec-
tors, is an important part of the process of solving lattice problems.

Fig. 5: Overview of Quantum NV Sieve.

We implemented the NV Sieve algorithm, which solves the SVP problem
among several lattice problems (e.g., SVP, CVP, etc.), on a quantum computer.
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Figure 5 shows the overview of the quantum NV Sieve algorithm. In other words,
this is the overall relationship between the quantum NV Sieve we present and
the configuration diagram for solving SVP on a quantum computer.

First, since Grover’s search must be applied, the logic of the NV Sieve (ora-
cle) must be implemented using the quantum circuit. In other words, since the
purpose of NV Sieve is to find the short vector c that satisfies the condition
(||v − c|| ≤ γR), the NV Sieve logic for searching c must be implemented as an
oracle. Then, Grover’s search algorithm should be performed on the implemented
oracle. The factors that determine the performance of NV Sieve in classical are
finding the number of large numbers of c and the corresponding computational
and memory complexity. However, when using quantum NV Sieve, it is possible
to calculate numerous cases for c at once. Therefore, there are advantages in
terms of computational and memory complexity.

Meanwhile, v, which is not the search target but is a vector on the lattice,
needs to be loaded from quantum memory. However, it is difficult to access
actual QRAM (Quantum RAM). In addition, many studies, such as [19], are
conducted on the premise that queries can be made to QRAM. Therefore, in
this implementation, QRAM is implemented as a very simple quantum circuit
(Explicit QRAM: data is written directly to the quantum circuit, and the value
is loaded from the corresponding memory qubit).

3.2 Implementation of NV Sieve on Quantum Circuit

We implement/design the quantum circuit for line 7 in Algorithm 2. It oper-
ates classically except where quantum NV sieve algorithms are used. In other
words, quantum is applied to operations on a sufficiently large number of c. In
a classical computer, we need to know how many c there are and perform a size
comparison on all c. However, in the implementation of the quantum NV sieve,
a size comparison is performed on all cases of c at once. Details are described in
Algorithm 3.

The overall steps in Algorithm 3 are as follows:

1. Data load from explicit QRAM (line 3): It is difficult to actually access
QRAM. Therefore, we implement a simple explicit QRAM on a quantum cir-
cuit. This is actually close to QROM (Quantum Read-only Memory) because
it can only read data to be used.

2. Prepare c in superposition state (line 4∼5): Apply the Hadamard gate
to c, Grover’s search target, and prepare it in a superposition state. Since v
is not a search target, it doesn’t make it a superposition state.

3. Prepare (sqr rR)2 (line 6): Prepare the squared γR.
4. Overflow handling (line 8∼15): To handle overflow that occurs during

the calculation process, the highest bit of the data qubit is copied to the
highest qubit. Through this, data expressed in 2-qubits is made to have the
same value even when converted to 3-qubits.

5. Complement function for signed vector (line 17∼18): For data in-
volving signed vectors, the complement operation is utilized to repurpose
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Algorithm 3: The quantum NV Sieve on the quantum circuit.

Input: Quantum circuit (QNV ), A subset S in L and sieve factor γ ( 2
3
< γ < 1)

Output: c0, c1

1: Initiate quantum registers and classical registers. ▷ carry, qflag, sqr result, etc.
2: // Input setting (Each vector is allocated 3 qubits to address the overflow)
3: v0, v1 ← Data load from memory qubits
4: QNV.Hadamard(c0)
5: QNV.Hadamard(c1)
6: QNV.x(sqr rR[i]) ▷ 0 ≤ i < 6

7: // To address the overflow of target qubits
8: vflag[0] ← QNV.cx(v0[1], vflag[0])
9: v0[2] ← QNV.cx(vflag[0], v0[2])

10: cflag[0] ← QNV.cx(c0[1], cflag[0])
11: c0[2] ← QNV.cx(cflag[0], c0[2])

12: vflag[1] ← QNV.cx(v1[1], vflag[1])
13: v1[2] ← QNV.cx(vflag[1], v1[2])

14: cflag[1] ← QNV.cx(c1[1], cflag[1])
15: c1[2] ← QNV.cx(cflag[1], c1[2])

16: // Two’s complement for subtraction using adder
17: c0 ← Two’s complement(QNV, c0, qflag0, zero)
18: c1 ← Two’s complement(QNV, c1, qflag1, zero)

19: // v + c
20: c0 ← Addition(QNV, v0, c0, carry)
21: c1 ← Addition(QNV, v1, c1, carry)

22: // Two’s complement for correct squaring
23: c0 ← Two’s complement negative(QNV, c0, qflag2, carry, zero)
24: c1 ← Two’s complement negative(QNV, c1, qflag3, carry, zero)

25: // Duplicating qubit for squaring
26: dup c0 ← QNV.cx(c0, dup c0)
27: dup c1 ←QNV.cx(c1, dup c1)

28: // Squaring elements of vectors
29: sqr result[2] ← Squaring(QNV, c0, dup c0, sqr result[0], sqr result[1], sqr result[2], carry, 6)
30: sqr result[5] ← Squaring(QNV, c1, dup c1, sqr result[3], sqr result[4], sqr result[5], carry, 6)

31: // Addition for squared results to calculate the size of the vector
32: sqr result[5] ← Addition(QNV, sqr result[2], sqr result[5], carry, 6)

33: // Two’s complement for subtraction using adder
34: sqr result[5] ← Two’s complement 6bit(QNV, sqr result[5], qflag4, carry, zero, zero1, zero2)

35: // Size comparison between (rR)2 and (||v − c||)2 ▷ ((rR)2 - (||v − c||)2)
36: sqr result[5] ← Addition(QNV, sqr rR, sqr result[5], carry, 6) ▷ No square root
37: return c0, c1

The 26th Annual International Conference on Information Security and Cryptology

ICISC 202378

Session 1 - 4



Quantum NV Sieve on Grover 13

the adder as a subtractor. When comparing vector magnitudes at the con-
clusion of the quantum circuit, the complement operation is currently applied
solely to positive vectors.

6. Three-qubit addition (line 20∼21): For vector elements (v+c̄), a 3-qubit
ripple carry adder is applied between v and the complements of c.

7. Apply complement function for 3-qubits to ensure correct square
value (line 23∼24): In the complement system, 112 is –1, but if the com-
plement operation for negative numbers is not performed before the square
operation, 112 is recognized as 3. Then, the result is 9. Therefore the com-
plement operation must be applied for the correct result of squaring.

8. Duplicate the target qubits for squaring (line 26∼27): In a quantum
circuit, performing calculations on identical qubits is not feasible; therefore,
the value must be copied to a different qubit.

9. Squaring each element to calculate the size of the vector (line
29∼30): The size of a vector is the root of the sum of the squares of each
element. However, in our oracle only size comparison between γR and ||v−c||
is required. Therefore, the root operation is removed in our approach. So we
only need the squaring operation of the vector at this stage.

10. 6-qubit addition of each element of the vector after squaring (line
32): To calculate the size of a vector, a square operation is required for each
element.

11. 6-qubit complement for positive values (line 34): The value after
squaring is naturally a positive value. However, as in the previous part of
the quantum circuit, we perform a complement operation to use the adder
as a subtractor. Here, since it is the value after squaring a 3-qubit vector, a
complement operation on 6-qubits must be performed.

12. Size comparison through 6-qubit addition for (γR)2 and (||v − c||2)
(line 36): As mentioned earlier, the size of the vector can be obtained by
performing the root operation. However, in our method, since the only pur-
pose is size comparison, the root operation is not performed.

13. Check the MSB (Most Significant Bit): We have to check the MSB
of the result value performed in step 13. If MSB is 0, (γR)2 is larger than
||v − c||2. Therefore, MSB of 0 means that ||v − c||2 is a short vector that
falls within the range of the condition. Therefore, we can add vector v − c
to the list that stores short vectors (Classical).
Conversely, if MSB is 1, it means that it is a negative sign, which means that
it is a vector that does not satisfy the condition. Therefore, it is not added
to the short vector list.

Implementation details for core functions in Quantum NV Sieve

– Data load and input Setting (v, c, (γR)2): In our implementation, we
use a simple QRAM structure. After allocating a memory qubit for value
storage, the values are stored in the corresponding memory qubit. Afterward,
the cx gate is used to read the values stored in the memory qubit, and the
values are loaded into the input vector v. In other words, it is copying values
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from quantum memory to input qubits for the oracle. Additionally, Grover’s
search is repeated for each v, and v is not a search target, so it is not prepared
in a superposition state.

Figure 6 shows the input setting process for c, the search target. What
must be found through Grover’s search algorithm is the c value that satisfies
the condition, and the v−c vector at that time must be returned. Therefore,
the Hadamard gate is applied to all qubits for c, generating a superposition
state with the same probability of 0 and 1.

Next, a process is needed to set (γR)2 required for the conditional expres-
sion. This applies the x gate to the qubit to express 1 (the same as setting
the v value). However, the γR is determined in each iteration. So, in our
implementation, its squaring value is calculated in a classical method and
then set as input. Therefore, since it is a square value for 2 qubit data, 4
qubits are allocated.

𝑐𝑐0

𝑐𝑐1

𝑠𝑠𝑞𝑞𝑞𝑞_𝑞𝑞𝑟𝑟

LSB

MSB

LSB

MSB

LSB

MSB

Fig. 6: Preparation c (c0 and c1) and (γR)2 (sqr rR).

– Overflow handling: In this work, we will cover cases where overflow may
occur during the NV Sieve calculation process. When the dimension is 2,
there are cases where 2-qubits are exceeded during the calculation. Therefore,
the calculation of NV Sieve is performed by upscaling to 3-qubit. Figure 7
shows the quantum circuit for the overflow handling process. For example,
if the dimension is 2, data can be represented by two qubits. Therefore, the
value of the second qubit (with an index of qubit is 1) is copied to the qflag.
Afterward, upscaling is completed by copying the qflag to the highest qubit
that is set to 0. Through this process, the value expressed through 3 qubits
can be expressed equally with 2 qubits.

– Two’s Complement (2-qubit, 4-qubit, positive and negative cases):
Figure 8 shows the quantum circuit for 2’s complement for positive values.
As mentioned earlier, an additional qubit (ancilla qubit, qflag) is needed
as a control qubit. When the target qubit to which the complement will
be applied is c, the MSB is c[1] (lowest qubit). Therefore, the value of the
lower qubit is copied to the control qubit through the cx gate. Here, bit
inversion and addition of LSB and 1 must be performed only when the value
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𝑣𝑣0

𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞

Fig. 7: Upscaling quantum circuit to handle the overflow.

is positive. However, if MSB is zero, the value of the control qubit is 0, so the
value of the control qubit must be inverted. But, after applying the x gate to
qflag, the value of the control qubit is 1, so complement logic is performed.
After bit inversion, to add the value of 1 to the LSB, create a new qubit
array, input qflag as the lowest bit first, and then append the value of 0.
Afterwards, addition is performed through a 2 qubit adder between the 1’s
complement (2 qubits) and the new qubit array (2 qubits).

The quantum circuit for 2’s complement for the negative values is per-
formed to calculate the correct squaring on the signed data. This uses control
qubits like two’s complement when positive. However, for negative numbers,
the MSB itself is 1, so there is no need to apply the x gate to qflag (omit
the x gate for qflag). Therefore, the bit is inverted through the cx gate
without additional work. Afterward, the process for adding 1 to LSB is also
performed in the same way.

The 2’s complement quantum circuit for 4 qubits is similar to the 2-qubit
complement quantum circuit, which is performed only when the number is
positive. However, since it is 4 qubits, the MSB is c[3] (Only the index of
MSB is different). Therefore, after copying the value to qflag, apply the x
gate to invert all bits. Afterwards, a new qubit with the state of [0,0,0,1] is
assigned and a 4-qubit addition is performed. Through this, 2’s complement
operations on 4 qubits can be performed.

3-bit Adder (LSB+1)
𝑐𝑐0

𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞

𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧

𝑐𝑐𝑞𝑞𝑧𝑧𝑧𝑧𝑐𝑐

Fig. 8: Two’s complement quantum circuit for a positive value (3-qubit).

– Addition: Addition is a very important and basic operation among quan-
tum circuit operations. In this implementation, Ripple-Carry Adders such
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as 3-qubit and 4-qubit adders are used. These are the method proposed in
Cuccaro’s paper [20].

– Squaring: The square operation is necessary to find the size of the vector.
An integer square operation is performed on the value converted to a positive
number through the 2’s complement. Figure 9 depicts the square operation.
The squaring is equivalent to multiplying the same value, so a and b are
the same value. However, operations using the same qubit repeatedly are
impossible in quantum circuits. In other words, as shown in Figure 9, the
value amust be copied to another qubit (b) through the cx gate. Additionally,
performing a multiplication on 3 qubits affects up to 6 qubits, so two 6-qubit
arrays (ab and ba) are created to store the result.

The process is as follows. First, multiply a and b, which represent the
same value, like integer multiplication. However, all elements are qubits and
therefore have a value of 0 or 1. If even one element is 0, the result value is
0, and only if both elements are 1, the result value is 1. These operations
correspond to the ccx (Toffoli) gate. Therefore, the ccx gate is applied to
all elements of a and b. Afterward, the results are saved in an appropriate
location. Here, the location where the calculation results are saved gray circle
in each array. In addition, the results of 6-qubit addition are stored in Second
and Third array in Figure 9. However, since First, Second and Third are 6-
qubit arrays, the top three qubits of First are set to 0, and the remainders of
Second are set to 0. Finally, the square operation is completed by applying a
6-qubit adder to First, Second and Third. The adder used is CDKM adder,
an in-place ripple carry adder, so the final result value is stored in Third.

Fig. 9: The integer squaring for 3-qubits.

3.3 Implementation for dimension expansion

Increasing dimension means that the range of bits that can be expressed by each
element of the vector increases. In other words, operations on 2 qubits must be
changed to operations on n (n < 2) qubits. In our work, we implement the case
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where the dimension is increased to 4. This indicates that our implementation is
scalable in terms of dimensionality. In this case, the 3-qubit adder must become
a 5-qubit adder, and the 3-qubit two’s complement must become a 5-qubit two’s
complement. Therefore, in accordance with this increased data range, the range
of functions for calculations must also be expanded.

3.4 Implementation for rank expansion

Even if the rank of the input vector increases, the formula for calculating the
size of the vector remains the same. Therefore, it is implemented by allocating
additional qubits as needed depending on the number of extended rank. Neither
the type nor the scope of the operation used changes. The same operation is
performed on the elements of the new vector. In the case of the addition, it can
be implemented by adding another vector to the result of adding two vectors.
Hence, our implementation offers scalability as the rank of the input lattice
vector increases.

4 Evaluation

4.1 Experiment Environment

Our implementation utilized Qiskit 4, a quantum computing platform. The cloud
platform provides IBM’s real hardware and simulators. Additionally, program-
ming can be possible using Python and Qiskit’s grammar, allowing access to the
quantum computing environment. We use the ’matrix product state’ simulator,
which can provide relatively large-scale qubits.

4.2 Result of Quantum NV Sieve

Table 1 shows the results of each step of our implementation for quantum NV
Sieve. The complement expression of x is x, and the abbreviation of the previous
step is sometimes used in the next step to prevent the output term from becoming
long. On the other hand, we present results for Default, Ex DIM, and Ex RANK.
The extension to dimension (Ex DIM) increases the length of the vector (v0 =
{0, 1} to v0 = {0, 0, 0, 1}). The extension to rank (Ex RANK) increases the number
of elements (V = {v0, v1} to V = {v0, ..., vn}).

Through the result of quantum NV Sieve logic, we present a scalable im-
plementation that takes into account various situations on the lattice. Correct
values are output at all steps. This allows us to verify the suitability of our
quantum NV Sieve for practical implementation. Furthermore, this extended
implementation can help raise the SVP upper limit that NV Sieve can solve. In
our work, we confirmed that the NV Sieve algorithm operates accurately on a
quantum circuit. Based on our work, we can expect that the possibility of solving
the larger problem will increase as the scale of quantum computers expands.

4 https://qiskit.org/
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Table 1: Results from each step of quantum NV Sieve to check whether it
has been implemented correctly. (Default: 2-dimension and 2-rank, Ex DIM: 4-
dimension and 2-rank, Ex RANK: 2-dimension and 3-rank)

Output Default Ex DIM Ex RANK

v0 000 00111 000

v1 001 00011 001

v2 None None 001

c0 001 11001 001

c1 000 00101 001

c2 None None 111

(γR)2 000001 0000000001 000001

c0 (when positive) 111 11001 111

c1 (when positive) 000 11011 111

c2 (when positive) None None 111

v0 + c0: (vc0) 111 00000 111

v1 + c1: (vc1) 001 11110 000

v2 + c2: (vc2) None None 000

(vc0)
2 001 0000000000 001

(vc1)
2 001 0000000100 000

(vc2)
2 None None 000

(vc0)
2 + (vc1)

2 + (vc2)
2: (Sumvc) 000010 0000000100 000001

Sumvc 111110 1111111100 111111

γR+ Sumvc 111111 1111111101 000000

MSB 1 1 0

Shots 100
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4.3 Resource Estimation of Quantum NV Sieve

Table 2 shows the resource estimation of quantum NV Sieve. Since this is a
resource estimate for Oracle, the result also includes resources for reverse opera-
tion. Contrary to the traditional Grover’s search that identifies a single solution,
the NV Sieve yields multiple outcomes. That is, it may produce multiple short
vectors meeting the condition, with probabilities varying based on the number of
shots. Therefore, determining the correct Grover’s iteration is a very important
issue.

The required quantum resources increase as the rank and dimension of the
target vector increase. Even if the dimension is doubled, the total quantum cost
increases by about 8.38 times, and even if the rank increases by just one, the
total cost increases by about 1.98 times. However, a real lattice will have larger
dimensions and ranks. Therefore, if the dimension and rank increase simulta-
neously, the quantum cost of the quantum NV Sieve is expected to increase
enormously.

2 ·#gates · FD · iter (4)

Additionally, when applying Grover, the total number of gates (#gates) men-
tioned in Table 2 must be multiplied by full depth (FD). Then, we need to
multiply by 2 (reverse operation) and multiply by the number of Grover’s itera-
tions (iter). In other words, the formula for calculating Grover’s attack cost is as
shown in Equation 4. That is, in addition to quantum resources (i.e. the number
of gates and circuit depth), Grover’s iteration affects the attack cost. Table 3 is
calculated from Table 2 and Equation 4. Table 3 shows the required quantum
resources for Grover’s search on NV Sieve. The number of qubits in every case
increases by 1 because of the decision qubit. And, we get the appropriate iter-
ation for these cases. Therefore, we calculate Grover’s search cost on NV Sieve
(Default,Ex RANK and Ex DIM).

Table 2: Resource Estimation of Quantum NV Sieve oracle.
Case #CNOT #1qCliff #T T-depth full depth #Qubit

Default 291 69 124 396 1126 74

Ex RANK 420 90 181 576 1631 105

Ex DIM 685 224 296 878 2342 179
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Table 3: Required quantum resources for Grover’s search on NV Sieve.

Case Total gates Full depth T-depth Quantum cost #Qubit

Default 972 2259 792 2195748 75

Ex RANK 1403 3271 1152 4589213 106

Ex DIM 2436 4714 1756 11483304 180

※: The appropriate iteration is 1.

4.4 Further discussion

According to our implementation mentioned above, it is expected that quantum
gain can be obtained through Grover’s search. Of course, there will certainly be
implementation challenges as follows. Also, in the current quantum computing
environment, it is believed that there will be many difficulties from an imple-
mentation perspective to derive results similar to the theoretically proposed
complexity of the quantum NV Sieve.

– Grover’s iteration: Since iteration affects the cost, finding an iteration for
a problem that has multiple solutions is the most important challenge in the
practical implementation of Quantum NV Sieve. In this work, we get the
proper iteration that ensures that only the correct answer is derived. We are
conducting experiments on other cases (other extended implementations),
and the results will be published in future research.

– Increase the upper limit: The important thing to solve the current SVP
is to accurately find short vectors and increase the upper limit of the dimen-
sion that can be solved. In other words, the Sieve algorithm belongs to the
exact algorithm, and it is important to solve it accurately starting from low
dimensions. Therefore, we should start experimenting with low dimensions
and ranks, as we do now, and then work our way up to higher limits.

– Optimizing the oracle circuit: In order to improve the efficiency of the
quantum NV Sieve and maximize the benefits that arise from applying quan-
tum, it is thought that optimal implementation of the oracle will be impor-
tant. In other words, it appears that the optimal implementation of the
oracle (NV Sieve quantum circuit), which determines the efficiency of quan-
tum costs in Grover’s search, must be progressed to solve SVP on a higher-
dimensional and rank lattice and obtain greater quantum advantages.

– NISQ era: As the resource estimation results indicate, quite a bit of at-
tack cost is required despite the small dimensions and rank. Therefore, it
is believed that there will be limitations in allowing general users to treat
lattice vectors with higher rank and dimension. In other words, it is thought
that solving SVP for high dimensions (50∼60 dimensions) such as classical
is difficult for now.
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5 Conclusion

In conclusion, there are quantum threats to traditional cryptographic systems,
especially as quantum computing technology advances. While the most of re-
search has focused on the potential impact of Grover’s algorithm on symmetric
key cryptography, the field of quantum attacks on lattice-based cryptography on
Grover’s search remains underexplored.

To address this gap and solve SVP on quantum computers, our work intro-
duces a practical implementation of Quantum NV Sieve, designed to solve the
SVP for hacking lattice-based cryptography. This implementation is an oracle
that is a vital component of Grover’s search algorithm. Furthermore, our work
extends the Quantum NV Sieve implementation to handle various conditions
(i.e., expansion of dimensions and rank of the lattice) thereby increasing its
applicability and impact.

We estimate the quantum resources required for each case-specific implemen-
tation (oracle) and predict the cost of Grover’s attacks when applied in conjunc-
tion with their Quantum NV Sieve. Like this, in a rapidly evolving quantum
field, our research addresses the new potential quantum threats practically.

In our future work, we plan to find the correct Grover’s iteration on other
extended cases in the condition that there are multiple solutions, and successfully
sieve the short vectors.
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Abstract. It is well known that in ECDSA signatures, the secret key
can be recovered if more than a certain number of tuples of random
nonce partial information, corresponding message hash values, and sig-
natures are leaked. There exist two established methods for recovering a
secret key, namely lattice-based attack and Fourier analysis-based attack.
When using the Fourier analysis-based attack, the number of signatures
required for the attack can be evaluated through a precise calculation
of the modular bias even if the leaked nonce contains errors. Previous
works have focused on two cases: error-free cases and the case for the
first MSB has errors among all of the nonce leakage. In this study, we
extend the technique to the noisy multiple bits case to calculate the pre-
cise value of the modular bias for the case that multiple bits (say, l bits
from MSB) have errors. Aranha et al. (ACM CCS 2020) introduced a
linear programming problem with parameters to evaluate the number
of signatures, time, and memory required for a Fourier analysis-based
attack. They also employed a SageMath module to optimize the number
of signatures and time required for the attack. Furthermore, we show
by experiments that 131-bit ECDSA is vulnerable when the first MSB
of the nonce is leaked without error and when 2 MSBs are leaked with
an error rate 0.1 each, which implies that total error rate is about 0.19.
We then show that the latter case requires less signatures to recover the
secret key.

Keywords: ECDSA · Fourier analysis-based attack · Side-channel at-
tack

1 Introduction

The Elliptic Curve Digital Signature Algorithm (ECDSA) is a digital signature
algorithm that utilizes elliptic curves. It is widely used in various systems such
as SSH, SSL/TLS, Bitcoin, and others. Therefore, evaluating the potential for
leakage of secret information and the effect it may have on the overall security
of a system is critical.

A nonce (Number used only ONCE) is secret information that is randomly
generated during the signing process. However, it is possible to leak nonces
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through side-channel attacks. An attack is reduced to the Hidden Number Prob-
lem (HNP) if a certain number of pairs of nonce partial bits, corresponding
message hash values, and signatures are available [5]. Lattice-based and Fourier-
analysis-based attacks are known as methods that solve HNPs.

A lattice-based attack can find a secret key with a relatively small number of
signatures if the MSBs of the nonce are known without errors. If the secret key is
160-bit and the 2 bits in a nonce is leaked [1][7][9]; if the secret key is 256-bit and
the 3 bits in a nonce is leaked [1][9]; or if the secret key is 384-bit and the 4 bits
in a nonce is leaked [1][9], then several dozens to several thousands of signatures
can be used to recover the secret key in a few minutes to hours. Lattice-based
attacks require more than 2 bits of nonce information without errors but do not
require many signatures.

In a Fourier analysis-based attack, recovering the secret key is possible when
the MSBs of the nonce are known without errors. If the key length is 192-bit [3] or
256-bit [11], the signatures can be solved with a 1 or 2 bits leak with small errors,
respectively. It was reported that several hundreds of millions of signatures and
several days were required to solve the problem using workstations and clusters
in those cases. In addition, the attack can also be successful if more MSBs are
obtained with errors, but it requires many signatures, computational cost and
time.

Aranha et al. [3] found vulnerabilities in OpenSSL 1.0.2 and 1.1.0, etc.,
against side-channel attacks that leak the MSB of ECDSA nonce, and used
these vulnerabilities in their attacks. They estimated the number of signatures
and costs of time, and memory of an attack when the 1 bit nonce is leaked with
errors by estimating the modular bias. The number of signatures, cost of time,
and memory required for the attack are also obtained by using the 4-list sum
algorithm for linear combination, which is critical in Fourier analysis-based at-
tacks. They then reduced the problem of optimizing the number of signatures
to a linear programming problem and solved it using the Mixed Integer Linear
Program module of SageMath to optimize the number of signatures, costs of
memory, and time required for the attack [10].

1.1 Our contributions

In this paper, we estimate the number of signatures, costs of time, and memory
required for an attack in the case of multiple bits by estimating the modular bias
when multiple MSBs with errors are obtained. In previous studies, modular bias
has only been formulated for MSB leakage with errors or multiple bit leakage
without errors. We have successfully generalized the formulation of the module
bias. This allows us to estimate the modular bias in any case and to obtain an
estimate of the number of signatures needed to recover a secret key.

We also focus on changes to the number of signatures when the error rate
changes. Then, the optimal parameters are selected based on the evaluation of
the number of obtained signatures. We extend their optimization program with
a generalized modular bias to find the number of signatures required to recover
the secret key. We also perform an actual attack against 131-bit ECDSA and
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confirm that it is possible to recover the secret key. Furthermore, we show from
both theoretical analysis for modular bias and experiment that the secret key
is successfully recovered with fewer signatures when each of the 2 bits is leaked
with an error rate of 0.1 than when the nonce is leaked with 1 bit without error.

2 Preliminaries

2.1 ECDSA signature generation algorithm

The set of solutions (x, y) ∈ F×F of an elliptic curve E defined over a field F with
an infinity point O is a commutative group derived from the chord-and-tangent
rule.

The signature generation algorithm of the ECDSA is shown in Algorithm 1.
The secret key sk is λ-bit. The secret information (i.e., nonce k) is randomly
generated in the first line of Algorithm 1. In this study, we consider the case in
which the MSBs of k are leaked.

Algorithm 1 ECDSA signature generation
Input: prime number q, secret key sk ∈ Zq, message msg ∈ {0, 1}∗, base point on

elliptic curve G, and cryptographic hash function H : {0, 1}∗ → Zq

Output: valid signatures (r, s)
1: k is chosen at random from Zq

2: R = (rx, ry) ← kG; r ← rx mod q
3: s ≡ (H (msg) + r · sk) /k mod q
4: return (r, s)

2.2 Hidden number problem with errors

The function MSBn (x) returns the top n bits of x for a positive integer x.
Let b be a positive integer, {0, 1}b be a fixed distribution on χb, and the error
bit sequence e be sampled from χb. The probabilistic algorithm EMSBχb

(x)
takes x, b as input and returns MSBb (x) ⊕ e. For each i = 1, . . . ,M , let zi be
zi ≡ ki − hi · sk mod q and hi, ki be uniform random values on Zq. The HNP is
the problem of finding sk that satisfies the aforementioned equations given the
hi, zi,EMSBχb

(ki) obtained for each i = 1, . . . ,M .
The ECDSA signature (r, s) is generated according to Algorithm 1, nonce

k ∈ Zq is chosen uniformly at random, and s ≡ (H (msg) + r · sk) /k (mod q) is
satisfied. This yields the following equation.

H (msg) /s ≡ k − (r/s) · sk mod q

If the MSBs of k are obtained, we obtain an instance of HNP as z ≡ H (msg) /s
(mod q) and h ≡ r/s (mod q),
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2.3 Bias function and sample bias

We follow the idea of [3] and first show definitions of bias function and sample
bias.

Definition 1. Let K be a random variable over Zq. The modulus bias Bq (K)
is defined as

Bq (K) = E [exp ((2πK/q) i)]

Let E (K) denote the expected value of random variable K and let i be an imag-
inary unit. In the same way, the sample bias of the set of points K = {ki}Mi=1 in
Zq is defined as

Bq (K) =
1

M

M∑
i=1

exp ((2πki/q) i) (1)

By fast Fourier transform (FFT), the computational complexity is O (M logM).
For some positive integer l, let the higher l bits of K be fixed to a certain
constant, and the remaining (λ− l) bits be random. The following equation is
given in [11].

lim
q→∞

|Bq (K) | = 2l

π
· sin

( π

2l

)
(2)

If no bits are fixed, its absolute value of sample bias is estimated as 1/
√
M . In

addition, we can easily see that liml→∞ limq→∞ |Bq (K)| = 1 from Equation (2).
The following lemma is given in [3].

Lemma 1. Suppose that the random variable K follows the following distribu-
tion on Zq for b ∈ {0, 1}, all ε ∈ [0, 1/2] and even q > 0.

{
Pr [K = ki] = (1− b) · 1−ε

q/2 + b · ε
q/2 if 0 ≤ ki < q/2

Pr [K = ki] = b · 1−ε
q/2 + (1− b) · ε

q/2 if q/2 ≤ ki < q

Letting Kb be a uniform distribution over [bq/2, (b+ 1) q/2), the modular bias
of K is given by

Bq (K) = (1− 2ε)Bq (Kb) . (3)

It can be easily verified that |Bq (K0)| = |Bq (K1)|. Note that Equation (3)
considers only 1 bit leakage. The absolute value of Bq (K) is given by

|Bq (K)| = (1− 2ε) · 2
π
sin

π

2
. (4)

2.4 Fourier analysis-based attack

Bleichenbacher introduced Fourier analysis based attack in [4]. First, we consider
a naive search method to obtain the secret key sk using the bias function, which
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is shown in Algorithm 2. Let M be the number of signatures obtained. In the
case in which the input sample {(zi, hi)}Mi=1 is biased Ki, we randomly select
a candidate secret key w ∈ Zq and then calculate Kw = {zi + hiw mod q}Mi=1.
Next, we compute |Bq (Kw)| under Equation (1). If w = sk, then Kw is biased
and |Bq (Kw)| has the peak. Then finding the correct key sk is possible. However,
this method is inefficient because it must search w in all Zq.

Algorithm 2 Naive search
Input: (hi, zi)

M
i=1: HNP samples over Zq

Output: Correct secret key sk
1: // Select a candidate w for the secret key.
2: for w = 1 to q − 1 do
3: Calculate Kw = {zi + hiw mod q}Mi=1.
4: Calculate |Bq (Kw)|.
5: end for
6: return w which maximizes |Bq (Kw)|.

De Mulder et al. [8] and Aranha et al. [2] proposed a method to efficiently
search for a secret key without performing an exhaustive search. Their methods
perform a linear combination of input samples to satisfy h′

j < LFFT until M ′

samples are obtained. Consequently, a new linear combined sample
{(

h′
j , z

′
j

)}M ′

j=1

is generated. The width of the peak w is extended from 1 to approximately
q/LFFT, showing that recovering the higher logLFFT bits of the secret key is
possible. In a Fourier analysis-based attack, the entire secret key is recovered by
repeating this process.

Let λ′ be the number of already recovered bits in sk. At the first step of
Fourier analysis-based attack, λ′ = logLFFT. Letting the higher λ′ bits of sk
be skhi and the unknown lower (λ− λ′) bits be sklo, sk can be expressed as
sk = 2λ−λ′

skhi + sklo. Thus, the new HNP formula for the case in which the
higher λ′ bits of sk has already been recovered can be rewritten as

k ≡ z + h ·
(
2λ−λ′

skhi + sklo

)
mod q

k ≡ z + h · 2λ−λ′
skhi + h · sklo mod q

k ≡ ẑ + h · sklo mod q,

where ẑ = z+h ·2λ−λ′
skhi. Thus, we obtain the new HNP samples {(ẑi, hi)}Mi=1.

When the Fourier analysis-based attack is repeated, λ′ increases. The ẑ is up-
dated in each repetition and, finally, the whole of sk can be recovered.

Algorithm 3 shows Bleichenbacher’s attack framework for a Fourier analysis-
based attack. The range reduction phase of the algorithm considers two con-
straints on linear combinations for efficient key searches, namely, small and
sparse linear combinations.
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Algorithm 3 Bleichenbacher’s attack framework
Input: {(hi, zi)}Mi=1: Sample of HNP over Zq. M ′: Number of linear combinations to

find. LFFT: FFT table size.
Output: MSB (sk)logLFFT

.
1: Range reduction
2: For all j ∈ [1,M ′], the coefficients are ωi,j ∈ {−1, 0, 1}, and the linear combination

pairs are denoted as
(
h′
j , z

′
j

)
=

(∑
i ωi,jhi,

∑
i ωi,jzi

)
. In this case, we generate M ′

sample
{(

h′
j , z

′
j

)}M′

j=1
that satisfies the following two conditions.

(1) Small : 0 ≤ h′
j < LFFT.

(2) Sparse : |Bq (K) |Ωj ≫ 1/
√
M ′, where Ωj :=

∑
i |ωi,j | for all j ∈ [1,M ′].

3: Bias computation
4: Z := (Z0, . . . ZLFFT−1) ← (0, . . . , 0)
5: for j = 1 to M ′ do
6: Zh′

j
← Zh′

j
+ exp

((
2πz′j/q

)
i
)

7: end for
8: Let wi = iq/LFFT, {Bq (Kwi)}

LFFT−1
i=0 ← FFT (Z)

=
(
Bq (Kw0) , Bq (Kw1) , . . . , Bq

(
KwLFFT−1

))
.

9: Find i that maximizes |Bq (Kwi) |.
10: return MSB (wi)logLFFT

.

In the small linear combination constraint, it should be satisfied that ωi,j ∈
{−1, 0, 1} and h′

j =
∑M

i=1 ωi,jhi < LFFT. This constraint is used to reduce the
search range by linear combinations. To enable h′

j to be smaller, we can take lin-
ear combinations with a greater number of hi (i.e., a fewer number of ωi,j = 0).
The fewer the number of linear combinations, the smaller LFFT becomes, and
thus the width of the peak, q/LFFT increase. However, if too many linear combi-
nations are taken, the peak value decreases exponentially. Although the original
peak value is |Bq (K)|, the peak bias after linear combinations is |Bq (K)|Ωj , due
to constraint, which exponentially decreases if we take Ωj linear combinations.
If the peak value is sufficiently larger than the average of the noise 1/

√
M ′, it

can be distinguished. Therefore, constraints are imposed as sparse linear combi-
nations to distinguish them from noise values.

The constraints of sparse linear combinations limit the number of linear com-
binations that can be taken such that the peak value is prevented from becoming
too small. Now, estimating the number of samples M ′ after the linear combina-
tion (assuming that Ωj is constant) depends only on |Bq (K)|, and finding the
modular bias in a rigorous manner is critical. In a Fourier analysis-based attack,
bias computation is performed using FFT, which has a computational complex-
ity of O (LFFT logLFFT) and can thus be calculated efficiently. However, range
reduction is not known to be inefficient and requires considerable computational
time. Table 3 in [3] shows that the bias computation (FFT) consumes 1 hour,
but range reduction (collision) consumes 42 hours when the key length is 162-bit,
and the nonce is 1 bit leak with ε = 0.027.
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2.5 K-list sum problem

Let the birthday problem be the problem of choosing x1 ∈ L1 and x2 ∈ L2

from 2 lists L1 and L2 with random n bits elements that satisfy x1 ⊕ x2 = 0.
In addition, given a list of K with n bits values, the problem of selecting 1
of elements from each list and finding a pair of values for which the XOR of
those K values is 0 is known as the Generalized Birthday Problem (GBP). In
[12], Bleichenbacher observed similarities between GBP and the Fourier analysis-
based attack [4]. The K-list sum algorithm solves K-list sum problem [6] which
is the GBP subproblem.

Aranha et al. [3] used the K-list sum algorithm to increase the number of
samples while increasing the widths of peaks through linear combination. Al-
gorithm 4 shows a 1-fold 4-list sum algorithm. Algorithm 4 first finds the pairs
from two of the given four lists such that the higher a bits of the sum is a certain
value, and it stores the sum in sorted lists L′

1 and L′
2. Next, from L′

1 and L′
2,

select a pair (x′
1, x

′
2) whose higher n bits are equal and calculate the absolute dif-

ference |x′
1 − x′

2|, where the higher n bits are 0. We then obtain sorted lists with
(λ− n) bits elements. Because the higher a bits are first chosen to be equal, we
only need to check whether (a− n) bits are equal. The algorithm increases the
M = 2m = 2a+2 sequences of length λ received as input to 23a+v−n sequences
of length (λ− n) by linear combination.

Algorithm 4 Parameterized 4-list sum algorithm based on Howgrave–Graham–
Joux
Input: {Li}4i=1: Sorted list of uniform random samples of λ bits uniform random

samples of length 2a. n: Number of higher bits to be discarded in each round.
v ∈ [0, a]: Parameter

Output: L′: List of (λ− n)-bit samples
1: For each c ∈ [0, 2v):

(a) Search for a pair (x1, x2) ∈ L1 × L2 satisfying MSBa (x1 + x2) = c. Output a
new sorted list L′

1 with x1 + x2 as 2a · 2a · 2−a = 2a elements. Similarly, for
L3,L4, the sorted list L′

2 is obtained.
(b) Search for a pair (x′

1, x
′
2) ∈ L′

1 ×L′
2 satisfying MSBn (|x′

1 − x′
2|) = 0. Output a

new sorted list L′ with |x′
1 − x′

2| as 2a · 2a · 2−(n−a) = 23a−n elements.

2: return L′

Algorithm 5 is an iterative 4-list sum algorithm that calls Algorithm 4 as a
subroutine. If 2a is the length of each sublist, it can be expressed as M = 2m =
4 · 2a = 2a+2. Let n be the number of higher bits to be nullified, and let N = 2n.
M ′ = 2m

′
< 22a is the number of samples output with the higher n bits as 0.

In addition, v is the number of iterations in range reduction with v ∈ [0, a], and
T = 2t = 2a+v and T is the time complexity. From [6], it holds that TM2 = N .
Now, the N is 24M ′N and therefore the following holds.

24M ′N = TM2 (5)
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From Equation (5), we obtain

m′ = 3a+ v − n (6)

Let r be the number of times the attacker repeats the 4-list sum algorithm.
By iterating, find a small linear combination of 4r integers that satisfies the
budget parameter of the FFT table so that it is less than LFFT = 2ℓFFT and so
that the FFT computation is tractable. In this case, the trade-off equation for
each round i = 0, . . . , r − 1 can be rewritten as

m′
i = 3ai + vi − ni, (7)

where mi+1 = m′
i. The output of the i-th round is used for the input of the

i+ 1-th round.
Table 1 lists the constraints of a linear programming problem when Al-

gorithm 5 is optimized in terms of time, memory, and the number of signa-
tures. Consider the optimization case in which min is minimized. Let tmax be
the maximum time spent in each round, mmax be the maximum memory, and
ℓFFT = logLFFT be the memory size for the FFT. These are quantities deter-
mined by the amount that can be spent (i.e., cost). The α is a slack parameter
that enables the peak to be more observable and depends on the maximum pos-
sible noise value. This value can be estimated by examining the distribution of{
h′
j

}M ′

j=1
and is given by approximately

√
2 ln (2LFFT/ε) [3].

Letting mr := logM ′, mr = 2 (logα− 4r log |Bq (K)|) is derived from the
constraint of sparse linear combinations. Estimating |Bq (K)| is sufficient to es-
timate the number of samples M ′ required after linear combination. In addition,
|Bq (K)| is the only value related to the number of bits l in the leaked nonce.
Depending on the length λ of the secret key, each ni is differently chosen and
the choice of nis affects other parameters.

Algorithm 5 Iterative HGJ 4-list sum algorithm
Input: L: List of M = 4×2a uniforml random λ-bit samples. {ni}r−1

i=0 : The number of
higher bits to be discarded in each round. {vi}r−1

i=0 : Parameters where vi ∈ [0, ai].
Output: L′: List of

(
λ−

∑r−1
i=0 ni

)
-bit samples with length 2mr .

1: Let a0 = a.
2: For each i = 0, . . . , r − 1 :

(a) Divide L into four lists L1,L2,L3,L4 of length 2ai and sort each list.
(b) Give parameters ni and vi and {Li}4i=1 to Algorithm 4. Obtain a single list L′

of length 2mi+1 = 23ai+vi−ni . Let L := L′ and ai+1 = mi+1/4.

3: return L′
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Table 1. Linear programming problem based on iterative HGJ 4-list sum algorithm
(Algorithm 5). Each column is a constraint to optimize time and space and data [3].

Time Space Data
minimize t0 = . . . = tr−1 m0 = . . . = mr−1 min

subject to — ti ≤ tmax ti ≤ tmax

subject to mi ≤ mmax — mi ≤ mmax

subject to

mi+1 = 3ai + vi − ni i ∈ [0, r − 1]
ti = ai + vi i ∈ [0, r − 1]
vi ≤ ai i ∈ [0, r − 1]
mi = ai + 2 i ∈ [0, r − 1]
mi+1 ≤ 2ai i ∈ [0, r − 1]
min = m0 + f

λ ≤ ℓFFT + f +
∑r−1

i=0 ni

mr = 2 (logα− 4r log (|Bq (K) |))

3 Modular bias for multiple bit leakage

Aranha et al. [3] discussed the security of ECDSA only for 1 bit noisy leakage.
Considering practical circumstances, more bit leakage can be obtained. This
section will analyze the security for the case where more noisy bits are obtained.

3.1 Modular bias for 2 bits leakage

We extend the evaluation of the modular bias for a single noisy bit case pre-
sented in Equation (3) to one when the nonce leaks multiple bits with errors.
We begin with the most simple case: modular bias for l = 2 and extend the result
for general l. The modular bias is also given for the case in which each bit has
a different error rate. The nonce obtained by a side-channel attack is not nec-
essarily completely error-free. Thus far, evaluation of the case of nonce leakage
with errors has been limited to the case of 1 bit leakage as done by Aranha et
al. [3]. This work allows us to evaluate and discuss the security of the ECDSA in
more detail by estimating the modular bias in the case of multiple bit leakage.

Lemma 2 (Modular bias for l = 2). Suppose that the random variable K
follows the following distribution over Zq for b ∈ {0, 1, 2, 3}, ε1, ε2 ∈ [0, 1/2] and
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even q > 0.



Pr [K = ki] = (1−b)(2−b)(3−b)
6 · (1−ε1)(1−ε2)

q/4 + b(2−b)(3−b)
2 · ε1ε2

q/4

−b (1− b) (3− b) · ε1(1−ε2)
q/4 + b(1−b)(2−b)

6 · (1−ε1)ε2
q/4 if 0 ≤ ki < q/4

Pr [K = ki] = (1−b)(2−b)(3−b)
6 · (1−ε1)ε2

q/4 + b(2−b)(3−b)
2 · (1−ε1)(1−ε2)

q/4

−b (1− b) (3− b) · ε1ε2
q/4 + b(1−b)(2−b)

6 · ε1(1−ε2)
q/4 if q/4 ≤ ki < q/2

Pr [K = ki] = (1−b)(2−b)(3−b)
6 · ε1(1−ε2)

q/4 + b(2−b)(3−b)
2 · (1−ε1)ε2

q/4

−b (1− b) (3− b) · (1−ε1)(1−ε2)
q/4 + b(1−b)(2−b)

6 · ε1ε2
q/4 if q/2 ≤ ki < 3q/4

Pr [K = ki] = (1−b)(2−b)(3−b)
6 · ε1ε2

q/4 + b(2−b)(3−b)
2 · ε1(1−ε2)

q/4

−b (1− b) (3− b) · (1−ε1)ε2
q/4 + b(1−b)(2−b)

6 · (1−ε1)(1−ε2)
q/4 if 3q/4 ≤ ki < q

Let Kb be a uniform distribution over [bq/4, (b+ 1) q/4). The modular bias of
K is then given by

Bq (K) = {(1− 2ε1) (1− ε2) + i (1− 2ε1) ε2}Bq (Kb) .

Proof. See Appendix A.

Remark 1. We now consider the case in which ε2 = 0.5, (i.e., the same case in
which no bias exists in the second bit, which is completely random). In this case,
the absolute value of the bias is given by

|Bq (K)| = |(1− 2ε1)× 0.5 + i (1− 2ε1)× 0.5| · 2
2

π
sin

π

22
= (1− 2ε1) ·

21

π
sin

π

21
.

We can easily verify that the value is equal to Equation (4), which is the expres-
sion for l = 1. In addition, it is better to point out that the bias is 0 regardless
of the value of ε2 in the case of ε1 = 0.5.

3.2 Generalization to modular bias for multiple bit leakage

We next generalize the modular bias to the case in which the higher l bits of the
nonce leaks with errors. To simplify the discussion, consider the case where each
bit contains an error with probability ε. Given l, let Kb be a uniform distribution
over


bq/2l, (b+ 1) q/2l


. b ∈


0, 1, . . . , 2l − 1


. We can easily verify that all of

|Bq (Kb)| are equal regardless of the value of b. Therefore, it is enough to obtain
Bq (K0). Let H (j) be the Hamming weight when j is expressed in binary. If the
higher l bits of the nonce are all 0 and no errors occur, K0 corresponding to
b = 0 is uniformly distributed over


0, q/2l


. When an error is contained in each

bit with probability ε, each bit is 1 with probability ε. Thus, the number of bits
containing errors is the same as the number of 1 bits and can be expressed in
terms of Hamming weights. In addition, the number of error-free bits is l−H (j).
From this, for the higher l bits, if an error occurs in each bit with an error rate
of ε, the modular bias is expressed as




2l−1
j=0

exp


2jπ

2l
i


εH(j) (1− ε)

l−H(j)


Bq (K0) . (8)
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We next simplify the term
∑2l−1

j=0 exp
(
2jπi/2l

)
εH(j) (1− ε)

l−H(j) appeared
in Equation (8).

2l−1∑
j=0

exp

(
2j

2l
πi

)
εH(j) (1− ε)

l−H(j)

=

2l−1−1∑
j=0

exp

(
4j

2l
πi

)
εH(2j) (1− ε)

l−H(2j)
+

2l−1−1∑
j=0

exp

(
4j + 2

2l
πi

)
εH(2j+1) (1− ε)

l−H(2j+1)

=
2l−1−1∑
j=0

exp

(
2j

2l−1
πi

)
εH(2j) (1− ε)

l−1+1−H(2j)

+
2l−1−1∑
j=0

exp

(
2j

2l−1
πi +

2

2l
πi

)
εH(2j)+1 (1− ε)

l−(H(2j)+1)

=
2l−1−1∑
j=0

exp

(
2j

2l−1
πi

)
εH(j) (1− ε)

l−1−H(j) ×
{
(1− ε) + ε exp

(
2

2l
πi

)}

=
l∏

j=1

(
(1− ε) + ε exp

(
2πi

2j

))

During the equation transformation, we use the equation H (2j + 1) = H (j)+1
for a non-negative integer j. Note that in the case of b = 0, we just consider
the Hamming distance to the binary representation 00 · · · 0 of the l-bit. In the
general b case, we slightly modify to consider the Hamming distance to the binary
representation of b. From this, the bias with error is expressed by the following
theorem.

Theorem 1. The modular bias for the l-bit nonce leakage with error rate ε is
given by

l∏
j=1

(
(1− ε) + ε exp

(
2πi

2j

))
Bq (Kb) . (9)

For the absolute value of the modular bias, the following holds and can be
expressed without using complex numbers.

Corollary 1. The absolute value of the modular bias for the l-bit nonce leakage
with error rate ε is given by

∣∣∣∣∣∣
l∏

j=1

(
(1− ε) + ε exp

(
2πi

2j

))∣∣∣∣∣∣
|Bq (Kb)|

=

√√√√
l∏

j=1

(
1− 4ε (1− ε) sin2

π

2j

)
|Bq (Kb)| . (10)
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Here, a simple calculation confirms that the absolute value of the modular bias
is 0 in Equation (8)–(10) if ε = 0.5.

Corollary 1 can be used to find the absolute value of the modular bias for a
given number of bits and the leakage error rate. The concrete values are shown
in Table 2. Each column is the number of bits leaked by the nonce, and each row
is the value of the nonce’s error rate.

Only the values for ε = 0 are shown in Table 1 of [8]. Only the values for l = 1
are shown in Lemma 4.2 of [3]. With the help of Corollary 1, we can calculate
the precise absolute value of the modilar bias for arbitrary ε and l (as shown in
yellow in the table).

These values are extended to Figure 1 shows the modular bias plotted for
each error rate. We can find that the value increases as l increases and depends
on the error rate. It converges to some value that depends on the error rate ε
at approximately l = 6. Moreover, we can see that the graph for ε = 0.01 has
almost the same shape as that for ε = 0. In [3], they attacked in ε = 0.01 and
ε = 0.027 cases and succeeded in recovering the secret keys.

The modular bias for ε = 0.1 and l ≥ 2 is larger than that for ε = 0 and
l = 1. This means that the number of signatures for a 2 bits leak with an error
rate of 0.1 is less than that for a 1-bit leak with no errors. Thus, fewer signatures
are required for a successful attack. We give experimental reults comaring two
cases in 4.2.

Table 2. Absolute values of modular bias

l 1 2 3 4 5 6

ε = 0 0.6366 0.9003 0.9749 0.9935 0.9983 0.9999

ε = 0.01 0.6238 0.8735 0.9427 0.9605 0.9649 0.9660

ε = 0.1 0.5092 0.6522 0.6870 0.6957 0.6978 0.6984

ε = 0.3 0.2546 0.2742 0.2780 0.2788 0.2790 0.2791

ε = 0.4 0.1273 0.1298 0.1302 0.1303 0.1304 0.1304

3.3 Case for different error rate of each bit

Equation (10), as presented in Section 3.2, shows the absolute value of the mod-
ular bias for which the error rates of each bit are equal (say, ε). We next show
the modular bias for the different error rates of each bit.

Again, we consider K0 and we attempt to update the value corresponding
to

∏l
j=1

(
(1− ε) + ε exp

(
2πi/2j

))
in Equation (9). The values up to j = 1 and

j = 2 are (1− ε) − ε and ((1− ε)− ε) ((1− ε) + εi), respectively. Thus, we are
considering cases when the MSBs do not contain errors and when MSBs con-
tain errors. Multiplying by 1 − ε and εi enables us to consider those cases in
which the second MSB error is not included and when it is included, respec-
tively. In general j, 1− ε and ε exp

(
2πi/2j

)
can be considered as the error-free
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Fig. 1. Modular bias under multiple bit leakage with errors.

bits and error-containing bits, respectively. In other words, at the j-th factor,
((1− ε)− ε) · · ·

(
(1− ε) + ε exp

(
2πi/2j

))
is considered as each 2j−1 combina-

tion of the (j − 1) bits from the MSB to the (j − 1)-th bit, with and without
errors. Therefore, to establish the case in which the j-th bit does not include
an error, we multiply by 1 − ε. To create the case where the j-th bit contains
an error, we multiply by ε exp

(
2πi/2j

)
. From this, we can say that the j-th ε

represents the error rate of the j-th bit from the MSB. If the error rate of each
leaked bit in the nonce is different, we denote εj as the error rate of the j-th
MSB. The modular bias in the case in which the error rate is different for each
bit of Theorem 1 is as in the following theorem.

Theorem 2. The modular bias when the nonce leaks l-bit with an error rate εj
is given by

l∏
j=1

(
(1− εj) + εj exp

(
2πi

2j

))
Bq (Kb) . (11)

In the case of l = 2, it matches Lemma 2.
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The absolute value of the modular bias for the different error rates of each
bit is given by

√√√√
l∏

j=1

(
1− 4εj (1− εj) sin

2 π

2j

)
|Bq (K)| . (12)

If εj = ε for all j, Equation (12) is equal to Equation (10). As Equation (12)
shows, the error rates of the higher bits have a greater effect on the modular
bias. Table 3 shows the values of sin2

(
π/2j

)
for each j. This shows that the

contribution for j = 1 is much greater than for the other cases. Figure 2 shows
the exact values of the modular bias when the error rates between the first bit
and second and after bits are different. The figure indicates that the absolute
value of the bias is greater when the error rate of the first bit is smaller than
that of the second and subsequent bits as compared to when the error rate of the
first bit is greater than that of the second and subsequent bits. In other words,
if the error rate is different for each bit of the nonce, the modular bias is highly
dependent on the first MSB. This can be seen from the approximated equation,
since for small x, sin2 x is approximated as x2. That is, sin2

(
π/2j

)
≈ π2/22j if

j ≥ 5. A visual explain of the bias function for multi-bit leakage associated with
this value is shown in Appendix B.

Table 3. Values of sin2 π

2j
at each j.

j 1 2 3 4 5 6 · · · 10

sin2(π/2j) 1 0.5 0.146 0.038 0.009 0.002 · · · 0.000009

The term
√

1− 4εj (1− εj) sin
2 (π/2j) in Equation (12) can be expressed as

√
1− 4εj (1− εj) (π2/22j) (13)

from the above approximation. We can see that this term rapidly converges to
1 as l → ∞, regardless of the value of εj .

Intuitively, the proof of Lemma 2 shows that Pr [K = ki] is designed so that
one term of each Pr [K = ki] remains depending on the value of b. Related figures
are shown in Figures 3 and 4. Figure 3 shows the modular bias for the 2 bits case,
and Figure 4 shows the modular bias for the 3 bits case. The sum of the absolute
values of the four or eight vectors is 1, respectively. The absolute value of the
sum of these vectors is the absolute value of the modular bias. An interesting
fact is that a vector with 2 or 3 bits wrong has a smaller effect on the absolute
value of the modular bias than a vector with only 1 bits wrong. In addition,
Figures 3 and 4 show the sum of the vectors is 0 if ε1 = 0.5, which is mentioned
at the end of Remark 1.
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Fig. 2. Modular bias for different error rate for each bit of nonce

3.4 The number of signatures required for key-recovery and error
rates

The constraint of sparse linear combinations is given by |Bq (K) |Ωj ≫ α/
√
M ′.

Suppose that |Bq (K) | α are given for this inequality. We can satisfy the in-
equality by choosing smaller Ωj , which is the number of linear combinations, or
larger M ′, which is the number of samples after linear combination. The num-
ber of samples after linear combination required for r rounds is given by the
following equation based on the error rate and bias.

M ′ ≫ α/





l
j=1


1− 4εj (1− εj) sin

2 π

2j


|Bq (Kb) |




2×4r

(14)

From the fact that vi ≤ ai in the input of Algorithm 5 and Equation (7), we
obtain mi+1 ≤ 4mi − ni − 8. We then have the following.

m′ = mr ≤ 4rm0 −
r−1
i=0

4r−i−1ni −
8

3
(4r − 1) (15)

In the 4-list sum algorithm, it holds that ti = ai+vi, mi = ai+2, and vi ≤ ai in
the input of Algorithm 5. Accordingly, the inequations ti ≤ 2mi−4 are obtained.
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Fig. 3. Modular bias illustrated on
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Fig. 4. Modular bias illustrated on the unit
circle with 3 bits leakage.

We then have the sum of time complexity as follows.

r−1∑
i=0

ti ≤ 2
r−1∑
i=0

mi − 4r (16)

From Equations (14) and (15), the estimated number of signatures required for
the attack is bounded by

M ≥ 1∏l
j=1

(
1− 4εj (1− εj) sin

2 (π/2j)
) × 1

{(2l/π) · sin (π/2l)}2
× 2A, (17)

where

A =
r−1∑
i=0

4−i−1ni +
8

3

(
1− 4−r

)
. (18)

From Equation (17), we can see that a higher error rate increases the num-
ber of signatures required and that an increase in the length of the known nonce
reduces the number of signatures required. For example, from Table 2, a com-
parison of ε = 0.01 and ε = 0.1 when l = 2 reveals that 0.87252/0.65222 ≈ 1.79
times increase. In addition, comparing l = 3 and l = 1 for ε = 0.01, we see that
0.94272/0.62382 ≈ 2.284 times increase in the number of signatures. Further-
more, we find that the error rate and size of the bias do not affect the number
of signatures required, whereas the number of rounds is varied. Note that the
values for l = 1 are completely consistent with the evaluation of Aranha et al.

To understand Equation (17), we can break it down into three separate parts
and analyze each one individually.

Third term, represented by 2A, remains constant regardless of any changes to
l or ε. By utilizing Equations (17) and (18), we can determine that the number
of required signatures for an attack is solely dependent on r and nis, provided
that l and ε remain unchanged. These values are utilized in the calculation of A.
Moreover, if r is fixed, it depends only on nis. Therefore, the number of signatures
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required for the attack depends on the value of ni. Here, ni is represented by
constraints such as mi+1 = 3ai + vi − ni and λ− ℓFFT − f ≤

∑r−1
r=0 ni as given

in Table 1. M is minimized if the equality holds. It is also multiplied by the
square of the inverse of the modular bias. Considering each value in Table 2, we
find that the number of signatures required increases significantly for high error
rates.

The initial component of Equation (17) is referred to as the penalty term,
which is always greater than 1, except when all εj values are zero. Moreover,
as the value of εj increases, this term also increases, ultimately leading to an
increase in M . This aligns with our natural intuitions.

The value of the second term is determined solely by the parameter l. As l
increases, this term gradually decreases and approaches 1, but it always remains
greater than 1. As l increases, the required signatures decrease, which intuitively
makes sense. The penalty term prevents the second term from reducing M , and
its significance increases with an increase in εj . However, it does not completely
eliminate the possibility of the second term reducing M .

Combing Equation (17) with Equation (13), we can estiamte the contribution
j-th MSB leakage. We can see that as l becomes larger, M will decrease, but its
rate of decrease will be negligibly small.

4 Experimental results

4.1 Extension to multiple bit leakage with errors

Aranha et al. [3] have posted a script on GitHub [10] for solving linear program-
ming problems based on Table 1. In this script, ε is freely changeable. On the
other hand, the number l of nonce bits to leak is fixed to l = 1. In a Fourier
analysis-based attack, the leakage bit length and error rate affect only |Bq (K)|
in the constraints of Table 1. Therefore, we can easily obtain the script for multi-
ple bits leakage by replacing the |Bq (K)| evaluation equation for the [10] script
with Equation (10).

We first naively optimize the number of signatures for multiple bit leakage
with errors using a script with only |Bq (K)| modifications. Figure 5 shows the
optimal number of signatures for each ε and l. Here, λ = 162, mmax = 40,
ℓFFT = 40, tmax = 80, r = 2. In addition, α depends only on the value of ε
because LFFT is fixed.

4.2 Attack experiment

For 131-bit ECDSA, we recover the secret key when nonces have 1 bit leakage
without error and when 2 bits leakage, each with an error rate of 0.1. The
computer used in the experiments has Intel Xeon Silver 4214R CPU ×2 and
256GB of DDR4 RAM. The parameters for the l = 1, ε = 0 and l = 2, ε = 0.1
cases are shown in Table 4. Table 5 shows the obtained M ′ = 2m

′
= 2m2 ,

mean value of bias and peak bias as a result of range reduction. In both cases,
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Fig. 5. The number of signatures required for the extended [3] script.

the top 29 bits were successfully recovered. The experimental results show that
l = 2, ε = 0.1 successfully recovers the secret key with a smaller bias value. Note
that the error rate of 2 bits is 0.19, since the error rate of each bit is 0.1.

Table 4. Paramenters of attack experiment.

a0 a1 v0 v1 n0 n1

(l, ε) = (1, 0) 22 24 18 18 48 55

(l, ε) = (2, 0.1) 22 24 18 16 48 55

From the experimental results, when l = 2, ε = 0.1, the secret key was
successfully recovered with about 1/16 of the number of samples after linear
combination than when l = 1, ε = 0. Furthermore, the time required for range
reduction is about 0.26 times smaller. Although the value of M ′ is changed by
the parameter v in this case, the number of signatures required can be changed
by changing other parameters, and it can be inferred that the 2 bits leakage
requires a smaller number of signatures.

Next, the parameters in Table 4 were changed to a0 = 20, a1 = 23, and
v1 = 18 to confirm the experiment in the case with errors. As a result, M ′ = 223.0,
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Table 5. Experiment result.

M ′ Average noise Peak bias Range reduction time (sec)
(l, ε) = (1, 0) 228.1 1.5× 10−5 1.5× 10−4 5957
(l, ε) = (2, 0.1) 222.1 2.0× 10−6 1.7× 10−5 1555

the time was 1984 seconds, and the secret key is successfully recovered. This
shows that l = 2, ε = 0.1 can be recovered with fewer signatures and in less time
than without errors.

5 Conclusion

We first evaluated the number of signatures by finding the formula of the modular
bias for multiple bit leakage in the nonce. The modular bias as indicated by De
Mulder et al. [8] and Aranha et al. [3] was extended to the case in which the
MSBs of the nonce were leaked with multiple errors. We then proved Theorem 1.
As the modular bias can now be calculated for any l, ε, we can now estimate the
required number of signatures using a linear combination algorithm. In addition,
the absolute value of the modular bias was given by Corollary 1. This corollary
indicates that the error rate of the first MSB of the nonce has a greater effect
on the modular bias than the error rates of the other bits. We then provided an
estimate of the number of signatures required for various error rates.

We evaluated the number of signatures and computation time by obtaining
the parameters of the 4-list sum algorithm. Then, we performed an attack on
131-bit ECDSA with l = 2, ε = 0.1, and succeeded in recovering the secret key
with fewer signatures with l = 1, ε = 0.
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A Proof of Lemma 2

The proof for b = 0 is as follows. Note that for simplicity, we denote exp (2πiki/q)
by Eq (ki).

Bq (K) = E [exp (2πiK/q)] =
∑
ki∈Zq

Eq (ki) · Pr [K = ki]

=
(1− ε1) (1− ε2)

q/4

∑
ki∈[0,q/4)

Eq (ki) +
(1− ε1) ε2

q/4

∑
ki∈[q/4,q/2)

Eq (ki)

+
ε1 (1− ε2)

q/4

∑
ki∈[q/2,3q/4)

Eq (ki) +
ε1ε2
q/4

∑
ki∈[3q/4,q)

Eq (ki)

=
(1− ε1) (1− ε2)

q/4

∑
ki∈[0,q/4)

Eq (ki) +
(1− ε1) ε2

q/4

∑

k
(1)
i ∈[0,q/4)

Eq
(
k
(1)
i + q/4

)

+
ε1 (1− ε2)

q/4

∑

k
(2)
i ∈[0,q/4)

Eq
(
k
(2)
i + q/2

)
+

ε1ε2
q/4

∑

k
(3)
i ∈[0,q/4)

Eq
(
k
(3)
i + 3q/4

)

=
(1− ε1) (1− ε2)

q/4

∑
ki∈[0,q/4)

Eq (ki) + i
(1− ε1) ε2

q/4

∑

k
(1)
i ∈[0,q/4)

Eq
(
k
(1)
i

)
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− ε1 (1− ε2)

q/4

∑

k
(2)
i ∈[0,q/4)

Eq
(
k
(2)
i

)
− i

ε1ε2
q/4

∑

k
(3)
i ∈[0,q/4)

Eq
(
k
(3)
i

)

=
(1− 2ε1) (1− ε2)

q/4

∑
ki∈[0,q/4)

Eq (ki) + i
(1− 2ε1) ε2

q/4

∑
ki∈[0,q/4)

Eq (ki)

= {(1− 2ε1) (1− ε2) + i (1− 2ε1) ε2}Bq (Kb)

B Visual explanation of the bias function for multi-bit
leakage

In this appendix, Equation (9) is represented graphically. In Equation (9), at
each j, (1− ε)+exp

(
2πi/2j

)
can be understood as a point in the complex plane

with 1 and exp
(
2πi/2j

)
endowed by 1 − ε : ε. The endpoints in the complex

plane at j = 1, 2 and j = 3, 4 in Figures 6 and 7, respectively, are indicated by
red dots. ε and 1− ε in the figures represent ratios. When j = 1, the two points
1 and −1 are endowed by 1− ε : ε, and the red point is in the complex plane at
coordinates 1 − 2ε. When j = 2, we endow 1 and i, and when j = 3, we endow
1 and exp (πi/4) with 1− ε : ε.

As j increases, exp
(
2πi/2j

)
approximates 1. Therefore, exp

(
2πi/2j

)
and the

interior point of 1 also approximates 1. Figures 6 and 7 also show that the interior
point approximates 1 in the complex plane. The absolute value also approximates
1.

Table 2 shows that as l increases, the value does not readily increase. As
explained in Section 3.3, this is because sin2

(
π/2j

)
is closer to 0. This can also

be observed in Figures 6 and 7.

Re

Im

i

Fig. 6. When the first and second bits
leak.
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Im
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Fig. 7. When the third and fourth bits
leak.
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Abstract. Cumulative Distribution Table(CDT) sampling is a Gaus-
sian sampling technique commonly used for extracting secret coefficients
or core matrix values in lattice-based Post-Quantum Cryptography (PQC)
algorithms like FrodoKEM and FALCON. This paper introduces a novel
approach: a single trace analysis(STA) method for comparison operation
based constant-time CDT sampling, as employed in SOLMAE—a candi-
date for Korean Post-Quantum Cryptography(KPQC) first-round digital
signature Algorithm. The experiment is measuring power consumption
during the execution of SOLMAE’s sampling operation on an 8-bit AVR
compiler microcontrollers unit(MCU) using ChipWhisperer-Lite. By uti-
lizing STA, this paper recovered output of comparison operation based
constant-time CDT sampling.The source of CDT sampling leakage is in-
vestigated through an in-depth analysis of the assembly code. The 8-bit
AVR MCU conducts comparison operations on values exceeding 8 bits
by dividing them into 8-bit blocks. Consequently, the execution time of
a CDT sampling operation is influenced by the outcome of each block’s
comparison operation due to conditional branching. To address these
concerns, this paper begins by summarizing trends in CDT sampling
related research to design robust countermeasures against single trace
analysis. Furthermore, a novel implementation method for comparison
operation based constant-time CDT sampling against STA is proposed.
This assembly-level implementation removes branching statements and
performs comparative operations on all data words. Through experimen-
tal validation, this paper demonstrates the safety of the proposed coun-
termeasure algorithm against STA.

Keywords: Side Channel Analysis · Single Trace Analysis · PQC ·
Gaussian sampling · CDT sampling · KPQC · SOLMAE · AVR
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1 Introduction

The usage of public key cryptographic algorithms, such as Public-key Encryp-
tion(PKE)/Key Encapsulation Mechanism(KEM) and Digital Signature Algo-
rithm(DSA), is widespread across various fields. However, it has been demon-
strated that these algorithms will become vulnerable in the future due to the
emergence of quantum computers and Shor’s algorithm.[1,2] To address these
security concerns, the National Institute of Standards and Technology (NIST)
initiated the PQC standardization competition in 2016. The objective of this
competition is to develop public-key cryptographic algorithms that can resist
attacks from quantum computers. Currently, a subround is in progress follow-
ing the final round of the competition. Additionally, as part of the competition,
new algorithms are being proposed that build upon the shortlisted and selected
algorithms. The competition was divided into two main areas for public-key
cryptography, namely PKE/KEM and Digital Signature. Importantly, numerous
lattice-based algorithms have been proposed in both areas. In these lattice-based
cryptographic algorithms, important values are extracted from the Gaussian dis-
tribution, and the method employed to extract them using a table is known as
CDT sampling. In other words, CDT sampling is a crucial role in lattice-based
algorithms.

There are many ways to implement CDT sampling. The first proposed CDT
sampling has been analyzed using the technique proposed by [3], resulting in
the proposal of constant-time CDT sampling. This constant-time CDT sampling
was implemented using subtraction in FrodoKEM and Lizard. Additionally, [4,5]
proposed STA for CDT sampling. then secret value of FrodoKEM was leaked.
Repeatedly, CDT sampling is very important. In this paper, we study in detail
the security of side channel analysis for comparison operation based CDT sam-
pling in MITAKA [6] and SOLMAE [7], which are a similar structure of the
Falcon. Importantly, the security of side channel analysis for these comparison
operation based CDT sampling techniques has not been studied before this work.
This paper recovery the sampling value of CDT sampling through STA for vul-
nerability that is variable the operating time of CDT sampling depending on the
results of comparative operations in 8-bit AVR MCU. To validate this vulner-
ability, the paper employs ChipWhisperer-Lite to measure power consumption
during CDT sampling on the Atmel XMEGA-128, using the AVR compiler for
the 8-bit processor. Additionally, using assembly code root cause analysis, the
paper proposes a secure constant-time CDT sampling method using comparison
operations to counter STA.

1.1 Contribution

This paper addresses the safety of comparison operation based constant-time
CDT sampling from a side-channel analysis perspective, which has not been pre-
viously studied. In addition, by analyzing the power consumption traces used in
SOLMAE, we identified the basesampler in the overall cryptographic operation
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algorithm. This increases the feasibility of the STA in this paper. So, this pa-
per describes the reason for vulnerability in comparison operation-based CDT
sampling in great detail. Experiments have confirmed that CDT sampling in
8-bitAVR MCU varies in operating time depending on comparison operation
results. The cause analysis was performed using an assembly code. In the 8-bit
AVR MCU, during CDT sampling operations, when comparing values larger
than 8 bits, the process is divided into 8-bit units. The analysis reveals that the
operation concludes the moment the result is determined, resulting in a change
in execution time. In essence, not all blocks undergo comparison operations, and
this behavior is closely associated with the presence of branch statements.

A novel STA is propose for comparison operation based CDT sampling. Ad-
ditionally, a new CDT sampling implementation method is propose to resist
side-channel analysis, contributing to the development of secure algorithms for
CDT sampling. The practical implementation removes the branch statements
from the assembly code and presents a structure where all blocks can be com-
pared. Experimental verification demonstrates the resistance to STA through
power consumption trace analysis.

1.2 Organization

The remainder of this paper introduces STA for CDT sampling through a total
of five sections. In Section 2, it provides detailed explanation of lattice, LWE,
and NTRU, emphasizing the significance of Gaussian sampling. This highlights
the importance of CDT sampling, the two implementation methods, and the
imperative need to investigate the security of comparison based CDT sampling,
which has not been previously explored. Moving on to Section 3, it presents the
experimental setup and target implementation. Section 4 delves into a side chan-
nel analysis of CDT sampling based on comparison operations. Here, it detailed
describe the application method of STA and the cause of the vulnerability. In
Section 5, we present the implementation of CDT sampling in which vulnerabil-
ities are mitigated through an analysis of the underlying causes. To demonstrate
their resistance against the attack technique proposed in this paper, it collect
actual a power consumption trace. Finally, Section 6 addresses conclusions and
future research directions.

2 Backgrounds

In this section, we provide an introductory overview of lattice-based cryptography[8],
LWE, and NTRU encryption schemes. Following that, we delve into the Gaus-
sian distribution and proceed to describe CDT sampling, which is of paramount
importance as a module. We then elaborate on timing side-channel analysis con-
ducted on the original CDT sampling, followed by an in-depth description of a
STA of the subtraction operation based constant-time CDT sampling.
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2.1 Lattice

Definition 1. Lattice: Given n linearly independent vectors b1,b2, ...,bn ∈
Rm, the lattice L(b1,b2, ...,bn) is defined as the set of all linear combinations
of b1,b2, ...,bn with integer coefficients, i.e.,

L(b1,b2, ...,bn) =

{
n∑

i=1

xibi | xi ∈ Z

}
.

We refer to b1,b2, ...,bn as a basis of the lattice.
Equivalently, if we define B as the m×n matrix whose columns are b1,b2, ...,bn,

then the lattice generated by B is

L(B) = {Bx | x ∈ Zn} .

2.2 NTRU and LWE

The first public key cipher based on Lattice was proposed by A.M. in 1997, and
since then, various studies have been conducted to create efficient encryption
algorithms [9]. In Lattice-based encryption, efficiency primarily refers to speed
and key size. NTRU, proposed by Hoffstein et al. in 1996 [10], is known for
its fast encryption process. Falcon, MITAKA, and SOLMAE are examples of
NTRU-based encryption algorithms [6,11,12].

Definition 2. NTRU: Let q be a positive integer, and z(x) ∈ Z be a
monic polynomial. Then, a set of NTRU secrets consists of four polynomials
f, g, F,G ∈ Rq which satisfy the NTRU equation:

fG− gF ≡ q mod z(x).

And define h as h ← g · f−1 mod q. Then, given h, find f and g.
LWE was proposed by Regev in 2005 [13]. LWE is known to be NP-hard,

even when adding small values of noise. CRYSTAL-KYBER and CRYSTAL-
Dilithium are examples of LWE-based cryptographic algorithms [12,14].

Definition 3. LWE: Let n and q be positive integers, and let χ be a dis-
tribution over Z. For a vector s ∈ Zn

q , the LWE distribution As,χ over Zn
q × Zq

obtained by choosing a ∈ Zn
q and an integer error e from χ. The distribution

returns the pair (a, ⟨a, s⟩+ e mod q).

There are two important concepts of LWE.

– Search-LWE problem: Given m independent samples (ai, bi) ∈ Zn
q × Zq

drawn from As,χ, find s.
– Decision-LWE problem: Given m independent samples (ai, bi) ∈ Zn

q ×Zq,
distinguish whether each sample is drawn from the uniform distribution or
from As,χ.
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2.3 Discrete Gaussian Distribution

In this paper, CDT sampling is the method to extract random values from Gaus-
sian distribution. Prior to CDT sampling, the definition of the discrete Gaussian
distribution on the lattice is given as follows.

Definition 4. Discrete Gaussian Distribution over Lattice: Let ∀c ∈
Rn, σ ∈ R+,

∀x ∈ Rn, ρσ,c(x) = exp(
−π∥ x− c ∥2

σ2
).

Then, for ∀c ∈ Rn, σ ∈ R+, n-dimensional lattice L, define the Discrete Gaussian
Distribution over L as:

∀x ∈ L,DL,σ,c(x) =
ρσ,c(x)

ρσ,c(L)
.

2.4 CDT Sampling

Some lattice-based schemes based on LWE extract the error from a Gaussian
distribution. Similarly, certain lattice-based schemes based on NTRU create es-
sential values from a Gaussian distribution. CDT sampling is an efficient method
for extracting values from these Gaussian distributions, and ensuring the security
of such CDT sampling is of utmost importance. The CDT table stores specific
probability values of the Gaussian distribution. CDT sampling is an algorithm
that randomly generates probability values and determines the range within
which the generated values fall among those stored in the table. The value to
be sampled at this point corresponds to the determined index. There are several
ways to implement CDT sampling, and this paper deals with the safety study
of implementing CDT sampling based on comparison operations.

Algorithm 1 The CDT sampling vulnerable to timing attack
Input : CDT table Ψ , σ, τ

Output : Sampled value S
1: rnd ← [0, τσ) ∩ Z uniformly at random
2: sign ← [0, 1] ∩ Z uniformly at random
3: i ← 0
4: while (rnd > Ψ [i]) do
5: i++
6: end while
7: S ← ((−sign) ∧ i) + sign
8: return S

The initially proposed CDT sampling Algorithm 1 was found to be vulner-
able to the timing attack proposed by [3]. This vulnerability arises due to the
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different timing of the while loop termination. As a remedy, constant-time CDT
sampling utilizes for statements. There are two ways to implement this: CDT
sampling based on comparison operations and CDT sampling based on subtrac-
tion operations.

Algorithm 2 The subtraction operation based CDT sampling

Input : CDT table Ψ of length ℓ, σ, τ
Output : Sampled value S

1: rnd ← [0, τσ) uniformly at random
2: sign ← [0, 1] ∩ Z uniformly at random
3: S ← 0
4: for i = 0 to ℓ− 1 do
5: S += (Ψ [i]− rnd) ≫ 63
6: end for
7: S ← ((−sign) ∧ S) + sign
8: return S

Both methods are available for schemes that use CDT sampling. However,
only subtraction based CDT sampling has been suggested to be vulnerable. Algo-
rithm 2 is an example of subtraction operation based CDT sampling. LWE-based
lattice-based schemes commonly employ this algorithm [15,16]. Additionally, it
has been proposed to perform STA by the power differences between negative
and positive numbers [4,5]. Moreover, an attack to find the secret key of a cryp-
tographic algorithm has been proposed using this method.

Algorithm 3 The comparison operation based CDT sampling: half-Gaussian table
access CDT

Input : CDT table Ψ of length ℓ, σ, τ
Output : Sampled value S

1: rnd ← [0, τσ) uniformly at random
2: sign ← [0, 1] ∩ Z uniformly at random
3: S ← 0
4: for i = 0 to ℓ− 1 do
5: S += (rnd ≥ Ψ [i])
6: end for
7: S ← ((−sign) ∧ S) + sign
8: return S

On the other hand, NTRU-based lattice-based schemes often utilize CDT
sampling based on comparison operations, especially in [6,7,17] which employs
hybrid sampling. Algorithm 3 is the comparison based CDT sampling. Unlike
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conventional methods, it performs sampling from Gaussian distribution using
comparison operations.

3 Experiment Setup

In this section, the experimental environment and the CDT sampling code em-
ployed in the STA experiments are described. The C code of SOLMAE, a can-
didate from the KPQC Round 1 digital signature category, was implemented in
the AtmelXMEGA128 environment. Power consumption traces were collected
during the operation for analysis.

3.1 Implimentation of comparison operation based CDT sampling

The BaseSampler function implemented in SOLMAE and MITAKA employs a
comparison operation based CDT sampling approach. Thus, this paper utilizes
the reference code of SOLMAE, which was proposed as a candidate for KPQC
Round 1 digital signature. Specifically, our focus is on the BaseSampler func-
tion within the code. The sampling technique in SOLMAE follows the sampling
outlined in [17] and employs a table to generate values from a half-Gaussian
distribution. The BaseSampler function is illustrated in Listing 1.1. The CDT
table contains 13 values arranged in ascending order, which are sequentially com-
pared against the randomly selected value "r" from the reference code.

int base_sampler()
{
uint64_t r = get64(); //get randomly 64 bits from RNG.
int res = 0;
for (int i = 0; i < TABLE_SIZE; i++)
res += (r >= CDT[i]);

return res;
}

Listing 1.1: BaseSampler function C code

3.2 Target Device of Experiment

The board utilized in this paper consists of an AtmelXMEGA128 (8-bit proces-
sor) and Chipwhisperer-Lite. The AtmelXMEGA128 is an 8-bit AVR MCU.
The BaseSampler function implemented in SOLMAE operates on the At-
melXMEGA128 board, while Chipwhisperer-Lite is employed to collect the power
consumption data during the BaseSampler function operation Figure 1.

The experimental steps conducted in this paper are as follows:
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– Collection of power consumption data during the comparison operation-
based CDT sampling.

– Analysis of the assembly language, considering different compiler optimiza-
tion levels, to identify vulnerabilities in the comparison operations.

– Investigation of comparison operation vulnerabilities using real-world traces.
– Acquisition of output values for the newly proposed CDT sampling algorithm

through STA.

Fig. 1: AtmelXMEGA128(8-bit AVR MCU) and Chipwhisperer-Lite

This paper demonstrates that vulnerable implementations of comparison op-
erations, which could be realistic in a commercialized environment, can expose
the actual values of CDT sampling. Furthermore, a CDT sampling algorithm
resistant to side-channel attacks is proposed.

4 Side Channel Analysis of Comparison Operation based
Constant-Time CDT Sampling

4.1 Description of the Cause of Vulnerability

The security of comparison operations heavily depends on the specific implemen-
tation technique and enviroment like compiler. Let us consider the comparison
of two multi-word numbers, denoted as A and B in Figure 2.

Various methods can be employed to compare these numbers. One common
approach is to initiate the comparison with the most significant words. Compare
A and B as follows:

1. Check if A0 is greater than B0. If so, A > B.
2. Check if A0 is less than B0. If true, A < B.
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3. Check if A0 and B0 are equal. If true, continue to compare the next word
until the comparison ends.

Fig. 2: The comparison of two multi-word numbers, denoted as A and B. A and
B are each 8 blocks.

This implementation is vulnerable to side channel analysis. For instance, let’s
consider two scenarios: (1) A0 > B0 and (2) A0 = B0, A1 < B1. In these situa-
tions, the execution time of the comparison operations may differ. As a result,
timing vulnerabilities arise, which can be exploited through STA to distinguish
between the two scenarios. Therefore, a comparison algorithm resistant to STA
is required.

<base_sampler>:
...
24c: ldi r22, 0x00
24e: ldi r23, 0x00
250: ldd r24, Z+7
252: cp r25, r24
254: brcs .+74 ; 0x2a0 <base_sampler+0x92>
256: cp r24, r25
258: brne .+66 ; 0x29c <base_sampler+0x8e>
25a: ldd r24, Z+6
25c: cp r20, r24
25e: brcs .+64 ; 0x2a0 <base_sampler+0x92>
260: cp r24, r20
262: brne .+56 ; 0x29c <base_sampler+0x8e>
...
29c: ldi r22, 0x01 ; 1
29e: ldi r23, 0x00 ; 0
2a0: add r18, r22
2a2: adc r19, r23
...

Listing 1.2: Base Sampler() assembly code

In this section, the vulnerabilities associated with various implementations of
weak comparison operations are explored. The assembly code of the BaseSampler
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function used in SOLMAE is examined for various optimization levels (Level:
0, 1, 2, 3, s) provided by the AtmelXMEGA128. The assembly code depicted
in Listing 1.2 illustrates the part of BaseSampler function for the optimized
s-level. It is evident that the comparisons are performed sequentially, word by
word. Notably, vulnerabilities in the word based comparison method are evi-
dent. The process of performing comparison operations for each optimization
level follows a similar pattern as shown in Listing 1.2. Subsequent instructions
are dependent on the results of the word comparisons, leading to variations in
executed operations and resulting in distinct power consumption patterns man-
ifested as differences in power traces.

In more detail, the first word is compared in lines 252, 254, and the next
operation varies depending on the result. First, calculate r25 − r24. If a carry
occurred, then branch to line 2a0. This indicates that r24 was a greater number
than r25. If no carry has occurred, go to lines 256, 258. Then, calculate r24 −
r25. If the values are not the same between r24 and r25, branch to line 29c.
This means that r25 was a greater number than r24. If the values were the
same, compare the next two words by executing the following lines. Repeat
this process until the comparison operation is finally completed. In other words,
the vulnerability appears in the fact that the processing method in the branch
statement varies depending on the result of the comparison operation. This is
an important point to understand for design of countermeasure.

4.2 Single Trace Analysis on the Comparison Operation based
Constant-time CDT Sampling

Fig. 3: The power consumption trace of maximum r on uint64_t

The BaseSampler function utilized in SOLMAE implements CDT sampling
through comparison operations, as depicted in Listing 1.1. The comparison oper-
ations are performed between two operands of the uint64_t data type: a random
variable r and each the 13 values stored in the CDT table. On an 8-bit processor,
these comparison operations are performed by dividing them into 8 words. The
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aforementioned comparison operations have two vulnerabilities. First, the num-
ber of comparisons depends on the values being compared. Second, the value
being added depends on the result of each comparison operation, i.e., an addi-
tional operation is required to add 1. Therefore, it is risky to work with data
types larger than word.

Figure 3 shows the power consumption trace of the CDTsampling when r
is set to the maximum value of the uint64_t data type (i.e., 264 − 1). From
the power consumption trace, it is evident that the number of comparisons with
each CDT table differs, indicating variations in computation time based on the
compared values.

Fig. 4: Two power consumption traces differ by only one in sampling values. They
differ by only one in r values

Figure 4 shows two power consumption traces with only a difference of 1 in
the values of ’r.’ More precisely, the return values, sampled by the difference in
’r’ values, also differ by one. The noted discrepancy is a result of the optional
addition operation, leading to evident distinctions between the two traces. This
is also related to the data type of the resulting value returned. Since the returned
data type is a unit larger than the word, a difference also occurs in the addition
operation.These discrepancies in power consumption traces enable the visual
detection of any divergence in assembly instructions.

An increment of 1 of the sampling result occurs when r is greater than or
equal to value of table in the comparison between r and the value of table.
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Furthermore, the values in the CDT table are arranged in ascending order. Con-
sequently, once r becomes smaller than a particular value in the CDT table, the
resulting value remains unchanged. This implies that if a comparison operation
with a CDT table value greater than r is identified, the output of CDT sam-
pling can be obtained. The power consumption traces of the first word in the
comparison operation, as depicted in Figure 5, exhibit distinct shapes for the
scenarios where r is greater than, equal to, and less than the value in the CDT
table, respectively. The visual distinctiveness of these power traces facilitates
the acquisition of the CDT sampling value. This vulnerability arises from the
inherent characteristics of the weak comparison operation, as discussed earlier.

Fig. 5: The power consumption traces of CDT sampling have different shapes
for each r value: (a) A0 < B0, (b) A0 = B0, and (c) A0 > B0 where Ai and Bi

represent individual words.

5 Countermeasure

In the previous section, we highlighted the vulnerability of comparison operations
when processing data larger than the word size of the processor. To address this
issue and ensure the safety of comparison operation based constant-time CDT
sampling, we propose a novel implementation method with countermeasure.

Before introducing the proposed countermeasure, we first provide an overview
of trends in countermeasures related to CDT sampling. First, in [4] the CDT
sampling method using Table was proposed. But it requires a large storage space.
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In addition, there is also the protection of sampling through the masking method
proposed by [18] and the random shuffling method proposed by [19,20]. However,
But these have memory overheads and time overheads. And analysis techniques
related to these are being proposed.[21]. However, since there have not been
many studies related to sampling using comparison operation, a new concept of
implementing CDT sampling using comparison operation has been attempted.

In previous sections, the cause of vulnerability mentioned in this paper were
attributed to the varying number of clock cycles depending on the branch state-
ment in the 8-bit AVR MCU environment. Hence, the countermeasure proposed
an implementation method that eliminates the discrepancy in the number of
clock cycles. The proposed secure CDT sampling algorithm in this paper is de-
noted as Algorithm 4. The algorithm processes the r and the CDT table in
word-sized blocks, corresponding to the processing units of the processor. The
values in r, CDT table that exceed the word size are divided into n word blocks.
Comparison operations are performed identically each block. However, if the
outcome of a comparison operation is determined in the previous block, subse-
quent operations are only performed, i.e., it does not affect the result. Due to the
inherent nature of comparison operations, methods employing them may result
in branching. Branching commands such as ’brne’ and ’brcc’ are commonly used.
In AVR instruction sets, ’brne’ and ’brcc’ differ by only 1 with respect to true
and false conditions, allowing for an equal adjustment in the number of clock
cycles for the operation. However, this implementation approach can be consid-
ered risky. Therefore, this paper introduces an assembly code that effectively
eliminates the need for branch commands while implementing Algorithm 4.

Algorithm 4 STA-Resistant CDT sampling
Input : -

Output : Sampled value z
1: z ← 0
2: ri

$← [0, 2word size) uniformly random with i = 0 to n
3: for i = 0 to Table_size− 1 do
4: gt ← 0, lt ← 0
5: for j = 0 to n− 1 do
6: gt |= (¬(gt | lt))&(rj > CDTi,j)
7: lt |= (¬(gt | lt))&(rj < CDTi,j)
8: end for
9: z += 1⊕ lt

10: end for
11: return z
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<STA-Resistant CDT sampling>:
...
278: ldi r18, 0x00 ; 0
27a: cp r22, r23
27c: adc r18, r18
27e: and r24, r18
280: or r19, r24
282: mov r24, r19
284: or r24, r25
286: com r24
288: ldi r18, 0x00 ; 0
28a: cp r23, r22
28c: adc r18, r18
...

Listing 1.3: The comparison operation of assembly implementation code of
countermeasure

Fig. 6: The traces that overlap all three types of STA-Resident CDT sampling.
And (a) A0 < B0, (b) A0 = B0, and (c) A0 > B0 where Ai and Bi represent
individual words.

Listing 1.3 is a parts of the assembly code, representing the comparison op-
eration in the proposed countermeasure. The blue and red lines in Listing 1.3
correspond to the comparison operations in Algorithm 4. Lines 278 and 288 ini-
tialize the value of register r18, where the result of the comparison operation
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will be stored, to zero. Lines 27a and 28a perform comparisons between registers
r22 and r23 using ’cp’ commands, respectively, and store the results in the carry
flag. Lines 27c and 28c execute an addition operation on the initialized r18 using
the ’adc’ (add with carry) instruction. During this operation, the stored carry
values are combined, resulting in the storage of the comparison operation’s re-
sult within r18. This approach allowed me to eliminate the need for branching
instructions, thus removing the vulnerabilities previously mentioned.

Figure 6 illustrates the power consumption traces of 3 different types of the
Listing 1.3 operating in the 8-bit AVR MCU. The power consumption traces (a),
(b), and (c), which are fully examined by overlapping with a, b, and c, represent
the corresponding power consumption traces. Similar to Figure 5, (a), (b), and
(c) signify whether the most significant block of ’r’ is greater than, equal to,
or less than the value in the CDT table. The trace reveals that there are no
discernible variations in the comparison time across different values. This serves
as compelling evidence that CDT sampling demonstrates resistance against STA.

6 Conclusion and Futurework

This paper introduces a secure implementation of CDT sampling for Gaussian
sampling techniques. CDT sampling is used by many algorithms to generate im-
portant values. And this paper presents an analysis of a previously unexplored
vulnerability that STA in comparison operation-based CDT sampling. This pa-
per identifies a vulnerability in which the operation time varies depending on
the results of the comparison operation in 8-bit AVR MCU. The cause of the
vulnerability was demonstrated through different of the number of instruction
at the assembly stage. It was investigated that it was a vulnerability due to the
difference in the number of clocks.

The feasibility of extracting CDT sampling outputs in real-world environ-
ments, such as AtmelXMEGA128, is demonstrated. AtmelXMEGA128 is an
8-bit AVR MCU and is used in various environments. We also employed dif-
ferent compiler options (0, 1, 2, 3, s) provided by Chipwhisperer in the At-
melXMEGA128 environment and verified the presence of the vulnerability across
all of them. In this paper, we utilized the example of compiler option level ’s,’
which is set as the default among several available options. In this paper, we
did not show power consumption traces for other options, as we observed that
all options exhibited the same or even greater leakage. In addition, this paper
deals with vulnerabilities that depend on the processor’s word size and com-
piler. During our investigation, we observed that the number of clock cycles
varied depending on the branch instruction employed. It also showed the im-
pact of the attack by recovering the sampling value. This finding sheds light on
the potential risks associated with future cryptographic algorithms that employ
CDT sampling with vulnerable comparison operations, using SOLMAE as a case
study. We conducted an analysis of power consumption traces to pinpoint the
sections of the SOLMAE algorithm utilizing CDT sampling. This demonstrated
the practical applicability of STA.
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To address these concerns, a robust CDT sampling design is proposed, en-
suring security against STA in real-world. To address these issues, our proposed
countermeasure for CDT sampling in this paper aims to stabilize the number
of clock cycles, irrespective of the branch statement used. So, First we delved
into the countermeasure algorithms for CDT sampling that were previously ex-
plored. Our investigation revealed the existence of algorithms employing table-
based comparison operations, masking methods, and shuffling techniques. And
we present a method for implementing comparison operation based constant-
time CDT sampling, designed to mitigate the security risks associated with the
previously proposed STA. The algorithm is crafted to segment and store data
in units processed by the processor, facilitating comparisons across all blocks.
This design allows for sampling without reliance on the results of comparison
operations.

In real-world implementations, caution is warranted branch statements. Branch
statements, such as ’brne’ and ’brcc’ commands in 8-bit AVR MCU, introduce
variability in clock cycles depending on the outcome of comparison operations.
If the result of the branch leads to a distant address, the number of clock cy-
cles will vary based on the outcome. In essence, it is the need for caution in
employing branch statements. To address this variability, we propose a compar-
ison operation based constant-time CDT sampling implementation method at
the actual assembly code level. Instead of using branch statements, the results
of comparison operations are stored in the result register using instructions that
’cp’ and ’adc’. This approach ensures uniform operation time without relying
on the specific outcome of the comparison operation. Additionally, this paper
showed the power consumption traces using Chipwhisperer-Lite when operating
proposed countermeasure algorithm in AtmelXMEGA128(8-bit AVR MCU) to
demonstrate safety against STA.

The experimental environment of this paper is 8-bit AVR MCU. In the future,
we plan to investigate the possibility of STA for comparison operation based
constant-time CDT sampling in various environments.
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Abstract. CRYSTALS-Kyber is a key-encapsulation mechanism, whose
security is based on the hardness of solving the learning-with-errors
(LWE) problem over module lattices. As in its specification, Kyber pre-
scribes the usage of the Number Theoretic Transform (NTT) for efficient
polynomial multiplication. Side-channel assisted attacks against Post-
Quantum Cryptography (PQC) algorithms like Kyber remain a concern
in the ongoing standardization process of quantum-computer-resistant
cryptosystems. Among the attacks, correlation power analysis (CPA) is
emerging as a popular option because it does not require detailed knowl-
edge about the attacked device and can reveal the secret key even if the
recorded power traces are extremely noisy. In this paper, we present a
two-step attack to achieve a full-key recovery on lattice-based cryptosys-
tems that utilize NTT for efficient polynomial multiplication. First, we
use CPA to recover a portion of the secret key from the power consump-
tion of these polynomial multiplications in the decryption process. Then,
using the information, we are able to fully recover the secret key by con-
structing an LWE problem with a smaller lattice rank and solving it with
lattice reduction algorithms. Our attack can be expanded to other cryp-
tosystems using NTT-based polynomial multiplication, including Saber.
It can be further parallelized and experiments on simulated traces show
that the whole process can be done within 20 minutes on a 16-core ma-
chine with 200 traces. Compared to other CPA attacks targeting NTT
in the cryptosystems, our attack achieves lower runtime in practice. Fur-
thermore, we can theoretically decrease the number of traces needed
by using lattice reduction if the same measurement is used. Our lattice
attack also outperforms the state-of-the-art result on integrating side-
channel hints into lattices, however, the improvement heavily depends
on the implementation of the NTT chosen by the users.

Keywords: CRYSTALS-Kyber, lattice, side-channel attack, number the-
oretic transform

1 Introduction

1.1 Background

With the development of quantum computation, what is usually hard to solve on
the traditional computer (factorization, DLP, etc) will become efficiently solvable
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by applying Shor’s algorithm [26], which will make the public-key cryptosystems
most people use now unreliable. Thus, there is a significant interest in post-
quantum cryptography (PQC) algorithms, which are based on mathematical
problems presumed to resist quantum attacks. To standardize such algorithms,
the National Institute of Standards and Technology (NIST) initiated a process
to solicit and evaluate PQC candidates being submitted [22]. After three rounds
of the process, they had identified four candidate algorithms for standardization
and four more to be evaluated in round 4.

CRYSTALS-Kyber (Kyber) [2] is one out of the four candidates that are
confirmed to be standardized in July, 2022, and it is the only public-key encryp-
tion and key-establishment algorithm. It belongs to the category of lattice-based
cryptography, and in particular a module Learning With Errors (module-LWE)
scheme. Kyber prescribes the usage of the Number Theoretic Transform (NTT)
for efficient polynomial multiplication. Via point-wise multiplication of trans-
formed polynomials, i.e., ab = NTT−1(NTT(a)◦NTT(b)), multiplication can be
performed in time O(n log n), where n is the degree of polynomial a and b. Ky-
ber has three parameter sets: Kyber512, Kyber768 and Kyber1024 with security
level similar to that of AES128, AES192 and AES256.

Power analysis attacks, introduced by Kocher [15,16], exploit the fact that
the instantaneous power consumption of a cryptographic device depends on the
data it processes and on the operation it performs. There exist simple power
analysis attacks on Kyber that can compromise a message or private key using
only one or several traces. In particular, Primas et al. [24] and Pessl et al. [23]
recover data passed through an NTT by templating the multiplications or other
intermediate values within the NTT. Hamburg et al. [13] present a sparse-vector
chosen ciphertext attack strategy, which leads to full long-term key recovery.
These attacks are still limited in that they either require extensive profiling
efforts or they are only applicable in specific scenarios like the encryption of
ephemeral keys.

As opposed to above methods, Mujdei et al. [21] showed that leakage from
the schoolbook polynomial multiplications after the incomplete NTT can be
exploited through correlation power analysis (CPA) style attacks. CPA attacks
exploit the dependency of power consumption on intermediate values, we provide
an introduction of CPA attacks below and refer to work of Mangard et al. [18]
for further details. The presented attack required 200 power traces to recover
all the coefficients, which enables full key recovery. More precisely, they guess
two coefficients at once within the range

(
− q

2 ,
q
2

]
, implying a search over q2

combinations.
In order to model the effect of these side-channel leakage, Dachman-Soled

et al. [8] proposed a general lattice framework that quantifies the LWE security
loss when revealing a so-called hint (v,w, l) ∈ Zn

q × Zm
q × Z satisfying

⟨(v,w), (s, e)⟩ = l.

The inner product of this equation is usually performed in Zq, which is referred
to as modular-hint. They also dealt with leakage l before mod q reduction, a
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so-called perfect hint. Their results was later improved by May and Nowakowski
[19], where they only addressed hints for the secret s only, i.e., hints (v, l) with
⟨v, s⟩ = l.

1.2 Our Contribution

In this paper, we propose a way that utilizes correlation power analysis to fully
recover the secret key of Kyber. Our attack consists of two steps. First, by
exploiting the correlation of Hamming weight of some intermediates and the
power consumption of the decryption process in Kyber, precisely the part where
we multiply the secret polynomial with ciphertext, we can recover some of the
coefficients of the secret key in the NTT domain. Secondly, since there will be
some ambiguity about whether the recovered coefficients are indeed correct, we
sample part of the recovered coefficients and construct a lattice problem by
Kannan’s embedding proposed by [14]. Then one can recover the entire secret
key by solving the lattice problem by using lattice reduction algorithms such as
BKZ [5].

We also examined the attack on simulated traces of ARM cortex-M0 gen-
erated by a toolkit named ELMO [10]. Experiments show that we can indeed
recover the secret key with 200 traces. With some fine-tuning on the acceptance
threshold of power analysis, we can even have guaranteed success in sampling
all correct coefficients with 600 traces and still have enough ones to construct a
solvable lattice problem.

There are three parameter sets for Kyber, and our attack can be easily
adapted to all parameter sets. The time it takes to recover the secret key is
linear to the number of coefficients in the secret key. The power analysis part
of our attack can be parallelized to further accelerate the process. Although the
idea of our attack is similar to that of Mujdei et al.[21], we only require O(q)
search, which directly reflects on the runtime of the CPA. For reference, our
attack is about 16 times faster than Mujdei et al. [21] without parallelization.
Since our SCA and that of [21] use different methods of measurement, it is hard
to compare the result. However, if we use the same measurement, by using the
lattice reduction, we can theoretically decrease the number of required power
traces. It may get some wrong coefficients by doing so, but we can fix that by
sampling portion of recovered coefficients and using lattice reduction to find the
rest of them.

For the lattice attack part of our attack, as opposed to the above methods,
our approach uses divide-and-conquer methods in a way that we only consider a
portion of the secret key at a time. That is, the hints ⟨v, s⟩ = l gathered from our
method are inner products of vectors with smaller dimension. This can be done
because in the computation of decryption of Kyber, the secret key is divided
into blocks by the intrinsic property of module-LWE. Furthermore, the NTTs
of each sub-key are usually incomplete since it can achieve fastest speed in that
way [6]. Due to these properties of Kyber, The techniques of Dachman-Soled et
al. [8] and May et al. [19] to solve the LWE instance are not suitable for our
cases. Since we only consider a portion of the secret key at a time. The number
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of hints we need is extremely lower than their methods. However, we do need to
perform multiple times of the lattice reduction to achieve a full key recovery.

Our lattice attack can be applied to other cryptosystems that utilizes NTT-
based polynomial multiplications. For example, Saber [9] is a lattice-based KEM
based on Module Learning With Rounding problem. Although it is not specifi-
cally designed to use NTT by choosing an NTT-friendly ring, it is still possible to
achieve fast computation by NTT by enlarging the ring as shown in the work by
Chung et al. [6]. However, the improvement from our attack depends on the im-
plementation of the NTT, namely how many layers of NTT the implementation
chooses to apply to it.

We use the official reference implementation of the Kyber key encapsulation
mechanism provided by the authors [3] as the target. We also provide an effi-
cient open-source Python implementation of our framework. The source code is
available at https://github.com/kuruwa2/kyber-sca.
Organization. The rest of this paper is organized as follows. In Section 2,
we introduce how Kyber is implemented with Number Theoretic Transform. In
Section 3, we illustrate how to apply differential power analysis to the NTT
part of Kyber. In Section 4, we construct a simpler lattice problem from the
recovered coefficients and conduct an experiment by lattice reduction algorithm
to determine the least number of coefficients we need to recover from differential
power analysis. In Section 5, we analyze the success rate of our attack and
conclude the paper.

2 Preliminaries
In this section, we explain the lattices and module-learning with errors problem,
go into some details about Kyber, and review the Number Theoretic Transform.

2.1 Lattices
Let B = [b1, ...,bn] ∈ Zm×n be an integer matrix. We denote by

Λ(B) := {α1b1 + ...+ αnbn | αi ∈ Z}

the lattice generated by B. If the rows of B are linearly independent, B is a
basis matrix of Λ(B). The number of rows n in any basis matrix of some lattice
Λ is called the rank of Λ. The determinant of a lattice Λ with basis matrix B is
defined as

det(Λ) :=

√
det(BBT )

The determinant does not depend on the choice of basis. We also denote by λi(Λ)
the i-th successive minimum of Λ. A lattice vector v ∈ Λ such that ∥v∥ = λ1(Λ) is
called the shortest vector of Λ. λ1(Λ) can be estimated by the following heuristic.
Heuristic 1 (Gaussian Heuristic) Let Λ be an n-dimensional lattice. Gaussian
heuristic predicts that the norm of the shortest vector λ1(Λ) equals

gh(Λ) :=

√
n

2πe
det(Λ)1/n.
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2.2 Module-LWE

Learning with errors (LWE) problem [25] and its extension over rings [17] or
modules are the basis of multiple NIST PQC candidates.

Let Zq be the ring of integers modulo q and for given power-of-2 degree n,
define Rq = Zq[x]/(x

n+1) as the polynomial ring of polynomials modulo xn+1.
For any ring R, Rℓ×k denotes the ring of ℓ×k-matrices over R. We also simplify
Rℓ×1 to Rℓ if there is no ambiguity. Single polynomials are written without
markup, vectors are bold lower case a and matrices are denoted with bold upper
case A. βη denotes the centered binomial distribution with parameter η and �

denote the uniform distribution. If χ is a probability distribution over a set S,
then x ← χ denotes sampling x ∈ S according to χ. If χ is only defined on Zq,
x ← χ(Rq) denotes sampling the polynomial x ∈ Rq, where all coefficients of
the coefficients in x are sampled from χ.

The learning with errors (LWE) problem was introduced by Regev [25] and its
decision version states that it is hard to distinguish m uniform random samples
(ai, bi) ← �(Zn

q × Zq) from m LWE-samples of the form
(
ai, bi = a⊤i s+ ei

)
∈ Zn

q × Zq,

where the secret vector s ← βη(Zn
q ) is fixed for all samples, ai ← �(Zn

q ) and
ei ← βη(Zq) is a small error. A module version of LWE, called Mod-LWE [4]
essentially replaces the ring Zq in the above samples by a quotient ring of the
form Rq with corresponding error distribution βη(Rq).

(
ai, bi = a⊤i s+ ei

)
∈ Rk×1

q ×Rq.

The rank of the module is k and the dimension of the ring Rq is n. The case k = 1
corresponds to the ring-LWE problem introduced in [17]. We also commonly
integrate m number of samples by the matrix multiplication,

(A,b = As+ e) ∈ Rm×k
q ×Rm

q .

Let λi(Λ) denote the i-th minimum of lattice Λ. The LWE problem can
be considered as an average version of the Bounded Distance Decoding (BDD)
problem: Given a vector such that its distance from the lattice is at most λ1(Λ)/2,
the goal is to find the closest lattice vector to it. A dual problem of BDD is the
so-called unique Shortest Vector Problem (uSVP): Given γ ≥ 1, and lattice Λ
such that λ2(Λ) ≥ γ · λ1(Λ), the goal is to find a non-zero vector v ∈ Λ of norm
λ1(Λ). The reduction between LWE, BDD, and uSVP will be further discussed
in Section 4.2.

2.3 CRYSTALS-Kyber

Kyber [2] is a Key Encapsulation Mechanism (KEM) submitted to the NIST
standardization process, and it is among the four confirmed candidates to be
standardized [22]. The security of Kyber is based on the module-LWE prob-
lem. For the three parameter sets in the proposal, Kyber512, Kyber768, and
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Table 1: Parameter sets for Kyber [1].
name n k q η1 η2
Kyber512 256 2 3329 3 2
Kyber768 256 3 3329 2 2
Kyber1024 256 4 3329 2 2

Kyber1024, the parameters are all set to n = 256 and q = 3329. For most
parameters η = 2 is used, except for Kyber512, where η = 3. The parameter
sets differ in their module dimension k = 2, 3, and 4 respectively. The three
parameter sets listed in Table 1.

Kyber consists of the CCA2-KEM Key Generation, PKE- and CCA2-KEM-
Encryption, and CCA2-KEM-Decryption algorithms, which are summarized in
Algorithms 1, 2, 3 and 4, respectively.

Algorithm 1 Kyber-CCA2-KEM Key Generation (simplified)
Output: Public key pk, secret key sk

1: Choose uniform seeds ρ, σ, z
2: Rk×k ∋ Â ← Sample�(ρ)
3: Rk

q ∋ s, e ← Sampleβη
(σ)

4: ŝ ← NTT(s)
5: t̂ ← Â ◦ ŝ+NTT(e)
6: return (pk := (̂t, ρ), sk := (̂s, pk,Hash(pk), z))

Algorithm 2 Kyber-PKE Encryption (simplified)
Input: Public key pk = (̂t, ρ), message m, seed τ
Output: Ciphertext c

1: Rk×k ∋ Â ← Sample�(ρ)
2: Rk

q ∋ r, e1,Rq ∋ e2 ← Sampleβη
(τ)

3: u ← NTT−1(Â⊤ ◦NTT(r)) + e1

4: v ← NTT−1(̂t⊤ ◦NTT(r)) + e2 + Encode(m)
5: return c := (u, v)

In these algorithms, and in the rest of this paper, the notation a ◦ b means
pairwise multiplication of polynomials, or vectors of polynomials, in the NTT
domain. For example, if a = (a0, a1) and b = (b0, b1), a ◦ b = (a0b0, a1b1).

Kyber uses a variant of the Fujisaki-Okamoto transform [11] to build an IND-
CCA2 secure KEM scheme. This transform applies an additional re-encryption
of the decrypted message, using the same randomness as used for the encryp-
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tion of the received ciphertext. The decryption is only valid if the re-computed
ciphertext matches the received ciphertext.

Algorithm 3 Kyber-CCA2-KEM Encapsulation (simplified)
Input: Public key pk = (̂t, ρ)
Output: Ciphertext c, shared key K

1: Choose uniform m
2: (K̄, τ) ← Hash(m ∥ Hash(pk))
3: c ← PKE.Enc(pk,m, τ)
4: K ← KDF(K̄ ∥ Hash(c))
5: return (c,K)

Algorithm 4 Kyber-CCA2-KEM Decapsulation (simplified)
Input: Secret key sk = (̂s, pk, h, z), ciphertext c = (u, v)
Output: Shared key K

1: m ← Decode(v − NTT−1(̂s⊤ ◦ NTT(u)))
2: (K, τ) ← Hash(m ∥ h)
3: c′ ← PKE.Enc(pk,m, τ)
4: if c = c′ then
5: return K := KDF(K ∥ Hash(c))
6: else
7: return K := KDF(z ∥ Hash(c))
8: end if

2.4 Number Theoretic Transform

For lattice-based schemes using polynomial rings, polynomial multiplications
in en-/decryption are the most computationally expensive step. The Number
Theoretic Transform (NTT) is a technique that can achieve efficient computation
for those multiplications.

The NTT is similar to the Discrete Fourier Transform (DFT), but instead of
over the field of complex numbers, it operates over a prime field Zq. It can be
seen as a mapping between the coefficient representation of a polynomial from
Rq (called the normal domain) to the evaluation of the polynomial at the n-th
roots of unity (called the NTT domain). This bijective mapping is typically re-
ferred to as forward transformation. The mapping from the NTT domain to the
normal domain is referred to as backward transformation or inverse NTT. In
the NTT domain, the multiplication of polynomials can be achieved by point-
wise multiplication, which is much cheaper than multiplication in the normal
domain. Typically, one would perform the forward transformation, multiply the
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Fig. 1: 8-coefficient Cooley-Tukey decimation in time NTT

polynomials pointwisely in the NTT domain, and go back using the backward
transformation. For Rq with a 2n-th primitive root of unity ζ, the NTT trans-
formation of an n-degree polynomial f =

∑n−1
i=0 fix

i is defined as:

f̂ = NTT(f) =

n−1∑
i=0

f̂ix
i, where f̂i =

n−1∑
j=0

fjζ
(2i+1)·j .

Similarly,

f = NTT−1(f̂) =

n−1∑
i=0

fix
i, where

fi = n−1
n−1∑
j=0

f̂jζ
−i·(2j+1).

The NTT transform and its inverse can be applied efficiently by using a
chaining of log2 n butterflies. It is a divide and conquer technique that splits the
input in half in each step and solves two problems of size n/2. The construction
for an 8-coefficient NTT using the Cooley-Tukey butterfly [7] with decimation
in time is depicted in Figure 1, with the output being in bit-reversed order.
Notice that both NTT and inverse NTT are a linear transform, thus they can be
expressed by matrix multiplications, e.g. [fi]⊤ = M[f̂i]

⊤ for some n× n matrix
M.

Kyber uses an NTT-friendly ring. But in Kyber, only n-th primitive roots of
unity exist, therefore the modulus polynomial xn+1 only factors into polynomials
of degree 2. Hence, the last layer between nearest neighbors of the NTT is skipped
and in NTT domain multiplication is not purely point-wise, but multiplications
of polynomials of degree 1. That is, the Kyber ring is effectively Fq2 [y]/(y

128+1),
where Fq2 is the field Zq[x]/(x

2 − ζ). Also note that in Kyber, polynomials
in the NTT domain are always considered in bit-reversed order (cf. Figure 1).
Therefore, in the following bit-reversal is implicitly expected in the NTT domain
and indices for NTT-coefficients are noted in regular order.
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3 Correlation Power Analysis

In this section, we provide a comprehensive introduction to correlation power
analysis (CPA) provided by Mangard et al. [18] in Section 3.1, and then we apply
the idea to reveal the secret key of Kyber in Section 3.2.

The goal of CPA is to reveal secret keys of cryptographic devices based on a
large number of power traces that have been recorded while the devices encrypt
or decrypt different plaintexts. The probability of success for CPA depends on
the quality and number of traces. Due to the fact that CPA does not require
detailed knowledge about the attacked devices, it is the most popular type of
power analysis attack. Furthermore, they can reveal the secret key even if the
recorded power traces are extremely noisy.

3.1 General Description

We now discuss in detail how such an analysis reveals the secret keys of crypto-
graphic devices in five steps. To reveal one coefficient we need to apply the five
steps, however, step 2 can be applied only once and the power consumption can
be used multiple time for each coefficient that needs to be recovered.
Step 1: Choosing an Intermediate Result of the Executed Algorithm.
The first step of a CPA is to choose an intermediate result of the cryptographic
algorithm that is executed by the device. This intermediate value needs to be a
function f(d, k), where d is a known non-constant data value and k is a small part
of the key. In most attack scenarios, d is either the plaintext or the ciphertext.
Step2: Measuring the Power Consumption. The second step of a CPA is
to measure the power consumption of the device while it encrypts or decrypts
D different data blocks. For each of these encryption or decryption runs, the
attacker needs to know the corresponding data value d that is involved in the
calculation of the intermediate result chosen in Step 1. We denote these known
data values by vector d = (d1, ..., dD)⊤, where di denotes the data value in the
i-th encryption or decryption process.

During each of these runs, the attacker records a power trace. We denote the
power trace that corresponds to data block di by t⊤i = (ti,1, ..., ti,T ), where T
denotes the length of the trace. The attacker measures a trace for each of the D
data blocks, and hence, the traces can be written as matrix T of size D × T .

It is important that the measured traces are correctly aligned. This means
that the power consumption values of each column tj of the matrix T need to
be caused by the same operation. In practice, attackers typically try to measure
only the power consumption that is related to the targeted intermediate result.
If the plaintext is known, the attacker sets the trigger of the oscilloscope to the
sending of the plaintext from the PC to the cryptographic device and records
the power consumption for a short period of time.
Step 3: Calculating Hypothetical Intermediate Values. The next step
of the attack is to calculate a hypothetical intermediate value for every possible
choice of k. We write these possible choices as vector k = (k1, ..., kK), where K
denotes the total number of possible choices of k. In the context of CPA, we
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usually refer to the elements of this vector as key hypotheses. Given the data
vector d and the key hypotheses k, an attacker can easily calculate hypothetical
intermediate values f(d, k) for all D en-/decryption runs and for all K key
hypotheses. This calculation results in a matrix V of size D ×K.

V = [f(di, kj)]D×K

A j-th column of V contains the intermediate results that have been calculated
based on the key hypothesis kj . It is clear that one column of V contains those
intermediate values that have been calculated in the device during the D en-
/decryption runs because k contains all possible choices for k. We refer to the
index of this element as ck. Hence, kck refers to the key of the device. The goal
of CPA is to find out which column of V has been processed during the D en-
/decryption runs. We immediately know kck as soon as we know which column
of V has been processed in the attacked device.
Step 4: Mapping Intermediate Values to Power Consumption Values.
The next step of a CPA is to map the hypothetical intermediate values V to
a matrix H of hypothetical power consumption values. For this purpose, the at-
tacker typically uses models like Hamming-weight model or Hamming-distance
model depending on the scenarios of attack. Using the techniques, the power con-
sumption of the device for each hypothetical intermediate value vi,j is simulated
in order to obtain a hypothetical intermediate value hi,j .

The quality of the simulation strongly depends on the knowledge of the at-
tacker about the analyzed device. The better the simulation of the attacker
matches the actual power consumption characteristics of the device, the more
effective the CPA is. The most commonly used power models to map V to H
are the Hamming-distance and Hamming-weight models.
Step 5: Comparing the Hypothetical Power Consumption Values with
the Power Traces. After having mapped V to H, the final step of a CPA can
be performed. In this step, each column hi of the matrix H is compared with
each column tj of the matrix T. This means that the attacker compares the
hypothetical power consumption values of each key hypothesis with the recorded
traces at every position. The result of this comparison is a matrix R of size
K × T , where each element ri,j contains the result of the comparison between
the columns hi and tj . The comparison is done based on the Pearson correlation
coefficient,

ri,j =

∑D
d=1(hd,i − h̄i) · (td,j − t̄j)√∑D

d=1(hd,i − h̄i)2 ·
∑D

d=1(td,j − t̄j)2

where h̄i and t̄j denote the mean values of the columns hi and tj . It has the
property that the value ri,j is the higher, the better columns hi and tj match.
The key of the attacked device can hence be revealed based on the following
observation.

The power traces correspond to the power consumption of the device while it
executes a cryptographic algorithm using different data inputs. The intermediate
result that has been chosen in step 1 is a part of this algorithm. Hence, the device
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needs to calculate the intermediate value vck during the different executions of
the algorithm. Consequently, also the recorded traces depend on these interme-
diate values at some position. We refer to this position of the power traces as ct,
i.e., the column tct contains the power consumption values that depend on the
intermediate value vck.

The hypothetical power consumption values hck have been simulated by the
attacker based on the values vck. Therefore, the columns hck and tct are strongly
related. In fact, these two columns lead to the highest value in R, i.e., the highest
value of the matrix R is the value rck,ct. An attacker can hence reveal the index
for the correct key ck and the moment of time ct by simply looking for the
highest value in the matrix R. The indices of this value are then the result of
the CPA.

Sometimes, CPA produce high correlation coefficients for many key hypothe-
ses at the time when targeted intermediate result is processed. The high correla-
tion peaks for wrong keys are sometimes referred to as ghost peaks. These peaks
happen because the hypothetical intermediate values are correlated. The height
of these correlations depends on the intermediate result that is attacked.

3.2 Application on CRYSTALS-Kyber

Our attack targets the decryption process of Kyber, i.e. line 1 of Algorithm
4, with the aim of recovering the victim’s secret key ŝ. To decrypt a message
the recipient calculates NTT−1(̂s⊤ ◦ û), where û is the decompressed ciphertext
in the NTT domain and ◦ denotes the pairwise multiplication. The pairwise
multiplication is done in the quotient ring Zq[x]/(x

2 − ζi) as we discussed in
Section 2.4, where ζi are the primitive roots of unity of Zq. In such a ring, the
product of two polynomials a = a0+a1x and b = b0+b1x can be easily computed
as

ab = (a0b0 + a1b1ζi) + (a0b1 + a1b0)x mod q.

However, in most of the processors, modular multiplication is still expensive
since it needs divisions by q. Fortunately, we can avoid the divisions by the
Montgomery reduction algorithm summarized in Algorithm 5. By setting R =
216, division by R can be replaced by a simple bit shifting and x mod R can
be done by returning the lower 16 bits of x, which results in an integer between
−R/2 and R/2− 1. The algorithm works because first, t is chosen so that a− tq
is divisible by R. Second, t is in the range [−R/2, R/2− 1], thus a− tq is in the
range [−qR+ q, qR− 1], which guarantees that b is in the correct range.

Let x0 and y0 be two integers in the range [−q+1, q−1], we refer to the result
of Montgomery reduction of x0 × y0 by Algorithm 5 as fqmul(x0, y0). Then the
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Algorithm 5 Montgomery reduction
Input: Integers q,R with gcd(q,R) = 1

Integer q−1 ∈ [−R/2, R/2− 1] such that qq−1 ≡ 1 mod R
Integer a ∈ [−qR/2, qR/2− 1]

Output: Integer b ∈ [−q + 1, q − 1] such that b ≡ aR−1 mod q

1: t ← ((a mod R)q−1) mod R
2: b ← (a− tq)/R
3: return b

product r0 + r1x = ab2−16 can be computed as follow:

r0 ← fqmul(a1, b1)

r0 ← fqmul(r0, ζi216)
r0 ← fqmul(a0, b0) + r0

r1 ← fqmul(a1, b0)
r1 ← fqmul(a0, b1) + r1.

(1)

The unwanted constant can be dealt within the inverse NTT together when we
divide the coefficient by n, thus no extra multiplications is needed.

Now suppose we want to reveal the coefficients (ŝ2i, ŝ2i+1), notice that they
are point-wisely multiplied by the ciphertext (û2i, û2i+1), then our first chosen
intermediate value is fqmul(ŝ2i+1, û2i+1), i.e. r0 in the first line of equation (1).
The intermediate value meets the requisite described in Section 3.1, and the
total number of possible choices of ŝ2i+1 ∈ [0, q − 1] is q. Following the steps in
Section 3.1, we can get a list of the most possible candidates of ŝ2i+1. There can
be some incorrect candidates with high score in this step, for example, q− ŝ2i+1

can be such a candidate since the Hamming weight of fqmul(q− ŝ2i+1, û2i+1) is
strongly correlated with fqmul(ŝ2i+1, û2i+1).

Now that we have some highly confident candidates for ŝ2i+1, we can then
use it and newly guessed ŝ2i to calculate the hypothetical value of r1. And
we can repeat the same process except that the intermediate values are now
fqmul(ŝ2i, û2i+1) + fqmul(ŝ2i+1, û2i), i.e. r1 in the last line of equation 1. Fol-
lowing the same steps, we can find the candidate with the highest correlation
coefficient, and if it is higher than some threshold, we accept the guess. If not,
we try the next candidate of ŝ2i+1. If there is no candidate with high enough
correlation coefficient, we just return failure. Then we guess the next one with
same process targeting the next intermediate values.

The complexity can be easily calculated, if K is the number of possible keys,
T is the scanned window size, D is the number of power traces, then we need
TK computations of correlation coefficient of length D vectors to recover one
coefficient of the secret key, which is linear to all the parameters. For Kyber512,
we need to repeat the process above 256 times to recover the 512 coefficients in
the NTT domain. The CPA process is identical across different parameter sets
of Kyber, thus it is easy to adapt to Kyber768/1024 without any problem. It
can also be parallelized as long as we know the starting point of each fqmul in
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the power trace, since the length of all power traces is the same, we only need
to evaluate the starting point once and store the result. For Kyber512 on a 16
core computer, our CPA can scan through all coefficients within 5 minutes.

However, we will run into some problems. If the correct coefficient (ŝ2i, ŝ2i+1)
has high score, then it is likely that (q − ŝ2i, q − ŝ2i+1) has high score too,
since the Hamming weight of them are highly correlated. So to prevent it from
getting accepted, we can increase the threshold for acceptance, however, it may
cause the correct ones to get rejected too. Furthermore, in some rare cases,
(q− ŝ2i, q− ŝ2i+1) may have a higher score than the correct one and be accepted,
we call such cases false positive. The way we deal with it is to sample the accepted
guesses and hope the coefficients we sampled are all correct ones. The number
of sampled coefficients will be further discussed in Section 4.

4 Lattice Attack

In this section, we describe how to construct a simpler LWE problem from the
coefficients that have been recovered in the CPA attack, then we do a hardness
analysis that determines the least number of coefficients needed to be recovered
in the CPA.

4.1 Lattice Construction

Now we have some of the coefficients being recovered, the next step is to recover
the unknown coefficients by the lattice attack. Because of the structure of in-
complete NTT in Kyber, we know that coefficients are split into 2k groups of
128 ones. We will focus on one group and notice that the rest of the steps need
to repeat 2k times to derive the full secret key.

Let M = [m0,m2, ...,m254] be the inverse NTT matrix as we mentioned
in Section 2.4. Suppose we have recovered 128 − ℓ coefficients in ŝi, one of the
groups in ŝ, from the polynomial multiplication ŝ ◦ û, i.e., we need to recover
the remaining ℓ coefficients. Let A = {a0, a1, ..., a127−ℓ} be the indices that are
successfully recovered in the CPA step, and B = {b0, b1, ..., bℓ−1} be the indices
that are still unknown, then the inverse NTT NTT−1(̂si) = Mŝi = si mod q
can be split into two halves as followed:

MAŝi,A +MB ŝi,B = si mod q,

where MA := [ma0
, ...,ma127−ℓ

] is a matrix whose columns are those of M whose
indices are in A, ŝi,A = [ŝa0

, ..., ŝa127−ℓ
]⊤, and the similar definition for MB and

ŝi,B .
Notice that si is an extremely short vector since it is the secret key sampled

from βη. By calling the known vector t = MAŝi,A, the known basis A = −MB ,
and an unknown vector s′i = ŝi,B , we now have t = As′i + si mod q, which is
exactly the definition of an LWE problem. Compared to the original module-
LWE problem in Kyber, this problem becomes simpler since the rank of A is
less than the original one.
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4.2 Hardness Analysis
We use the standard technique of Kannan’s embedding to solve the LWE prob-
lem. First we treat the LWE problem as a BDD/uSVP problem and then
apply a lattice reduction algorithm. For example, given the instance above
(A, t = As′i + s mod q), consider the lattice Λ(BBDD) generated by

BBDD =

[
Iℓ A′

0 qIn−ℓ

]
,

where [Iℓ | A′] denotes the reduced row echelon matrix of A⊤, which can be easily
calculated by Gaussian elimination. We can then solve the BDD of Λ(BBDD)
with respect to the target point t which reveals s′ and s.

Alternatively, we can reduce this BDD to uSVP by a technique called Kan-
nan’s embedding [14]. Given the BDD instance above, we consider the following
basis matrix

BKan =



Il A′

0
0 qIn−ℓ

t⊤ 1


 .

Recall that the lattice Λ(BKan) contains all linear combinations of the vectors
in BKan. The equation t = As′i+ si mod q can be written as t = As′i+ si+ qk,
where k ∈ Zn

q , so there exists a row vector [−s′′⊤ | −k′⊤ | 1] ∈ Zn+1
q such that

the shortest vector in Λ(BKan) is [−s′′⊤ | −k′⊤ | 1] ·BKan = [s⊤i | 1] ∈ Zn+1
q .

The norm of vector [s⊤i | 1] is
√

∥si∥2 + 1 ≈
√
nσs. If this norm is smaller

than the norm of the shortest vector estimated by the Gaussian Heuristic, this
uSVP instance can be solved, and the more gap between the first and second
successive minima, i.e., the bigger λ2(Λ(BKan))/λ1(Λ(BKan)) is, the easier the
uSVP will be. Since the volume of the lattice Λ(BKan) is qn−ℓ, λ2(Λ(BKan))
can be estimated by

λ2(Λ(BKan)) ≈
√

n+ 1

2πe
q(n−ℓ)/(n+1).

To determine the least number of coefficients we must recover in the CPA
step, we do an experiment on solving the SVP randomly generated by script.
The result is shown in Fig. 2, where the blue line is the success rate of finding
[s⊤i | 1] by the BKZ algorithm 1 of block size 50 for 20 randomly generated s, and
the red line is the running time of the algorithm. From the result, the critical
point of guaranteed success is on ℓ = 89, ℓ = 90 for Kyber512, Kyber768/1024,
respectively. This means that in the CPA step, we need at least 128 − 89 = 39
(or 38 for Kyber768/1024) recovered coefficients so that we can have a fully
recovered secret key when using the BKZ algorithm of block size 50 to solve the
reduced SVP problem. Notice that in order to do a full key recovery, the number
of recovered coefficients need to be multiplied by 2k, where k is the module
dimension for each version of Kyber. The reason that Kyber768/1024 is easier
to solve is because η of Kyber768/1024 is smaller than that of Kyber512.
1 We ran the experiment using the BKZ implementation from fpylll in Sage9.2. See

https://github.com/fplll/fpylll
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(a) (b)

Fig. 2: Success rate and running time on randomly generated uSVP in the lattice
BKan for (a) Kyber512 and (b) Kyber768/1024

5 Experiments

We experimented our attacks on simulated power traces of the ARM cortex-M0
processor, then estimate how many traces we need to conduct our attack.

5.1 ELMO

Our simulated traces were generated using the ELMO [10], which emulates the
power consumption of an ARM Cortex M0 processor and produces noise-free
traces. The tool reproduces the 3-stage pipeline of an M0 processor, which means
that the algorithmic noise is taken into account. ELMOs quality has been estab-
lished by comparing leakage detection results between simulated and real traces
from a STM32F0 Discovery Board [20]. For reference, to conduct a successful
key recovery power analysis on the lattice-based signature scheme FALCON, the
required numbers of simulated power traces and real acquisitions are 2000 and
5000 [12].

5.2 Results

Table 2 gives the results of our experiment done on the simulated traces. The
threshold is the minimum correlation coefficient of acceptance that we set as a
parameter in Section 3.2. Recovered rate is the average number of successfully
recovered coefficients, and false positive is the average number of coefficients that
are accepted but turn out to be wrong. The success rate is the possibility of all
39/38 coefficients we randomly sample being the correct ones when we choose
from all coefficients that are accepted by the CPA step, which can be directly
calculated by

(
a−39

b

)
/
(
a
b

)
if a is the recovered rate and b is the false positive.

Therefore, it does not mean the overall success rate of our attack, the overall
success rate will be arbitrarily closed to 1 if we keep sampling the coefficients as
long as we have at least 39/38 correct ones.
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Table 2: Experimental results on different acceptance threshold and trance num-
ber. Left hand side of success rate is for Kyber512 and right is for Kyber768/1024.
Threshold Trace number Recovered rate False positive Success rate

0.63

200 110.5/128 6/128 0.07(0.07)
400 118.75/128 4.25/128 0.18(0.19)
600 124.75/128 3/128 0.32(0.33)
800 124.75/128 1.75/128 0.52(0.54)

0.65

200 98.75/128 4.5/128 0.10(0.11)
400 109/128 4.25/128 0.15(0.16)
600 112/128 2.25/128 0.39(0.40)
800 116.25/128 1.5/128 0.55(0.56)

0.67

200 79.25/128 2.5/128 0.19(0.20)
400 86/128 0.5/128 0.77(0.78)
600 83.75/128 0.25/128 0.88(0.89)
800 86.5/128 0/128 1(1)

0.69

200 58/128 1/128 0.33(0.34)
400 53.25/128 0.25/128 0.82(0.82)
600 49.75/128 0/128 1(1)
800 49.5/128 0/128 1(1)

It can be seen that although adding trace numbers does not help much to
increase the recovered coefficients, it does help to lower the false positive, which
directly affects the success rate. Increasing the threshold of acceptance will also
lower the false positive and recovered rate, but notice that if the recovered rate
drops below 39, our attack may fail. Since the running time of the overall attack
is dominated by CPA, we would argue that the fewer the number of power traces
the better it is, as long as the success rate is higher than 0.05.

5.3 Application to Saber

Saber [9] is a lattice-based key encapsulation mechanism based on the Module
Learning With Rounding problem. Saber is one of the round 3 candidates of the
NIST post-quantum cryptography standardization competition. The polynomial
ring used within Saber is Rq = Zq[x]/(x

n+1) with q = 213 and n = 256 across all
parameter sets. Saber also offers three security levels: Lightsaber with security
level similar to AES-128, Saber with one similar to AES-192 and Firesaber with
one similar to AES-256.

Because Saber was not specifically designed to benefit from NTT-based mul-
tiplication by using an NTT-friendly ring, it uses a combination of Toom-4 and
Karatsuba to implement efficient polynomial arithmetic. However, as shown in
the work by [6], NTTs can be used to obtain efficient polynomial arithmetic
in finite fields modulo a power-of-two. They did this by choosing a a prime
p > nq2/2 such that n|(p − 1), computing the multiplication by the NTT over
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(a) (b)

(c)

Fig. 3: Success rate and running time on randomly generated uSVP for (a)
Lightsaber, (b) Saber and (c) Firesaber

Zp[x], and then reducing the result back to Zq[x]. Since the modulus is much big-
ger in the NTT for Saber, the SCA for pointwise multiplication on Saber needs
to target a smaller portion of the intermdeiate value, which results in smaller
signal-to-noise ratio. In [21], a minimum of 10000 traces was required to mount
a successful attack.

Figure 3 shows our lattice attack when applying to the SCA proposed by [21].
Since the implementation uses 6 layers of NTTs, we divide the coefficients into
512/26 = 8 groups and find the minimum number of coefficients we needed to
recover other one. We can see that it needs 9/8/7 coefficients out of 64 to guar-
antee a successful attack for each parameter sets of Saber, which means a total
of 72/64/56 coefficients are needed. This saves about 86% ∼ 89% of the running
time for the SCA. Another way to see the improvement is the possibility to re-
duce the traces of SCA. Although by doing so, there may be incorrectly recovered
coefficients, by our sampling approach as shown before, we only need portion of
the coefficients correct to recover the whole secret key. We do want to point out
that the improvement heavily depends on the implementation of the incomplete
NTT of choice. That is, the less layers of incomplete NTTs an implementation
chooses, the less coefficients we need to perform the lattice attack.
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6 Conclusion

In this paper, we propose a combined CPA and lattice attack on Kyber. With
200 traces, our attack terminated within 20 minutes on a 16-core computer.
Compared to other SCA targeting NTT in the cryptosystems, our attack achieves
lower runtime in practice. Furthermore, there is potential for decreasing the
number of traces by using lattice reduction if the same measurement is used.

Our future works are to migrate the attacks to real devices and other cryp-
tosystems using the NTT transform multiplication like Saber or NTRU. We can
also investigate the effect of popular countermeasures of CPA like masking and
hiding on our attack.
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Abstract. The widespread adoption of Intel Software Guard Extensions
(SGX) technology has garnered significant attention, primarily owing to
its robust hardware-based data-in-use protection. To alleviate the com-
plexities of SGX application development, an approach involving the
incorporation of a Library Operating System (LibOS) within an enclave
has gained prominence. This strategy enables SGX utilization without
necessitating extensive modifications to legacy code. However, this ap-
proach increases the potential attack surface and may be susceptible to
memory corruption vulnerabilities. To address this challenge, the trend
of leveraging Rust programming language offering memory safety guar-
antees for implementing system components has prompted the develop-
ment of Rust-based SGX frameworks. But still, a gap exists in providing
guidelines or systematic analyses to aid developers in selecting a suitable
Rust-based SGX framework, considering factors like implementation cost
and runtime overhead. This study undertakes a comprehensive compara-
tive analysis of three representative SGX frameworks implemented with
Rust: Rust SGX SDK, Occlum, and Fortanix EDP. Our analysis en-
compasses an exploration of their internal implementations, focusing on
their impact on both performance and security. Additionally, we quan-
tify the engineering effort required for migrating legacy Rust applications
and evaluate the supplementary overhead incurred when subjecting these
frameworks to CPU and memory-intensive workloads. By conducting this
analysis, we aim to provide valuable guidance to developers seeking to
choose a Rust-based SGX framework that aligns with their application’s
specific purpose and workload characteristics.

Keywords: Trusted Execution Environment · Intel SGX · Rust

1 Introduction

The commercialization of Intel Software Guard Extensions (SGX) technology [12]
has garnered substantial industrial and academic attention. In particular, In-
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tel SGX technology plays a pivotal role in evolving the confidential computing
paradigm [28]. This interest is primarily driven by its robust hardware-based
data-in-use protection and its inherent practicality, notably its compatibility
with the x86 architecture ensuring native speed [6]. By leveraging SGX to legacy
applications, it is possible to guarantee the confidentiality and integrity of cloud-
based TEE service. In fact, leading cloud service providers (CSPs) have begun
offering public cloud instances supporting SGX functionalities. These ground-
breaking solutions, known as confidential VMs, include commercial products like
Amazon Nitro Enclaves [3] and Azure Confidential Computing [26]. Such inno-
vation has expedited the widespread adoption of confidential computing across
diverse domains, such as safeguarding AI/ML models [13,21], protecting digital
assets [22], and securing key management services [10, 35].

Basically, there are two primary approaches for implementing the SGX pro-
gram: 1) porting an application based on SGX SDK [1] and 2) running unmod-
ified applications on top of frameworks that support SGX compatibility [6]. In
particular, the adoption of a Library Operating System (LibOS) within the en-
clave has emerged as a viable strategy to facilitate the utilization of SGX without
necessitating modifications to legacy code [5,6,27,33]. The LibOS-based strategy
offers distinct advantages when porting legacy applications into the SGX envi-
ronment. Developers are relieved from the complexities of segregating security-
sensitive components from the original code-base and re-implementing system
call wrappers for enclave transitions. However, it is important to note that this
design choice expands the potential attack surface, given that the entire LibOS
codebase is loaded and executed within an SGX enclave. SGX does not guar-
antee the memory safety of the enclave, which means that memory corruption
vulnerabilities inherent in traditional code written in languages like C or C++
(e.g., Heartbleed [7]) can still be effective even when executed within the security
boundary provided by SGX CPU [20, 29]. Therefore, an additional instrumen-
tation or protection mechanism is required to achieve robustness over memory
vulnerabilities.

Simultaneously, the rise of the Rust programming language has equipped
developers with a potent instrument for constructing robust and secure applica-
tions. Rust delegates memory safety checking (e.g., rust pointer always references
valid memory) to the Rust compiler. In contrast to low-level codes implemented
in C or C++ that are prone to subtle memory bugs, Rust guarantees mem-
ory safety by rejecting the compilation of them by introducing features, such as
ownership and lifetime elision rules [24]. Furthermore, Rust is fast and memory-
efficient as its runtime does not require a garbage collector to reclaim memory
space, making it well-suited for the development of performance-critical services.
This appeal leads to the adoption of Rust in state-of-the-art system software,
including container runtimes [2], microkernels [19], and storage systems [17].

Such a trend has also spurred the development of the SGX framework tai-
lored for Rust utilization. The state-of-the-art LibOS-based SGX frameworks
have extended support for the execution of Rust applications [27, 33]. Besides,
several studies [8, 31, 34] utilize Rust programming language [24] as the foun-
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dation for building SGX frameworks. Such design choice enables developers to
reduce runtime overhead (e.g., garbage collection), thereby drawing attention to
the potential of leveraging Rust in SGX framework development. Nevertheless,
a notable gap persists in the absence of comprehensive guidelines or systemic
analyses that can aid developers in selecting the most suitable Rust-based SGX
framework for their applications. Such guidelines would encompass considera-
tions related to implementation cost and runtime overhead, crucial factors when
deciding to execute existing applications or develop new Rust applications in the
SGX environment.

This study conducts a comparative study on existing Rust-based SGX frame-
works to provide implications for newly implementing or porting legacy security-
sensitive Rust applications. For this, we conduct an in-depth analysis between
three cutting-edge Rust-based SGX frameworks: Rust SGX SDK, Occlum, and
Fortanix EDP. First, we explore the internal implementation details of each
framework relevant to the application performance and security. Then, we quan-
tify the engineering effort required to deploy legacy Rust applications atop these
frameworks, providing insights into the ease of transition. Finally, we evalu-
ate the additional overhead incurred by each framework, subjecting them to
CPU-intensive and memory-intensive workloads to gauge their performance im-
plications. We believe our analysis provides guidance for developers to select an
appropriate Rust-based SGX framework when implementing an SGX application
according to its purpose and workload characteristics.

2 Background

2.1 Intel SGX and LibOS-based SGX Framework

Intel SGX is a secure processor architecture to ensure trustworthiness of applica-
tion to protect sensitive and valuable information. It offers an isolated protection
domain in memory called an enclave, which is only decrypted within the CPU
package when executing it as an enclave mode. This ensures that even system
administrators or other software running on the host cannot access the sensi-
tive data in the enclave. To help developers implement SGX applications, Intel
provides the SGX Software Development Kit (SDK). The SDK offers essential
libraries and toolchains for tasks such as enclave signing and debugging [25]. It
simplifies the process of creating secure enclaves and managing their execution.
For building an SGX application using SDK, a developer needs to separate an
application codebase into two parts, an enclave region and an untrusted region.
In addition, the transition interface between them must be defined by a de-
veloper in the Enclave Definition Language (EDL). This interface specifies the
secure functions ECALLs for entering an enclave mode and functions OCALLs that
can be invoked to switch execution to the untrusted region. Additionally, EDLs
detail how data should be transferred in and out of the enclave, specifying data
structures and communication mechanisms. Note that OCALLs are typically used
for handling system calls, as SGX does not allow executing syscall instructions
in an enclave mode.
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LibOS-based SGX focuses on using a Library OS that provides operating
system functionality in the form of a library to act as an interface between ap-
plications and hardware. It runs entirely within an enclave, and to port an appli-
cation into an enclave, the application binary needs to be loaded and executed
along with the libraries it relies on. One of the key advantages of LibOS-based
SGX is the simplification of the enclave interface. This minimizes the number of
system calls that occur within the enclave, ensuring that the code running within
the enclave does not require system calls that involve crossing between user and
kernel domains. LibOS also plays a crucial role in implementing and managing
necessary operating system functionalities within the enclave when executed in
user space. This allows enclaves to handle privileged operations that would typ-
ically require execution in processor supervisor mode, maintaining security iso-
lation while performing necessary tasks. Operations represented as system calls,
particularly those related to file system operations, can be straightforwardly im-
plemented within LibOS by modifying data structures related to the file system
implementation. These system calls do not impact the security of other applica-
tion programs and do not require execution by privileged system software [30].
Frameworks such as Grammine [33], SGX-LKL [27], and Haven [6], which imple-
ment LibOS-based SGX, offer the advantage of enhancing portability by freeing
applications from dependence on a specific operating system.

2.2 Rust Programming Language

Rust is a newly introduced programming language developed by Mozilla Re-
search that guarantees safety on the memory side with cost-free abstraction [24].
Rust delegates memory safety checking (e.g., rust pointer always references valid
memory) to the Rust compiler. In contrast to low-level codes implemented in C
or C++ prone to subtle memory bugs, Rust guarantees memory safety by re-
jecting their compilation by introducing features, such as ownership and lifetime
elision rules [24]. Such design choice enables developers to minimize a runtime
overhead (e.g., garbage collection), which in turn introduces the attention to
utilizing Rust for implementing system software [24]. Rust introduces a unique
ownership system central to its memory safety guarantees [16]. The ownership
system enforces strict rules about how memory is allocated and deallocated, en-
suring that memory is managed safely without the risk of common bugs like
null pointer dereferences, data races, and memory leaks. Rust also incorporates
lifetime, which are annotations that specify the scope or duration for which ref-
erences are valid [16]. It prevents references from outliving the data they point
to or being used after the data has been deallocated.

3 Characteristics Analysis of Frameworks

To take advantage of Rust mentioned above (e.g., guaranteeing in-enclave mem-
ory safety), recent studies utilize Rust when implementing an SGX framework
itself and enable developers to execute Rust applications on SGX environment [8,
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Fig. 1: Rust-based SGX Framework Overview. (The red boxes indicate regions
that are isolated and protected by the enclave application, while the black dashed
boxes are regions that are written in Rust.)

31, 34]. In particular, we provide an overview of three existing frameworks that
facilitate the development of SGX applications in Rust: Rust SGX SDK, Occlum,
and Fortanix EDP. As depicted in Figure 1, these frameworks each exhibit a dis-
tinct system architecture. It is worth noting that Occlum exclusively employs a
LibOS-based approach, while both Rust SGX SDK and Fortanix EDP offer a
custom interface to interact with the host OS for system operations.

3.1 Fortanix EDP

Enclave development platform (EDP) [8], developed by Fortanix, offers a dis-
tinct advantage in generating and running enclave from scratch with Rust code,
eliminating the dependency on the Intel SGX SDK [8]. Notably, Fortanix EDP
introduces its own unique API and ABI while ensuring binary-level compatibility
for Rust applications. Specifically, EDP’s usercall interface is designed not to
expose existing enclave interface attack surfaces. It achieves this by incorporat-
ing elements that handle memory allocation in user space and data copying from
user memory within the context of a Rust-type system. This approach effectively
safeguards against direct memory access, preemptively mitigating time-of-check
time-of-use (TOCTOU) attacks. It’s worth noting that the usercall interface
establishes a connection to the syscall interface through an enclave. Within the
untrusted region, an enclave runner takes on the responsibility of managing
enclave loading and serves as an intermediary layer bridging the gap between
usercall requests originating from the enclave and the syscall interface required
for external interactions. While EDP enables the utilization of much of Rust’s
standard library for application implementation, it intentionally imposes restric-
tions on specific functionalities, such as multi-processing support and file system
operations, for security reasons.
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3.2 Occlum

Occlum is a memory-safe multi-process LibOS for Intel SGX to enable execution
of legacy applications without modifying the source code [31]. Occlum proposes
multi-domain software fault isolation (MMDSFI) by leveraging Intel Memory
Protection Extensions (MPX) technology [14] to preserve isolation between pro-
cesses that share a single address space. To support this, the Occlum framework
has newly implemented SGX LibOS, the Occlum toolchain, and the Occlum
verifier. Untrusted C/C++ code can generate executable binaries through the
Occlum toolchain and be verified by the Occlum verifier, ensuring the integrity of
MMDSFI. Consequently, the verified MMDSFI enables the secure construction
of the LibOS within the enclave.

LibOS based on Intel SGX SDK and Rust SGX SDK is predominantly im-
plemented in Rust, accounting for approximately 90% of the codebase, with the
remainder implemented in C. This supports the execution of enclaves in both
C and Rust, providing protection for enclave programs against potential mem-
ory vulnerabilities. Furthermore, to protect LibOS from unsafe entities, a shim
layer called occlum-PAL is provided to the application, offering APIs. This isola-
tion mechanism is crucial for security as it prevents one process from interfering
with or accessing the memory of another with strict boundary checking. By
securely sharing the enclave’s single address space with Occlum’s SFI-isolated
processes (SIPs) which is a unit of application domain, it supports multi-tasking
efficiently. For example, compared to other SGX frameworks that utilize LibOS
with supporting multi-tasking [5, 6, 33], startup time is 1000 times faster and
IPC (inter-process communication) is up to 3 times faster [31].

3.3 Rust SGX SDK (Teaclave SGX SDK)

The Rust SGX SDK, developed by Baidu, offers a secure platform for executing
Rust-based applications within SGX environments [34]. This SDK introduces a
wrapper Rust API that layers Rust functionalities on top of the SGX SDKs,
originally implemented in C and C++. Through this layered approach, it es-
tablishes a secure connection between the Intel SGX SDK code and the trusted
application. Notably, as a dependency on the Intel SGX SDK, it places trust ex-
clusively in the software operating within an enclave while maintaining untrusted
towards the rest of the system. The SDK doesn’t provide its own Application
Binary Interface (ABI) but instead adheres to the same ABI as the vanilla In-
tel SGX SDK. This strategic choice ensures seamless compatibility between the
Rust SGX SDK and the Intel SGX environment. Consequently, any updates or
alterations within the SGX ecosystem can be swiftly accommodated without the
risk of breaking compatibility.

4 Qualitative aspects affecting application performance

In this section, we conduct in-depth analysis by systemically exploring the in-
ternal design of each framework and categorize three key indicators related to
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application performance: Memory boundary check, Enclave transition, and ad-
ditional runtime overhead. Table 1 summarizes our analysis result.

Memory boundary

check

Enclave

Transition

Runtime

Overhead

Memory

Safety

Occlum MMDSFI PAL API Enclave SIP Enclave SIP

Incubator Teaclave

SGX SDK
Runtime (Enclave-runner) Legacy ECALL/OCALL Rust Wrapper API Rust Wrapper API

Fortanix EDP Sanitizable function Usercall (Custom) Own ABI Own API and ABI

Table 1: Estimating framework performance impact overhead based on frame-
work analysis

4.1 Memory boundary check

To avoid overhead caused by unnecessary bound checking, Rust SGX SDK pro-
vides a Sanitizable function to check the raw byte array and verify that memory
represents a valid object when binding an application. For the case of Fortanix
EDP, the enclave-runner runtime checks before entering an enclave to ensure
processor state sanitation, similar to Rust SGX SDK. Finally, Occlum utilizes
SFI (Software Fault Isolation), a software instrumentation technique that sand-
boxes untrusted domains within a single address space to reduce the enclave size
in a multi-tasking environment. However, Occlum performs boundary checking
for every memory access to ensure that it does not deviate from the domain
boundary, which becomes a runtime overhead.

4.2 Enclave transition (ECALL/OCALL)

Rust SGX SDK follows the design choice made by Intel SGX SDK for imple-
menting enclave transition wrapper, ECALL (enclave call) and OCALL (out-call)1.
To make legacy ECALLs and OCALLs implemented in C compatible with Rust ap-
plication code, Rust SGX SDK provides wrapper routines by leveraging Rust’s
unsafe keyword, which explicitly translates the boundary between C code and
Rust code for foreign function interface (FFI). During the conversion, sanity
checking is performed, resulting in runtime overhead. Fortanix EDP, on the
other hand, defines the usercall interface written in Rust, instead of writing
ECALL and OCALL for enclave transition. Because they use their own call process,
which is not optimized for SGX, each interaction related to the enclave would
generate transition overhead using the usercall interface [34]. Similarly, Occlum
inserts a trampoline code with a byte that identifies the domain ID in MMDSFI

1 Note that ECALLs are used for to enter the enclave and OCALLs are used to switch
an execution flow to untrusted region, respectively.
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to securely implement untrusted binaries generated by the toolchain in LibOS.
In other words, entry into the LibOS within the Enclave can only occur using
this trampoline code. Furthermore, to exit outside the LibOS, one must verify
the predefined domain ID once again before being allowed to escape. Therefore,
from the user’s perspective in Occlum, there is no need to write an EDL file.
Instead, users can utilize the pre-defined occlum build command to build the en-
clave image and the occlum run command to use the enclave entry point. Within
the Occlum framework, the run command is passed to the PAL API Layer to
enter the enclave. The process of passing through the PAL Layer to enter the
enclave can involve transition overhead [18].

4.3 Runtime overhead (Miscellaneous)

The Rust SGX SDK raises an additional overhead due to the dependency on
Intel SGX SDK by calling a different directory SGX instruction with the Rust
layer, rather than directly executing the assembly code. On the other hand,
Fortanix EDP uses its own ABI, called fortanix-sgx-abi [9], implemented with
a pure rust abstraction layer, so it is relatively overhead-free [15]. When assuming
multi-tasking scenario, Occlum has an advantage compared to other frameworks,
as it handles multiple process domains(SIPs) within a single enclave region.
Such a design also saves the cost of inter-process communication (IPC) overhead
between processes.

4.4 Memory safety guranteed by each framework

Both the Rust SGX SDK and Occlum have dependencies on the C language Intel
SGX SDK layers, with the Rust SGX SDK utilizing a wrapper API implemented
in Rust, and Occlum having 90%of its LibOS code written in Rust. When these
frameworks have dependencies on the Intel SGX SDK, they remain susceptible to
various vulnerabilities, including DoS attacks and side-channel attacks. In other
words, Occlum and Rust SGX SDK may share similar security threats at the
library level. However, Occlum can leverage enclave SIP to defend the enclave
against attacks such as code injection and ROP attacks by providing isolation
between processes that protect SIP from other SIPs and between processes that
protect LibOS itself from any SIP and LibOS.

In contrast, Fortanix EDP distinguishes itself by defining its own API and
ABI based on the Rust language, thereby enhancing security against vulnerabil-
ities like side-channel attacks that are inherent in the Intel SGX SDK. Addition-
ally, Fortanix EDP is designed in a way that similar to how a LibOS operates,
does not expose the enclave interface surface to the user. Additionally, by lim-
iting the number of usercall interfaces to fewer than 20, it reduces the attack
surface. Furthermore, it allocates memory in user space and utilizes elements
like fortanix sgx::usercalls::alloc to prevent direct memory access, thereby
proactively mitigating Time-of-Check-to-Time-of-use (TOCTOU) attack.

Rust SGX SDK introduces an extra layer of wrappers, which can lead to
performance degradation. This may manifest as slower enclave execution and a
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higher demand for system resources. While Occlum provides isolation between
SIPs, there can be overhead in terms of communication and data sharing between
processes due to this isolation. Fortanix EDP makes changes to memory alloca-
tion and access methods to defend against TOCTOU attacks. However, these
changes can result in additional overhead for memory management and internal
enclave operations. Additionally, limiting the number of user call interfaces for
security purposes can restrict the functionality and flexibility of enclaves. All
three frameworks may require extra security and compliance checks during en-
clave execution and communication, which can slow down the overall execution
speed.

5 Performance evaluation

In this section, we describe our experimental setup and present the results of
our experimental evaluations of application workloads on each framework. Based
on the analysis Section 4, specified the following evaluation metrics: 1)Execu-
tion time measurement to evaluate the performance of the application according
to the characteristics, 2) Enclave size measurement result to evaluate the en-
clave hardening and security. The results of the two performance evaluations are
summarized in Table 2 and Table 3.

Experimental Setup. Our evaluation was assessed on Ubuntu 20.04. The SGX
SDK for developing SGX applications utilized 2.18v. For the Rust language, we
used rustc 1.66.0-nightly, which is compatible with all frameworks. Additionally,
Occlum used glibc 2.31, as there are glibc versions compatible with running
musl-based applications.

Application Benchmark. Ring is a library that exposes a Rust API, pri-
marily utilized for performing CPU-intensive workloads related to encryption.
It emphasizes the implementation, testing, and optimization of a core set of
cryptographic operations exposed through an API that is both easy to use and
resistant to misuse. Considering the computationally intensive nature of encryp-
tion and decryption processes, we intend to leverage this code to evaluate the
CPU computational load of each framework.

HashMap in Rust is utilized for mapping and storing keys and values, offering
swift search and insertion operations. However, this process entails the need for
basic object implementations, an array of hash tables, and individual objects for
each hash item, resulting in a memory-intensive workload with substantial RAM
consumption. Moreover, this hash map not only provides a default hash function
but also allows users to specify hash functions for custom data types. It permits
custom hash behavior for specific data, enabling the implementation of optimal
hashing strategies. Chaining is primarily employed for collision handling, and the
size dynamically adjusts to automatically optimize memory usage when adding
or removing data. We intend to employ this HashMaps to assess the memory
computational load of each framework.
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5.1 Performance Overhead

We evaluated the execution times of Ring, and Hashmap core logic within an
Enclave, using a local environment as a baseline, without employing SGX En-
clave.

Occlum performs processes by excluding the Occlum toolchain and Occlum
verifier from the LibOS, instead delivering only verified MMDSFI to the LibOS.
Accordingly, the necessary code (LibOS) is loaded inside the Enclave, minimiz-
ing time delays associated with context switching and exhibiting execution times
similar to baseline environment. On the other hand, Fortanix EDP, which em-
ploys an intermediate Shim layer called enclave-runner to load the Enclave and
handle logic processing, resulted in significantly higher program execution times.
When a user invokes the enclave, the Enclave-runner inspects and sanitizes the
code using the Enclave entry ABI, then loads and enters the enclave. Once inside
the Enclave, after performing the logic between the enclave-runner and the En-
clave, the enclave exit ABI is called to terminate the thread. Therefore, including
these processes, Fortanix EDP had the longest execution times for application
workloads.

Incubator Teaclave SGX SDK demonstrated the fastest execution times in
the Hashmap and Ring workloads. This can be attributed to the use of a
Rust wrapper optimized for the Intel SGX API, enabling faster execution even
within the SGX environment, including Without SGX execution. Notably, the
sgx tcrypto used in the Ring workload called the crypto module implemented
in C through unsafe calls, resulting in faster execution times. However, it did
not guarantee Rust’s memory safety. Therefore, Incubator Teaclave SGX SDK
implements functions such as Rust’s Lifetimes to ensure memory safety by auto-
matically invoking drop functions when the lifespan of objects within sgx tcrypto

expires, securely releasing internal references to data in the C/C++ heap, with-
out relying on unsafe calls.

In summary, the performance overhead shows that Incubator Teaclave SGX
SDK, which uses SGX-optimized APIs, is the fastest, while Fortanix EDP, which
utilizes the intermediate layer of enclave-runner, incurs the most significant per-
formance overhead.

5.2 Enclave Size

Our goal is to evaluate the confidentiality of each framework by measuring the
size of the TCB(Trusted Computing Base) that must be safeguarded within the
enclave.

In the case of Occlum, we determine the enclave’s size by assessing the size of
the generated binary. For the Rust SGX SDK, the enclave size can be determined
by examining the Enclave.so file generated during the compilation process. In the
case of Fortanix EDP, the process involves converting binary files generated using
Cargo into SGXS (SGX Stream) files, which adhere to the SGX enclave format.
The measurement of enclave size in Fortanix EDP is based on the resulting
SGXS file.
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(a) Hashmap workload runtime (b) Ring workload runtime

Fig. 2: Breakdown of benchmark execution time. (Figure 2a and Figure 2b rep-
resent charts illustrating the overall runtime of the frameworks and the runtime
within the SGX Enclave, respectively. In particular, in the Hashmap workload,
the runtime attributed to memory access increases, rendering the framework
runtime itself negligible in the representation.)

The usercall API of Fortanix EDP is included within the enclave, yet it
allows for the creation of the smallest possible enclave size. This is attributed
to the intentional design choice of keeping the usercall API minimal, which is
considered to be the reason for this outcome. The Rust SGX SDK follows the
enclave design of the Intel SGX SDK but necessitates the inclusion of various
Rust wrapper libraries depending on the nature of the workload. As a result,
it can be observed that Fortanix EDP generates a relatively larger enclave size
compared to the Rust SGX SDK.

As a result, Occlum’s Enclave size is assessed as the largest among the frame-
works. Occlum incorporates the entire LibOS within a single Enclave. Within the
LibOS, there are components such as a binary loader for verifying whether the
binary files are signed by the Occlum verifier or Occlum’s encrypted file system
to securely protect files, contributing to the larger Enclave size evaluation.

Without SGX (baseline) Occlum Incubator Teaclave SGX SDK Fortanix EDP

Framework runtime 0.011s 0.011s 0.012s 0.146s

Usercode Execution time 0.0084s 0.0090s 0.0004s 0.0965s

Enclave size N/A 4.4MB 1.4MB 1.18MB

Table 2: Hashmap workload results for each framework

6 Qunatifying engineering effort

To assess the qualitative effort in development, we describe the engineering effort
according to the characteristics of the framework and analyze the results for Lines
of Code as a factor to evaluate.
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Without SGX (baseline) Occlum Incubator Teaclave SGX SDK Fortanix EDP

Framework runtime 7.661s 7.863s 0.225s 149.037s

Usercode Execution time 7.6584s 7.8610s 0.2130s 148.9848s

Enclave size N/A 4.5MB 1.6MB 1.19MB

Table 3: Ring(sha2) workload results for each framework

Basically, Rust SGX SDK and Fortanix EDP support utilizing the Rust stan-
dard library, and Occlum utilizes the C standard library(musl libc and glibc).
However, Rust SGX SDK and Fortanix EDP have limitations of several function-
alities (e.g., environment variable, timing, networking) due to security concerns.
Therefore, development costs are incurred in that developers have to implement
these functions themselves to use. In contrast, Occlum not only utilizes using
easy-of-use command-line tools unique to Occlum but also provides several built-
in toolchains and libraries to facilitate developer porting or development tasks.
Then, developers have the disadvantage of having to spend a lot of time learning
about SGX SDK APIs, programming models, and systems. In addition, Fort-
anix EDP can implement the ability to handle memory isolation, usercalls, and
SGX instruction sets by adding only std::os::fortanix sgx proprietary modules
compared to general Rust standard libraries, and relatively reduce programmer
development costs. Fortanix EDP also has the advantage of not requiring much
experience from developers because it does not require SGX background knowl-
edge and does not require EDL files to separate trust areas.

Rust Code
EDL File

(ECALL/OCALL def)
Cargo.toml

Configuration

File

Without SGX (baseline) 12 N/A 10 N/A

Incubator Teaclave SGX SDK
modified 2 N/A 8 N/A

add 81 10 34 N/A

Occlum add 0 N/A 0 17

Fortanix EDP add 0 N/A 3 N/A

Table 4: Hashmap Workload Lines of Code

This evaluation is based on a Hashmap workload in a local environment with-
out utilizing the SGX enclave as a reference. The results of the additional Lines
of Code are summarized in Table 4 as follows. Rust’s Cargo serves as a package
manager for building and managing Rust applications. To build packages using
Cargo, the creation of a Cargo.toml configuration file is required. Additionally,
SGX also requires the Enclave.edl file with the context switch. This file defines
ECALLs for entering the reserved Enclave and OCALLs for returning from the
Enclave to the user space.
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Rust SGX SDK provides a Rust wrapper for the Intel SGX SDK, originally
written in C/C++. It uniquely distinguishes between the app and Enclave areas,
necessitating the definition of the Enclave.edl file. As a result, in the main logic
of the app layer, instead of using the pure Rust standard libraries, the developer
employed the provided sgx types and sgx urts. It also, involved writing code
for creating the Enclave, making function calls to enter the Enclave, executing
code within the Enclave, and retrieving the results. Within the Enclave, the
developer performed the Hashmap workload. Ultimately, this resulted in 2 lines
being modified and an additional 81 lines of source code being written.

Occlum offers a user-friendly Occlum-cargo command to execute Rust appli-
cations, and it provides shell scripts and yaml files for this purpose. As a result,
there was no need to modify or add significant code to the core logic of the
Hashmap workload or the Cargo.toml file. However, there was a requirement to
write 17 lines of source code for the shell scripts and yaml file.

In Fortanix EDP, a pure Rust language approach was utilized, along with
a custom ABI/API, to ensure security by not exposing the Enclave interface
to developers. This design choice allowed for the avoidance of writing an En-
clave.edl file. The core logic of the Hashmap workload was leveraged without
any modifications, thanks to the support of the Rust standard library. Instead
of using a custom ABI/API, the Cargo.toml file was configured with a build
target of x86 64-fortanix-unknown-sgx for building. As a result, only three lines
of source code were added to the Cargo.toml file.

To minimize the developer’s effort, it is evaluated as most suitable to utilize
Fortanix EDP, which allows the development of applications using only the Rust
language without requiring background knowledge of the SGX architecture.

7 Related Work

Gramine [18], previously known as Graphene, is a lightweight library operating
system designed for Linux multi-process applications. This unique library OS
facilitates the execution of existing applications within SGX enclaves without
necessitating any modifications, except for the inclusion of an enclave manifest
specifying security settings and configurations. Gramine uses this manifest to
perform authenticity and integrity verification and subsequently leverages it to
load the application along with its requisite dependencies.

SCONE [4] is a software platform designed for securely running container-
based applications using SGX within Docker containers. It offers a secure C stan-
dard library interface that automatically encrypts and decrypts input/output
(I/O) data, thereby minimizing the performance impact of thread synchroniza-
tion and system calls during the enclave transition. In addition, SCONE supports
user-level threading and asynchronous system calls to improve performance.

PANOPLY [32] represents a system designed to bridge the gap between the
standard OS abstraction and the specific requirements of SGX for commercial
Linux applications. Inspired by the principles of micro-kernels, PANOPLY has
completely rethought the logic of the OS without trying to emulate it. It achieves
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this by intercepting calls to the glibc API, which allows the glibc library to reside
outside the enclave’s TCB. Consequently, even if the underlying OS encounters
issues or malfunctions, PANOPLY ensures the application’s integrity attributes
remain intact, ensuring its continued proper functioning.

Among them, SCONE and PANOPLY employ thin ”shim” layers that encap-
sulate API layers like system call tables. This architectural strategy serves the
purpose of minimizing the code required within the enclave, thereby reducing
both the interface’s size and the potential attack surface between the enclave
and the untrusted OS. Gramine, SCONE, and Panoply all represent solutions
for enhancing the security of applications in container environments. They share
the common characteristic of being developed in the C programming language,
which means that they may not exhibit the same level of robust memory safety
as the Rust-based SGX frameworks examined in this paper.

Several studies have aimed to streamline the engineering effort required for
deploying applications in SGX environments, simplifying the process for develop-
ers. Glamdring [23] proposes automating the code partitioning process to utilize
SGX. Once developers annotate security-sensitive data of the target applica-
tion, Glamdring automatically splits the application into two sections: one for
the trusted enclave and the other for the untrusted, non-enclave part. Through
efficient code relocation, including the creation of SDK interface specifications
and the relocation of resource-intensive features outside the enclave via runtime
profiling, Glamdring minimizes the engineering effort involved.

Hasan et al. [11] conduct the comparison of the comparison between ‘Port’
and ‘Shim’ approaches for implementing SGX applications. The porting ap-
proach entails rewriting or modifying the application’s code to align with the
SGX environment. While it may be more complex, it typically offers superior
performance. Conversely, the shimming approach involves the creation of an in-
termediary layer that acts as an adapter between the application and the new
SGX environment. This approach requires fewer code changes due to the pres-
ence of SGX libraries but may introduce some performance overhead. The choice
between ‘Port’ and ‘Shim’ hinges on various factors, including time constraints,
available resources, and performance requirements, providing developers with
flexibility in their approach.

Existing research on SGX-related studies for enhancing application security
in container environments commonly share the characteristic of being developed
in the C programming language. However, it is essential to note that, compared
to the Rust-based frameworks analyzed in this paper, these solutions may not
be as robust in terms of memory safety, owing to their development in C/C++.
In contrast to the aforementioned studies, our studies focus on analyzing SGX
frameworks that utilize the Rust programming language to enhance the secu-
rity of user code and data from a memory safety perspective. Furthermore, we
assess the performance of these three frameworks, each with distinct methods
of supporting SGX, from the standpoint of developers. This assessment aims to
provide guidelines that can promote the adoption of SGX.
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8 Conclusion

This paper analyzes the implementation cost when developing Rust applications
with existing Rust-based SGX frameworks. Through the comparative analysis
over three frameworks, we confirm that Occlum has strength in performance,
while developing Rust applications using Fortanix EDP is effective from the
implementation cost perspective.
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Abstract. Bluetooth vulnerabilities have become increasingly popular
in recent years due to, in part, the remote exploitability of Bluetooth.
Unfortunately, in practice, security analysts often rely on manual anal-
ysis to identify these vulnerabilities, which is challenging. Specifically,
testing various workloads while maintaining reliable Bluetooth connec-
tions between devices requires complicated network configuration set-
tings. This paper introduces BTFuzzer, a profile-based fuzzing frame-
work for Bluetooth devices. BTFuzzer eliminates the need for complex
network configurations by feeding Bluetooth packets directly into the
target device’s Bluetooth library without going through the Over-The-
Air (OTA) transmissions. BTFuzzer carefully crafts test inputs based
on protocol profiles and specifications to maximize code coverage effi-
ciently. Our evaluation results show that BTFuzzer is highly effective. In
particular, the framework has identified two security bugs in the latest
Android versions (i.e., 10 and later): CVE-2020-27024 and a publicly un-
known information leak vulnerability. The first is an out-of-bounds read
vulnerability (CVE-2020-27024). The second vulnerability allows attack-
ers to connect to a victim’s device and leak sensitive data without the
user’s awareness, as the adversary is not shown in the list of connected
Bluetooth devices.

Keywords: Bluetooth · Protocol · Fuzzing · Memory Corruption · Re-
mote Code Execution.

1 Introduction

Recent Bluetooth vulnerabilities such as BlueBorne [16] have sparked interest in
finding Bluetooth-related security bugs due to, in part, its broad impact across
multiple platforms. For example, BlueBorne affects Bluetooth implementations
across multiple platforms: Android, iOS, Windows, and Linux. As of September
2023, 720 CVEs have been registered as Bluetooth-related vulnerabilities [1],
where they are remotely exploitable. For instance, CVE-2017-0781 is a vulner-
ability in the Android’s BNEP service. It allows attackers to compromise Blue-
tooth devices [16,25] remotely. Due to Bluetooth vulnerabilities’ high and broad
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security impact, security testing of the systems using Bluetooth is particularly
important and critical.

Fuzzing is an automated testing approach that injects randomized inputs
into a system under test to reveal vulnerabilities. For software testing, fuzzing
has been successful over the years for various software systems, from OS ker-
nels [6,7,15] to robotics systems [8–11]. However, unfortunately, fuzzing network
protocols such as Bluetooth is still challenging. Specifically, the Bluetooth proto-
col is highly dependent on complex network configurations. Conducting various
tests while preserving the same network configurations and states after each test
requires non-trivial effort. In addition, practical challenges such as synchroniza-
tion and delay of network communication further complicate the testing process.
Worse, the root causes of many vulnerabilities stem from flaws in the Bluetooth
chipset firmware rather than the software stack. Hence, various firmware imple-
mentations should be taken into consideration as well. Unfortunately, existing
fuzzing approaches have difficulty thoroughly testing various layers of the sys-
tem such as the Bluetooth protocol layer and the application layer. For example,
many existing fuzzers generate test inputs targeting device drivers, which may
not even reach the application layer, which may contains various potential vul-
nerabilities. In other words, existing techniques may underexplore a non-trivial
amount of space for Bluetooth-related vulnerabilities.

This paper introduces BTFuzzer, a fuzzing framework that automatically
identifies Bluetooth vulnerabilities. While there exist approaches for identify-
ing Bluetooth security bugs [12, 13], they suffer from various challenges such as
(1) obtaining and maintaining complex network configurations during the test
and (2) crafting complex test inputs that can penetrate various software lay-
ers without violating the constraints from device drivers, network protocol, and
applications. Our approach, BTFuzzer, addresses these challenges by creating
an interface to inject Bluetooth packets into the library directly. It maximizes
code coverage by carefully crafting specific test inputs (e.g., Bluetooth packets)
with respect to the protocol specifications such as Hand-Free Profile (HFP), Hu-
man Interface Device (HID), and Bluetooth Radio Frequency Communication
(RFCOMM). The framework encompasses key components for comprehensive
Bluetooth protocol fuzzing, including a packet generator, crash collector, and
coverage analyzer.

To demonstrate the effectiveness of BTFuzzer, we conducted experiments
on Android using open-source software. BTFuzzer found two previously un-
known vulnerabilities that are exploitable in most Android devices: (1) An out-
of-bounds read vulnerability (CVE-2020-27024 [24]), affecting systems running
Android version 10 or later and (2) an information leak vulnerability that al-
lows attackers to connect to a victim’s device and leak data without the user’s
awareness as it is not visible in the list of connected Bluetooth devices.
Organization. The remainder of the paper is organized as follows: Section 2
provides background on Bluetooth and fuzzing. Section 3 introduces our pro-
posed fuzzing framework. Section 4 presents our experimental results. Section 5
discusses related work. Section 6 concludes the paper.
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2 Background

This section outlines the structure of Bluetooth that is essential for understand-
ing BTFuzzer. We also provide an overview of the Bluetooth stack, Bluetooth
profiles, and a generic fuzzing environment for Bluetooth protocols.

2.1 Bluetooth components

Figure 1 illustrates a generic Bluetooth stack. Bluetooth packets move from
the baseband to Logical Link Control and Adaptation Protocol (L2CAP) via
the Host Controller Interface (HCI). L2CAP then routes these packets to the
next appropriate stack for each channel. The HCI packet encapsulates data for
the upper protocols and profiles, including L2CAP, and the path to the upper
layer varies depending on the configuration of the HCI packet. If packets can
be fed directly to the HCI, a security evaluation of the Bluetooth stack can be
performed without the need for complex wireless configurations.

Fig. 1: Generic Bluetooth stack.

A Bluetooth profile is a protocol that aims to provide compatibility across
various devices, allowing diverse Bluetooth devices to interact with each other.
While the operation method may vary among devices, functions are implemented
according to specific Bluetooth profiles, enabling communication between devices
with different operating systems. Packet configurations differ for each profile and
conform to the forms defined in their respective specifications [2]. Vulnerabili-
ties may arise from improper profile implementations, making generating and
transmitting packets tailored to each profile crucial for effective vulnerability
discovery through fuzzing.

L2CAP operates based on the channel. A channel identifier (CID) [3] is the
local name representing a logical channel endpoint on the device. When a Blue-
tooth device makes a connection, a channel is created and a CID is assigned.
Communication with the device is possible through the assigned CID and chan-
nel. CID has a namespace designated according to its purpose. The CID names-
pace is 0x0000-0xFFFF. In the namespace, the null identifier (0x0000) is not
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used, and the identifiers from 0x0001 to 0x003F are reserved for a specific L2CAP
function, which is called fixed channels. Therefore, when connected to a generic
Bluetooth device, CIDs are allocated within the range of 0x0040-0xFFFF, which
are called dynamically allocated channels.

L2CAP’s upper layers support various protocols. Radio Frequency Communi-
cations (RFCOMM) replaces the traditional wired RS232 serial port and shares
characteristics with the TCP protocol. Currently, The Headset Profile (HSP)
and Handsfree Profile (HFP) are the popular profiles that use it. The Generic
Attribute Profile (GATT), or often referred to as GATT/ATT, outlines how to
exchange data between BLE devices using services and characteristics. It rep-
resents the highest-level implementation of the Attribute protocol (ATT). Each
attribute has a 128-bit UUID and ATT-defined attributes determine charac-
teristics and services. The Bluetooth Network Encapsulation Protocol (BNEP)
enables the transmission of common networking protocols over Bluetooth and
offers functionalities similar to Ethernet’s. Running on BNEP, the Personal Area
Networking Profile (PAN) specifies how two or more Bluetooth-enabled devices
can form an ad-hoc network and access a remote network via a network access
point.

2.2 Generic fuzzing environment for Bluetooth protocols

The fuzz testing technique is widely employed to discover security vulnerabil-
ities [4] automatically. A fuzzer can be specialized for a specific target (e.g., a
particular protocol or class of applications) or designed for a generic purpose
such as AFL. To conduct a successful vulnerability discovery, understanding the
characteristics of various fuzzers and selecting the most suitable one based on
the target and scope of the analysis is critical.

Fig. 2: Generic fuzzing environment for Bluetooth protocols.

Traditional Bluetooth fuzz testing requires two Bluetooth-capable devices: an
attacker device that sends malformed packets and a victim device that processes
the packets and potentially exposes vulnerabilities. The attacker device must
maintain a state where it can send and receive packets. It must also implement
a fuzzing engine with three functions: (1) Generating malformed packets (①),
(2) Establishing a Bluetooth connection (②), and (3) Sending the malformed
packets (③). The victim device must process packets (4) and detect crashes (⑤).
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Setting up this environment is time-consuming and complex, as it essentially
requires constructing the entire system, including the network environment.

The Bluetooth software stack processes packets sent over-the-air (OTA) via
the Bluetooth firmware on the target device. In OTA-based fuzzing, whether
specific packets reach the Bluetooth software stack may depend on the firmware
configuration of the Bluetooth chipset. This environment is more suited for Blue-
tooth firmware code analysis and has limitations for Bluetooth software stack
vulnerability analysis.

BTFuzzer simplifies the fuzz testing process by directly transmitting packets
to the victim device, bypassing the wireless environment. This approach allows
quicker fuzz testing and eliminates the need for the packets to go through the
Bluetooth firmware before reaching the software stack. BTFuzzer proposes an
automated method to identify logical errors within the Bluetooth software stack.

3 Proposed system

In this section, we explain how to fuzz the Bluetooth stack using the proposed
fuzzing framework, BTFuzzer.

3.1 Overview

Fig. 3: Overview of BTFuzzer.

We propose a new fuzzing framework, BTFuzzer, which directly feeds packets
into the target device, bypassing OTA. BTFuzzer generates packets and defines
an interface for direct input into the device’s HCI layer. Figure 3 provides an
overview of the proposed system. This configuration allows direct access to the
Bluetooth software stack for fuzz testing on profiles and protocols with indepen-
dent specifications. We note that the framework is highly configurable, meaning
that it can easily customized to support fuzz testing on diverse profiles and even
other protocols of interest.
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3.2 Fuzzing interface

We create a specialized fuzzing interface to feed packets directly into the device.
In particular, based on our analysis of the Android Open Source Project (AOSP)
Bluetooth stack, we implement our fuzzing interface in libbluetooth.so.4

The hci_initialize function within hci_layer_android.cc initializes the
HCI and creates (1) a fuzzing interface thread and (2) a socket for communication
with the fuzzing client. This client then feeds commands and packets from the
fuzzing server into the interface through the socket.

HCI Handles and L2CAP CIDs are essential for generating valid Bluetooth
packets. The interface receives and processes predefined commands from the
client to obtain these values. The currently connected Handles and CIDs are
saved, and the gathered Handles and CIDs are used for packet creation. Ad-
ditionally, HCI packets fed into the interface are categorized into four types
for processing: COMMAND, ACL, SCO, and EVENT. Figure 4 illustrates the
architecture of the fuzzing interface within the AOSP device.

Fig. 4: Composition of fuzzing interface.

3.3 Fuzzing server

The fuzzing server consists of the following three modules:

– Packet generator: This module creates a large corpus of malformed pack-
ets by randomly injecting errors into valid packets. This addresses perfor-
mance degradation when feeding individual packets to the Android device
via ADB. This ensures that the fuzzing process covers a wide range of pos-
sible inputs. The corpus is transferred to the Android device using the adb
push command.

4 The exact location of the implementation is ‘AOSP\system\bt\hci\src\hci_layer_
android.cc:hci_initialize().’
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– Crash collector: This module collects crashes that occur during fuzzing.
– Coverage analyzer: This module analyzes the coverage of the Bluetooth

software stack during fuzzing.

HCI handles, and L2CAP CIDs are assigned when a Bluetooth device is
connected. However, these values may change if the device is reconnected after a
crash. This requires the packet generator to regenerate the packets. Additionally,
the device’s Bluetooth settings may change due to previous packets. To mitigate
these issues, the fuzzing server initializes the Bluetooth stack before starting
the fuzzing process. This ensures that HCI handles and L2CAP CIDs remain
constant, allowing the use of pre-made packets even after a crash.

3.4 Fuzzing client

The fuzzing client is specialized for interaction with the fuzzing interface, im-
plemented in the libbluetooth.so library. This client is an executable file that
establishes a connection to the fuzzing interface’s socket. It reads from the cor-
pus file located at a predefined path and sequentially sends packets into the
Bluetooth stack via this socket. Essentially, the fuzzing client is responsible for
sending malformed packets to the Android device for testing.

Figure 5 illustrates the architecture of the fuzzing client, showcasing its var-
ious components and their interaction with the fuzzing interface. This helps to
understand the role of the fuzzing client in the overall architecture of BTFuzzer,
highlighting its critical role in injecting malformed packets into the system to
identify vulnerabilities.

Fig. 5: Composition of the fuzzing client.

3.5 Packet generator

This paper focuses on fuzzing three key Bluetooth protocols commonly used in
smartphones: RFCOMM, HFP, and HID. These were selected because they are
essential for core smartphone functions and have significant security implications.
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– RFCOMM is a simple, reliable data stream to which other applications can
connect as if they were serial ports. It is one of the foundational profiles used
in most Bluetooth devices, meaning that it is an essential test subject.

– HFP is crucial for enabling smartphone call functionalities. Given that calling
is a core function of smartphones and a profile used daily by many users,
any vulnerabilities in HFP could have significant security implications, such
as the potential for eavesdropping.

– HID is related to input devices such as keyboard and mouse. Vulnerabili-
ties in HID could allow an attacker to remotely control the victim’s device,
making it critical for security analysis.

To generate test cases for these profiles, we have implemented two different
types of packet generation techniques: mutation-based and profile-based.

First, the mutation-based packet generator takes existing valid Bluetooth
packets and modifies them in various ways to create malformed packets. These
malformed packets are then used to test how well the Bluetooth stack can handle
unexpected or non-standard data.

Second, the profile-based packet generator creates packets according to the
specifications of the target Bluetooth profiles (RFCOMM, HFP, and HID). By
adhering closely to the specifications, we can test for vulnerabilities caused by
wrong implementations of the protocols.

By combining the two different packet generation techniques, BTFuzzer aims
to achieve a comprehensive set of test cases that can thoroughly evaluate the
robustness and security of Bluetooth implementations in Android devices.

Fig. 6: Composition of the packet generator.

Mutation-based packet generation. Mutation-based packet generation cre-
ates new packets through mutation, using packets transmitted and received be-
tween devices to enhance code coverage. Base packets are obtained from Android
Bluetooth snoop logs [18]. Bluetooth HCI Snoop is specified in RFC 1761 [17].
A simple script was developed to parse these Snoop logs into a mutational hex
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format. Pyradamsa is used to mutate the parsed packets. A base packet is se-
lected for mutation. A packet must be generated with a matching HCI Handle
and L2CAP CID to facilitate normal communication and data processing. In
mutation-based generation, packets are created using two methods. The first
method sequentially writes and mutates the entire set of recorded packets. The
second method randomly selects a packet for mutation.

Profile-based packet generation. Profile-based packet generation produces
packets tailored for specific Bluetooth profiles and protocols. Target profiles and
protocols were selected, and their specifications were analyzed. We examined the
specifications for three items: HFP [19], HID [20], and RFCOMM [21]. Payloads
for each item are generated using Python’s random library. Like in mutation-
based generation, the HCI and L2CAP portions, excluding the payload, utilize
the allocated HCI Handle and L2CAP CID. Packets, including the generated
payload, are generated with matching HCI and L2CAP lengths.

Fig. 7: Structure of HCI and L2CAP packets.

Figure 7 illustrates the basic structure of HCI and L2CAP packets. The type
field in HCI packets consists of one octet and classifies COMMAND, ACL, SCO,
and EVENT types. The handle field, comprising two octets, holds connection
information between devices. The Length field, also of two octets, specifies the
total length of the HCI packet. If the length field value does not match the
packet length, Android Bluetooth HCI will immediately abort the connection.
Therefore, it is crucial to calculate and set the correct length and handle values
when generating a packet. Detailed specifications for HID, HFP, and RFCOMM,
along with their implementation in BTFuzzer, are outlined below.

Figure 8 depicts the packet structure of HID. The Header field contains
HID Header information in one octet. Only HANDSHAKE, HID_CONTROL,
and DATA Message types are used for packet generation. These types facilitate
data transmission from HID to the smartphone. The payload part consists of
randomly generated data, varying in size from 0x00 to 0xFF.
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Fig. 8: Packet structure of HID.

Figure 9 shows the packet structure of RFCOMM. The Address field, con-
sisting of one octet, contains the DLCI (Data Link Connection Identifier) or the
connection information for RFCOMM. To transmit data correctly, this address
value must be set accurately, which can be retrieved from Bluetooth logs. The
Control field is one octet and includes frame type and poll/final bit information.
Depending on the payload size, the Length field consists of one or two octets. If
the payload size exceeds 127 bytes, two octets are used. The Payload field is filled
with random values, and its size determines the Length field. Finally, the FCS
field, comprised of one octet, is used for CRC (Cyclic Redundancy Check). It is
calculated based on predefined CRC table values, Address, and Control fields.

Fig. 9: Packet structure of RFCOMM.

Figure 10 presents the packet structure of HFP. The payload field is the only
variable part based on AT Commands from the RFCOMM packet structure.
We extracted a list of usable AT Commands from Android Bluetooth code and
configured the system to randomly generate payloads for each AT Command.

3.6 Crash collector

When a crash occurs during fuzzing, the crash collector gathers and stores rele-
vant information. On Android devices, Signals 6 and 11 automatically generate
tombstone files. The crash collector checks whether a tombstone file is created
during fuzzing. If created, it collects the tombstone file from the Android device.
The generated corpus, handle, and CID information are stored to facilitate crash
reproduction. Figure 11 illustrates the components of the crash collector.
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Fig. 10: Packet structure of HFP.

AT Command List
AT+VGS AT+VGM AT+CCWA
AT+CHLD AT+CHUP AT+CIND
AT+CLIP AT+CMER AT+VTS
AT+BINP AT+BLDN AT+BVRA
AT+BRSF AT+NREC AT+CNUM
AT+BTRH AT+CLCC AT+COPS
AT+CMEE AT+BIA AT+CBC
AT+BCC AT+BCS AT+BIND
AT+BIEV AT+BAC

Table 1: List of AT Commands used for packet generation.

Fig. 11: Composition of the crash collector.

3.7 Coverage analyzer

To measure the coverage of the code, the coverage analyzer inserts log codes
into all AOSP Bluetooth stack files. To avoid duplicates, the log format is set as
FUZZ_COVERAGE _FileName_Count. For automated log insertion, we developed a
Python script. Once log code insertion is complete, the number of logs added to
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Fig. 12: Composition of the coverage analyzer.

each file and the total log count are recorded. By comparing the number of output
logs during fuzzing with the total number of logs, we can assess the extent of
code execution. Logs are inserted to identify most branching statements, allowing
efficient code coverage measurement for libbluetooth.so. Figure 12 illustrates
the structure of the coverage analyzer.

4 Evaluation

BTFuzzer was tested on a Pixel 3a device running Android 10. During the eval-
uation, it was paired with a Galaxy Watch, Galaxy Buds, a Bluetooth keyboard,
and a Bluetooth mouse. Fuzzing was conducted after analyzing the packets ob-
tained during basic interactions between the Pixel 3a and each Bluetooth device.
After that, random packets were generated for fuzzing. The profiles evaluated
were RFCOMM, HID, and HFP. To assess BTFuzzer’s effectiveness, we applied
it to the binary code before patching the vulnerability known as BlueFrag (CVE-
2020-0022) [22,23], one of the most critical Android Bluetooth vulnerabilities of
2020.

BTFuzzer discovered two vulnerabilities that could affect most Android de-
vices, including the latest version. One was reported to the Google Android Secu-
rity Team and recognized as a new vulnerability under the identifier A-182388143.
The other was reported as A-182164132 but was marked as a duplicate of
A-162327732, which has been assigned CVE-2020-27024 [24]. The BlueFrag vul-
nerability, for which the patch had been removed, was also detected.

The code coverage of BTFuzzer was assessed using the coverage analyzer.
When delivering packets generated specifically for a particular profile, it was
observed that the code coverage corresponding to that profile increased signifi-
cantly. This observation validates the effectiveness of profile-based fuzz testing.
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4.1 Hiding the list of malicious Bluetooth devices

We discovered a new vulnerability in the Bluetooth stack of Android devices.
This vulnerability allows attackers to manipulate the list of Bluetooth-connected
devices on a victim’s device. The vulnerability, which is assigned to the identifier
A-182388143. It was discovered by using RFCOMM profile-based fuzz testing
with BTFuzzer. The Google Android Security Team has confirmed it as a security
vulnerability.

The vulnerability can be exploited on most Android devices, including the
latest version. An attacker could use this flaw to hide a malicious Bluetooth
device connected to the user’s device, making it undetectable to the user. Con-
sequently, the attacker could access contacts and SMS messages or intercept
calls without the user noticing the attacker’s activities. The vulnerability can be
exploited by sending just one malicious packet to the user’s device.

(a) Before the attack (b) After the attack

Fig. 13: Result of the attack that exploited the A-182388143 vulnerability on
Google Pixel 3a. The connected devices list is shown before (a) and after (b)
the attack. Galaxy Buds are initially displayed in the connected list before the
attack but not in the connected list after the attack. This is because the attacker
was able to remove Galaxy Buds from the list by exploiting the vulnerability.

As shown in Figure 13, we can see the Bluetooth device in the connected
list before the attack is performed. However, after the attack is performed, the
Bluetooth device is not visible in the connected device list even though the device
can still maintain the connection with the victim device. This vulnerability was
discovered while fuzzing RFCOMM. It was possible to trigger the vulnerability
through a specific packet generated by BTFuzzer’s Profile-based. This attack
can hide the device by sending only one simple packet. We received a 2,000 USD
reward from the Google Android Security Team for reporting this vulnerability.
However, this vulnerability has not been patched yet and detailed information
cannot be disclosed to prevent malicious exploitation.
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4.2 Buffer overflow vulnerabilities

CVE-2020-0022. To demonstrate BTFuzzer’s effectiveness, we conducted fuzzing
tests on a binary containing the BlueFrag vulnerability, a significant Android
Bluetooth vulnerability from 2020. Our goal is to evaluate whether BTFuzzer
can find a known vulnerability effectively. Just less than 5 minutes, BTFuzzer
detected the CVE-2020-0022 vulnerability. Figure 14 displays the crash log for
this vulnerability, triggered by BTFuzzer.

Fig. 14: CVE-2020-0022 crash log.

A-182164132. The out-of-bounds vulnerability was discovered through the BT-
Fuzzer, and the vulnerability was reported to A-182164132. However, it was al-
ready reported as a vulnerability with A-162327732. This vulnerability has been
assigned CVE-2020-27024. CVE-2020-27024 is a vulnerability that can cause
out-of-bounds read due to a missing boundary check in smp_br_state_machine_
event() of smp_br_main.cc, Figure 15 shows the CVE-2020-27024 vulnerability
crash log triggered via BTFuzzer. The vulnerability (i.e., related to the missing
boundary check) is mitigated through Bounds Sanitizer, which is supported from
Android 10. However, it can be still exploited in the previous Android versions
or customized/specialized Android systems forked from the previous Android
versions. This vulnerability can be attacked when the connection handle is 0x02.
Figure 16 shows packets that can reproduce CVE-2020-27024. Sending these two
packets could trigger the CVE-2020-27024 vulnerability.

4.3 Coverage

Code coverage was measured using a log-based approach, in which 31,997 logs
were instrumented into the Android Bluetooth-related code. Fuzzing was carried
out for 24 hours for each of the three methods used to generate packets: mutation-
based, profile-based, and RFCOMM, HFP, and HID. The code coverage was then
measured after each fuzzing run.

Figure 17 shows the change in code coverage over time during fuzzing. Fig-
ure 17(a) shows the total coverage for the 24 hours, which reveals an initial rapid
increase followed by a slower growth rate. Figure 17(b) focuses on the first 10
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Fig. 15: CVE-2020-27024 crash log.

Fig. 16: CVE-2020-27024 trigger packets.

minutes of this period, demonstrating a similar trend: an initial swift rise in
coverage that eventually plateaus.

(a) Total 24 hours (b) First 10 minutes

Fig. 17: Code coverage changes over time. (a) represents the 24-hour coverage
for mutation, RFCOMM, HID, and HFP methods. (b) represents the coverage
changes during the first 10 minutes of the 24-hour period.

Figure 18(a) and (b) present the coverage results of mutation-based and
profile-based (HFP, RFCOMM, HID) fuzzing, respectively. Figure 18(a) illus-
trates the outcomes of profile-based fuzzing, where “Total” denotes the combined
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log results for HID, HFP, and RFCOMM, exceeding the individual log count for
RFCOMM, the highest among them. Each method executed distinct code seg-
ments. Figure 18(b) contrasts mutation-based and profile-based fuzzing. Tests
conducted on the same three types of Bluetooth devices (Galaxy Watch, Galaxy
Buds, and a Bluetooth keyboard and mouse) showed that profile-based fuzzing
achieved more code coverage than mutation-based fuzzing. Although profile-
based fuzzing offers more code coverage, it requires understanding the profile
and creating a packet structure code that aligns with the profile. Conversely,
mutation-based fuzzing, while achieving less code coverage than profile-based
fuzzing, allows fuzzing without profile comprehension. More importantly, each
method executed different code segments, indicating that the two methods are
complementary and could maximize fuzzing code coverage when combined.

Out of the 31,997 logs instrumented, 6,914 were recorded, representing ap-
proximately 21.6% of the total code coverage. Enhanced results are expected
with further profile/protocol testing.

(a) Profile-based coverage (b) Total coverage

Fig. 18: Coverage results for 31,997 instrumented logs. (a) represents the cover-
age of profile-based fuzzing, and (b) compares mutation-based and profile-based
methods.

4.4 Summary of evaluation results

BTFuzzer is an effective tool for finding vulnerabilities in Android Bluetooth
stacks. It found two vulnerabilities in the Pixel 3a, one of which was a new
vulnerability that allowed attackers to hide a Bluetooth device in the list of
Bluetooth-connected devices on a victim’s device. BTFuzzer also detected the
CVE-2020-0022 vulnerability, a significant Android Bluetooth vulnerability from
2020, in less than 5 minutes.

Our evaluation also shows that BTFuzzer’s profile-based fuzzing is more ef-
fective than mutation-based fuzzing at achieving more code coverage. However,
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each approach targeted different code segments, meaning that they are comple-
mentary. We believe that combining both techniques could maximize fuzzing
code coverage.

5 Related work

Research on Bluetooth security is diverse, covering topics such as attacks via ma-
licious devices, vulnerabilities in protocol implementations, and methodologies
for vulnerability analysis, including active fuzzing studies.

One approach focuses on exploiting the Bluetooth function by taking con-
trol of Bluetooth communication authority. Xu et al. [5] describe an attack that
leverages a device’s inherent trust in an already-connected Bluetooth device.
This research suggests that devices better manage Bluetooth function author-
ity, pairing conditions, and the intent of paired devices. A more straightforward
method of identifying vulnerabilities is to analyze Bluetooth protocol implemen-
tations. A notable example is BlueBorne [16], published by ARMIS Lab in 2017,
which examined Bluetooth specifications and identified vulnerabilities and logi-
cal errors. However, auditing the code for the entire Bluetooth specification and
its various profiles is challenging.

Another technique to consider is fuzzing. Mantz et al. [13] introduced a versa-
tile framework for finding vulnerabilities in Bluetooth firmware. Ruge et al. [12]
proposed an advanced, firmware emulation-based fuzzing framework for undis-
closed Bluetooth implementations and firmware. However, these studies focus
on chipset firmware-level security evaluation, not the Bluetooth software stack.
Heinze et al. [14] recently suggested a fuzzing approach targeting specific L2CAP
Channels in Apple’s private Bluetooth stack.

We propose a new approach: a profile-based fuzzing framework for the Blue-
tooth stack. This framework facilitates creating and fuzzing packets for each
Bluetooth profile, enabling comprehensive coverage of various protocols and pro-
files within the Bluetooth stack.

6 Conclusions

As Bluetooth technology becomes ubiquitous and its applications span multiple
devices and functionalities, vulnerabilities in Bluetooth technology have become
high-impact security risks. Despite ongoing research to enhance Bluetooth secu-
rity, new vulnerabilities continue to be discovered and exploited, demanding a
systematic approach to search for vulnerabilities effectively.

We introduce BTFuzzer, a scalable, profile-based fuzzing framework for Blue-
tooth devices. BTFuzzer implements in-device packet transmission, eliminating
the need for complex environment setup. It generates packets according to spe-
cific Bluetooth profiles to maximize code coverage. BTFuzzer has identified a
new vulnerability that allows an attacker’s Bluetooth device to remain concealed
while connected to a victim’s device. Additionally, BTFuzzer has demonstrated
its efficacy by detecting previously disclosed Bluetooth vulnerabilities.
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BTFuzzer is a generic approach and not limited to Android. It is highly con-
figurable, meaning that it can be easily configured to support other operating
systems and protocols. Our preliminary results indicate that BTFuzzer is com-
patible with Linux Bluez, making it a viable tool for evaluating vulnerabilities
in the Linux Bluetooth software stack. Further experimentation with the multi-
tude of Bluetooth profiles will enhance code coverage and enable the discovery
of additional vulnerabilities. We plan to expand our research to other operating
systems, Bluetooth profiles, and other wireless technologies such as NFC, Wi-Fi,
and Zigbee to improve wireless network security.
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Abstract. Recently, many organizations have been installing middle-
boxes in their networks in large numbers to provide various services to
their customers. Although middleboxes have the advantage of not be-
ing dependent on specific hardware and being able to provide a variety
of services, they can become a new attack target for hackers. There-
fore, many researchers have proposed security-enchanced TLS protocols,
but their results have some limitations. In this paper, we proposed a
middlebox-delegated TLS (mdTLS) protocol that not only achieves the
same security level but also requires relatively less computation compared
to recent research results. mdTLS is a TLS protocol designed based on
the proxy signature scheme, which requires about 39% less computation
than middlebox-aware TLS (maTLS), which is the best in security and
performance among existing research results. In order to substantiate the
enhanced security of mdTLS, we conducted a formal verification using
the Tamarin. Our verification demonstrates that mdTLS not only satis-
fies the security properties set forth by maTLS but also complies with
the essential security properties required for proxy signature scheme.1

Keywords: maTLS · Middlebox · Proxy signature · Formal verification

1 Introduction

The advent of the COVID-19 pandemic has instigated substantial transforma-
tions in the business landscape. Notably, a significant proportion of enterprises
have transitioned from conventional in-office working arrangements to facilitat-
ing remote work options for their workforce. Concurrently, the pandemic has
spurred innovative shifts in operational methodologies, exemplified by the sub-
stitution of face-to-face business procedures, historically reliant on in-person
meetings, with video conferencing solutions. As a result of these shifts, there has
been a discernible escalation in network traffic, with notable statistics from the
Telegraph indicating a remarkable 47% surge in internet traffic between 2019
and 2020 [28].

⋆ Corresponding Author
1 All of the formal models and lemmas are open to the public through the following

url https://github.com/HackProof/mdTLS
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Especially during the COVID-19 pandemic, the security of confidential infor-
mation of various companies and individuals has been emphasized as most social
activities, including business, are conducted remotely over the network. Among
the most prominent and widely adopted technologies addressing network secu-
rity concerns during this period is HTTPS (HyperText Transfer Protocol Secure)
[36].

HTTPS represents a communication protocol that integrates the HTTP (Hy-
perText Transfer Protocol) [13] to the TLS (Transport Layer Security) protocol
[10], with the overarching objective of ensuring the confidentiality and integrity
of data transmitted over networks. This protocol finds utility not only in desk-
tops but extends its application domain to encompass a diverse array of embed-
ded devices, including IoT (Internet of Things) devices. HTTPS offers several
fundamental security attributes, including the following:

– Encryption: It serves as a pivotal mechanism within HTTPS, facilitating
the obfuscation of sensitive information by encoding the data exchanged
between communicating entities. Commonly employed encryption algorithms
encompass symmetric key algorithms like Advanced Encryption Standard
(AES) [19].

– Authentication: It constitutes an integral component of HTTPS, operating
to ascertain the identity of entities by utilizing digital certificates.

– Integrity: It is another crucial facet of HTTPS, operating as a mechanism
to detect unauthorized tampering or forgery of messages. Conventional al-
gorithms used to maintain message integrity involve the implementation of
Message Authentication Codes (MACs), such as the Secure Hash Algorithm
(SHA) [9], to uphold the veracity and unaltered state of a network connec-
tion.

According to the Google transparency report, there has been a consistent
increase in the loading speed of HTTPS pages in the chrome browser since 2014
[17]. Moreover, among the top 100 non-Google websites on the internet, which
collectively constitute approximately 25% of global website traffic, 96 websites
have embraced HTTPS, with 90 of them making HTTPS their default protocol.
Additionally, according to Gartner’s article [34], edge computing technology is
anticipated to evolve into a core IT technology. This technology facilitates the
secure communications of data collected through embedded systems deployed
across various domains, relying on TLS protocols. Consequently, TLS commu-
nication is expected to assume an increasingly pivotal role. However, the robust
encryption mechanisms employed by TLS to protect data can also be exploited
by attackers to hide malware within network traffic, thereby evading detection
by conventional security measures. In fact, according to research by Cisco and
Sophos, TLS is vulnerable to detecting malicious traffic, and the number of such
cases continues to increase [5, 14]. As a result, TLS cannot be considered a com-
plete solution against cybersecurity threats.
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For this reason, numerous organizations have deployed specialized middle-
boxes with distinct functionalities designed to enhance security for their clients,
such as firewall and intrusion detection [39]. For instance, some companies have
integrated Transport Layer Security Inspection (TLSI) [30] capabilities into mid-
dleboxes to identify and intercept malicious traffic attempting to infiltrate their
internal networks. TLSI represents a technology devised to thwart unauthorized
actions perpetrated by hackers on encrypted network traffic, and numerous en-
tities, including industry giants such as Microsoft, are actively leveraging this
technology [27].

However, according to a survey conducted in the United States, more than
70% of employees still believe that hackers can exploit middleboxes. Also, 50%
of the respondents answered that their personal information could be infringed
by exploiting vulnerabilities in the middleboxes [33]. Ironically, middleboxes, ini-
tially installed to fortify data security within TLS communications, have emerged
as potential targets for cyberattacks. Consequently, safeguarding data trans-
mitted over TLS communications necessitates a holistic approach considering
network components, such as middleboxes, from the inception of communica-
tion channel construction. This approach goes beyond simply installing security-
hardened components into an existing network.

As a consequence, numerous researchers have proposed a range of TLS exten-
sion protocols to enhance security during communication via the TLS protocol.
However, prior research endeavors, driven primarily by a pursuit of security,
have inadvertently encountered performance-related challenges. In this study,
we will introduce the mdTLS protocol, which is meticulously designed based on
the proxy signature scheme. The mdTLS is subject to comparative evaluation
against maTLS [24], widely recognized as the most exemplary among prior re-
searches in terms of both security and performance. First, we investigated the
amount of arithmetic operations that must be performed for each designed pro-
tocol to compare the performance of the mdTLS and maTLS protocols. We then
formally verified that the mdTLS satisfies not only the security properties veri-
fied in maTLS, but also three other security properties related to the proxy sig-
nature scheme. To ensure methodological consistency in our experimental setup,
we employed the Tamarin [26, 37, 40], utilized in prior maTLS research, during
the security analysis.

The remainder of the paper is organized as follows. First, we analyzed the
strengths and weaknesses of related works (Section 2). Next, we introduced our
mdTLS protocol (Section 3). After that, we compare the performance between
maTLS and mdTLS (Section 4). In Section 5, we verified our protocol using
Tamarin (Section 5). We showed that the performance can be further improved
when the Schnorr digital signature is used in the protocol (Section 6). Finally,
we present our concluding remarks (Section 7).
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2 Related works

Many researches have been conducted to improve TLS protocol. They are catego-
rized into two types. One is the TLS-encryption extension-based approach. Their
research is to improve the mechanism itself inside the protocol. The other one
is the Trusted Execution Environment (TEE) based approach. Their research is
to improve the protocol by using specific hardware.

2.1 TEE based approaches

A typical example of the Trusted Execution Environment (TEE) based approach
is SGX-Box [18]. It utilized the remote attestation of Intel SGX. The server
performs remote attestation to verify the integrity of the SGX-Box module in
middleboxes. If remote attestation succeeds, they create a secure channel to
prevent sensitive information from leaking between them. However, it is limited
in that it is too dependent on its specific hardware (Intel SGX). Besides SGX-
Box, there are many researches such as STYX [42], EndBox [16], and ShieldBox
[41]. However, they also had the same limitations mentioned above.

2.2 TLS-extension based approaches

A typical example of the TLS-extension approach is SplitTLS [20]. In SplitTLS,
middleboxes act as servers and clients at the same time. This feature gives them
too many privileges. It can cause some security incidents. For example, middle-
boxes such as CDN service providers could receive the private key to act as a
server. It accidentally exposes the private key during the key-exchange phase.
The worst thing is that when the middleboxes become compromised, malicious
users (attackers) could abuse their privileges. Unlike SplitTLS, mcTLS [32] pro-
vides the least privilege to middleboxes. Middleboxes can read or write the TLS
payload by obtaining MAC key pair from each endpoint. For example, they can
only read the TLS packets when they get a unique key for reading. The advan-
tage of mcTLS is that it does not force middleboxes to create or install further
objects. Since the mcTLS uses only one key when creating a session, it is con-
sidered insecure. In the performance view, it has a limitation in that additional
latency occurs when establishing the first connection. Furthermore, it does not
follow TLS standards. David Naylor, who had proposed mcTLS, proposed an
extended version of mcTLS called mbTLS [31]. mbTLS was created to improve
compatibility with TLS standards. mbTLS establishes two types of sessions.
One is the mbTLS session, and the other is the standard TLS session. If one
of the endpoints does not use mbTLS, then traditional TLS sessions are acti-
vated. Overall, mbTLS offers improvements over mcTLS, which causes latency
when adding a secondary session. maTLS [24] is another extended protocol to
address security issues in SplitTLS. It treats middleboxes as equivalent entities
to the server and includes them in the TLS session. As the server’s certificate,
middleboxes’ certificates are issued by the Certificate Authority (CA), and by
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introducing the Middlebox Transparency (MT) log server, the middleboxes cer-
tificate contains a Signed Certificate Timestamp (SCT) [2, 23]. This guarantees
middleboxes’ audition and improves the reliability of the middleboxes’ certifi-
cates. Also, unlike SplitTLS, this procedure shows middleboxes can create their
own official certificates without using custom root certificates or server certifi-
cates. However, these security elements entail performance issues. To make every
session in each section, maTLS handshakes are essential between every entity.
This is why maTLS’s initial handshake takes more time than the original version
of TLS.

3 mdTLS: middlebox-delegated TLS protocol with proxy
signature scheme

In this section, we described the mdTLS protocol. At first, we defined the adver-
sary model and security goals related to the mdTLS. After that, we described
each phase in the protocol in detail.

3.1 Adversary model

We considered the attacker’s capability under the Dolev-Yao model [11]. Attack-
ers can obtain and analyze messages in the network. Furthermore, they can get
public keys. They aim to obtain certificates, perform an impersonation attack
via forged certificates, and reveal private keys.

3.2 Security goal

TLS currently provides the following properties in multi-party cases. Among
them, we define "secure" for mdTLS by extending three security properties to
cover the "delegation" concept.

Authentication: The notion of authentication was defined as that every entity
must be able to verify whether they are talking to the "right person". This goal
was divided into two sub-goals. First, each entity(client or server) can verify
whether the other endpoint is operated by the expected middleboxes. It is called
entity authentication. Second, If a session between two endpoints consists of an
ordered set of middleboxes MB1 ... MBn−1, then any data received by MBj

must be a prefix of the data sent by MBj−1 or MBj+1, where 1 < j < n− 1. It
is called data authentication. We refined entity authentication into two security
goals. First, the client ensures the delegated middleboxes by verifying the warrant
in signature. It is called verifiability. Second, each middlebox can be identified as
an appropriately delegated middlebox by checking its public key from the proxy
signature. It is called strong-identifiability.
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Secrecy: The notion of secrecy can be defined as that adversaries should learn
nothing more from observing ciphertext in network connections. This goal is
divided into two sub-goals. First, each mdTLS segment sent from entities should
be encrypted with a strong ciphersuite. It is called segment secrecy. Second, each
segment should have its own security parameters, such as a unique session key,
to prevent the data from being reused. It is called individual secrecy.

Integrity: The notion of integrity means that only authorized or delegated en-
tities can make or modify messages under their permissions. This goal is divided
into two sub-goals. First, the entity can confirm which middleboxes have made
each modification to the message. It is called modification accountability. Sec-
ond, endpoints can determine the list and order of middleboxes that messages
pass through. It is called path integrity. In mdTLS, we defined one security goal
additionally. Delegated middleboxes can generate valid signatures. It means, in
converse, undelegated entities cannot modify messages because they cannot gen-
erate and verify the signatures. Hence, it is called strong-unforgeability.

3.3 Overview of mdTLS protocol

The mdTLS applies a proxy signature scheme based on the partial delegation
with warrant [6, 22, 25] to improve performance while having the same security
level as maTLS.

Proxy signature scheme [25] is a technique in which a proxy signer electroni-
cally signs on behalf of the original signer. When the original signer is temporarily
absent, a proxy signer receives signature authority from the original signer and
performs the proxy signing. This signing authority delegation technique can be
used in various distributed systems, such as edge computing. There are four types
of delegation in the proxy signature scheme: full delegation, partial delegation,
delegation by warrant, and partial delegation with warrant [22, 25].

– Full delegation: The proxy signer uses the original signer’s private key to
generate the proxy signature.

– Partial delegation: This method generates a proxy signing key using the
private keys of both the original and the proxy signers. The advantage is
that it can prevent the original signer from arbitrarily proxy signing, but
there is no way to revoke or limit proxy signing authority.

– Delegation by warrant: This method uses a warrant that specifies the proxy
delegation period and message space to limit proxy signing authority. It
can compensate for the shortcomings of partial delegation, but performance
in verification deteriorates because the verifier must additionally verify the
warrant when verifying the proxy signature.

– Partial delegation with warrant: Kim et al. [22] first introduced this type of
delegation. This method utilizes the advantages of both partial delegation
and delegation by warrant. Proxy signing authority can be restricted or re-
voked through a warrant. Additionally, since this method only verifies the
proxy signature, the verification efficiency can be improved.
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The details of the mdTLS are shown in Figure 1, 2. For reader’s convenience,
notation definitions are listed in Table 1. mdTLS is divided into 3 phases.

– Generating certificates phase: Before negotiation, server certificates are gen-
erated.

– Handshake phase: Negotiation between two endpoints on a network – such
as a client and a server – to establish the details of their connection. During
handshake, ECDH and ECDSA [21, 29] are used in key exchange and digital
signature, respectively.

– Record phase: Data communications are encrypted between the two entities.

The following statements below Table 1 are detailed sequences in which each
entity establishes a secure communication channel based on the mdTLS.

Table 1: Notations in mdTLS
Notation Meaning

Entities

C Client
S Server

MBi i-th middlebox (0 < i < n)
ei i-th entity (e0: client, en: server)

ECDH (dexei , Q
ex
ei ) ei’s ECDH key pairs

ECDSA

p A prime number
E An elliptic curve on Fp

q A field size (prime number)
G A base point on E having prime order q
dei A private key with 0 < dei < q
Qei A public key with dei ·G on E
H Cryptographic hash function ({0, 1}∗ → Fq)

SH(dei ,m) Sign message m with private key dei using H

V H(Qei ,m, σ) Verify signature σ generated by SH(dei ,m)

Proxy-
signature

PS(skp,m)
Proxy signing the message m with proxy signing key
skp

PV (Qei ,m, σp) Proxy verification for proxy signature σp, with Qei

Phase 0. Generating certificates

1. Server sends Certificate Signing Request (CSR) to Certificate Authority
(CA).

2. CA verifies CSR, creates pre-certificates, and submits to the Certificate
Transparency (CT) log server to get SCTs [2].

3. After the CT log server adds pre-certificates to the logs, it returns SCTs to
CA. Due to the Certificate Transparency policy [2, 23], at least 2 SCTs from
different CT log servers are required for certificates.

4. Using the X.509 v3 [7] extension, CA attaches SCTs to the certificate and
issues the certificate to the server.
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Fig. 1: Handshake phase of mdTLS

Phase 1. Handshake

1. Client generates ECDH key pair, and the public key Qex
C will be sent by

ClientHello message.
2. Middleboxes attach their two types of keys to the ClientHello message. One is

ECDH public key, Qex
MBi

, and the other is ECDSA public key, QMBi
, which

will be used in the proxy signature scheme.
3. Server, the original signer, also creates its ECDH and ECDSA key pairs

as middleboxes. When the server receives a ClientHello message, it operates
the designation process to delegate middleboxes as proxy signers. Outputs
of this process are called signed delegations σd_MBi

. For delegation, the
server has to sign the hash value of the delegation message. This message
consists of QS , the identity of proxy signer IDMBi

, QMBi
, and a warrant

ω containing the message space and delegation period. In addition, 0 is
prepended to represent that it is for the proxy signature scheme. σd_MBi

can be represented as (xYd
, sd) according to ECDSA form. Signed delegations

will be sent by ServerHello message with Qex
S .

– σd_MBi
← SH(dS , 0||QS ||IDMBi ||QMBi ||ω)

• random value yd ( 0 < yd < q)
• Yd ← yd ·G
• xYd

← x-coordinate of Yd

• c ← H(md) (md = 0||QS ||IDMBi ||QMBi ||ω)
• sd ← (c+ dS · xYd

) · y−1
d mod q

• ∴ σd_MBi
= (xYd

, sd) = signed delegation
4. Middleboxes attach their own ECDH public key Qex

MBi
to the ServerHello

message. Then, middleboxes check whether signed delegations from the server
are valid. If validation succeeds, middleboxes generate their proxy signing key
skpMBi

.
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– skpMBi
← (QS ||IDMBi

||QMBi
||ω, xYd

, t)

• c ← H(md) (md = 0||QS ||IDMBi
||QMBi

||ω)
• r ← H(QS ||IDMBi ||QMBi ||ω||c)
• t ← r + dMBi ·H(Yd||ω) mod q

∗ Yd ← yd ·G = s−1
d · (c+ dS · xYd

) ·G
5. Due to the ServerCertificate message, the server sends its certificate CertS

to the client and middleboxes. Middleboxes generate their own certificates
CertMBi

by proxy signing the received server’s certificate. Then, their cer-
tificates are sent to the client by appending to the ServerCertificate message.
– PS(skpMBi

, CertS) returns CertMBi
, which can be shown as below:

• (IDMBi , QMBi , ω, (xYd
, sd), S

H(t, 0||CertS ||QS ||IDMBi ||QMBi ||ω||xYd
||sd||r))

∗ (xYp , sp) ← SH(t, 0||CertS ||QS ||IDMBi ||QMBi ||ω||xYd
||sd||r)

6. The client, a verifier, verifies certificates to authenticate entities in TLS ses-
sion. Unlike CertS , the client has to use proxy verification, PV , to verify
CertMBi

, which requires the client to generate proxy public keys PKPMBi

corresponding to each middleboxes. With PKPMBi
, the client verifies CertMBi

.
– PV (QS , CertS , CertMBi)

• CertMBi
← (IDMBi

, QMBi
, ω, (xYd

, sd), (xYp
, sp))

• If CertS /∈ ω then return false;
• Else PKPMBi

← r ·G+H(s−1
d · (c ·G+ xYd

·QS)||ω) ·QMBi
;

∗ c ← H(0||QS ||IDMBi ||QMBi ||ω), r ← H(QS ||IDMBi ||QMBi ||ω||c)
• V H(PKPMBi , 0||CertS ||QS ||IDMBi ||QMBi ||ω||xYd

||sd||r, (xYp , sp))

7. Server sends ServerFinished message with security parameter block (SPB).
These blocks consist of signatures of HMAC. This HMAC generates au-
thentication code from security parameters such as ciphersuite and hand-
shake messages. For middleboxes, they have to proxy sign their blocks with
their generated skpMBi

. For a client, it must verify middleboxes’ signed
blocks with its generated proxy public keys PKPMBi

.

Phase 2. Record

– Modification log is attached to the message and helps to check whether a
message is modified. Besides, endpoints can also check whether unauthorized
entities modify messages without permission.

Fig. 2: Record phase of mdTLS
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4 Performance analysis for mdTLS

In this section, we analyzed the performance of the mdTLS by conducting a
comparative analysis with maTLS, which we consider to be among the best of
the existing TLS-extension protocols. Our performance analysis is focused on the
number of computations in protocols. Both mdTLS and maTLS rely on ECDSA
for the generation of security parameters. ECDSA, being based on the Elliptic
Curve Discrete Logarithm Problem (ECDLP), involves a substantial number of
point multiplication operations. These operations can significantly influence the
performance of both protocols. Therefore, we conducted a performance analysis
employing algorithms capable of measuring the number of point multiplication
operations. It is important to note that this analysis is based on server-only
authenticated TLS version 1.2 and assumes that 3 SCTs are created for each
certificate through the Certificate Transparency policy [1–3, 23].

4.1 Preliminaries for performance analysis

To facilitate performance comparisons between two protocols that offer the same
128-bit security strength, we have set the elements within the protocols, as shown
below [12].

– Types of elliptic curve: Secp256r1
– Private key size: 256 bits
– Hash size: 256 bits

4.2 Analyzing the performance between maTLS and mdTLS

To measure the number of point multiplication operations, we employed the
double-and-add algorithm, which averages 1 point doubling and 0.5 point ad-
ditions per bit. Therefore, we considered an average of 1.5 point multiplication
operations per bit. Following this, we divided the protocol into two segments
and measured the number of point multiplication operations. The first segment
corresponds to the generation and verification of certificates for utilization in the
handshake phase. The number of computations for each protocol in this segment
is detailed in Table 3 and 4 below. The second segment is where entities (server,
client, middlebox) create and verify security parameters to be exchanged at the
handshake phase. The number of computations for each protocol in this segment
is detailed in Table 2 below.

Table 2: Computational analysis for security parameter blocks
Descriptions maTLS mdTLS

Server generates security parameter blocks. 384 384
Middlebox generates security parameter blocks. 384N 384N
Client verifies blocks from the server. 768 768
Client verifies blocks from the middleboxes. 768N 768N
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Table 3: Computational analysis for generating certificates
Descriptions maTLS mdTLS

- Server side
Server generates keys and signature for CSR to CA. 768 768
CA verifies CSR signature. 768 768
CT log servers generate keys and signatures for 3 SCTs. 2,304 2,304
CA generates keys and signs for server’s certificate. 768 768
- Middlebox side for maTLS
Middleboxes generate keys and signature for CSR to CA. 768N -
CA verifies CSR signature. 768N -
MT log servers generate keys and signatures for 3 SCTs. 2,304N -
CA generates keys and signs for middleboxes’ certificate. 768N -
- Middlebox side for mdTLS
Each middlebox generates its keys. - 384N
Server generates signed delegations to assign proxy signers. - 384N
Middlebox verifies signed delegation and generate proxy signing key. - 768N
Middleboxes generate certificates with proxy signing key. - 384N

Table 4: Computational analysis for certificates verification
Descriptions maTLS mdTLS

Client verifies the signature and 3 SCTs in the server’s certificate. 3,072 3,072
Client verifies the middleboxes’ certificates. 3,072N 2,304N

(a) Certificate generation (b) Certificate verification

(c) Security parameter blocks (d) Overall performances

Fig. 3: Performance of protocols when using ECDSA
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We have implemented certain components essential for the functionality of
mdTLS. We mainly implemented internal functions for computing data required
during the handshake phase, such as key or signature generation and verification.
We implemented and analyzed its performance within a virtual environment,
specifically using docker container. The rest of our testbed in docker image is as
follows:

– Ubuntu 22.04.3 LTS
– Intel(R) Core(TM) i5-10400 CPU @ 2.90GHz
– 2GiB RAM

Table 5: Average execution time in implementation
Features maTLS mdTLS

ECDSA signing 1.4ms 1.4ms
ECDSA verification 2.5ms 2.5ms

Proxy signing - 1.6ms
Proxy verification - 8.9ms

Table 5 shows the time spent when signing and verifying the CSR files.
Since the proxy signature scheme requires additional keys, the execution time of
mdTLS is longer than maTLS. However, by reusing these keys when processing
the security parameter block, the execution time of mdTLS can become similar
to maTLS.

5 Security analysis for mdTLS

In this section, we conducted a security analysis of mdTLS using an approach
similar to the one employed for maTLS [24], involving formal specification and
verification through the Tamarin [40]. Tamarin is an automated formal veri-
fication tool based on multiset rewriting rules in the theory of equations. It
has been continuously updated to maintain its effectiveness. Using this tool,
maTLS formally verified six security lemmas: server authentication, middlebox
authentication, data authentication, path integrity, path secrecy, and modification
accountability. In the case of mdTLS, we successfully verified not only the same
lemmas as previously done in maTLS but also three novel lemmas related to
the proxy signature scheme following the same approach and tools: verifiability,
strong-unforgeability, and strong-identifiability. However, in this paper, we only
described three novel lemmas related to the proxy signature scheme, taking into
consideration the maximum page limit imposed by the conference guidelines.
The rest can be found on our GitHub [4].

Session 3 - 3 The 26th Annual International Conference on Information Security and Cryptology

ICISC 2023194



mdTLS: How to make middlebox-aware TLS more efficient? 13

5.1 Experimental setup

To analyze the security of the mdTLS, we established an experimental environ-
ment, as illustrated below. Our goal was to confirm that the formal model of
mdTLS aligns with the security lemmas within our testing environment.

– Amazon Elastic Compute Cloud (Amazon EC2) c5a.24xlarge instance
– 96 vCPUs, 192 GiB RAM
– Ubuntu 22.04.2 LTS

5.2 Formal specification

We have formalized the mdTLS, specifying the detailed operations conducted
by each entity during the handshake and record phases in the form of rules.
For cryptographic primitives like hash, signature, and PRF (Pseudo-Random
Function) [15], we used the built-in functions provided by Tamarin. Details of
all rules can be found in the spthy file uploaded to our github [4]. The script
below illustrates an example of the detailed operations concerning ServerHello
messages. In the handshake phase, when the server receives a ClientHello mes-
sage from the client, it responds by sending a ServerHello message to initiate
mutual authentication. In this process, mdTLS sends a ServerKeyExchange mes-
sage, a signed delegation, a Diffie-Hellman public key, and a ServerCertificate
message. The delegation in this context consists of the server’s public key, the
middlebox’s public key and identification information, and a warrant providing
an explanation of the delegation.

rule Server_Hello:
let

server_hello_msg
= < ’server_hello’, ~ns, server_chosen_details >

...
server_key_exchange = s_dhe_pub
server_key_exchange_signed

= < server_key_exchange, sign(h(server_key_exchange)
, ltk) >

server_cert = < $S, pk(ltk) >
warrant = ~warrant_fresh
proxy_delegation = < pk(ltk), $M, mb_pubkey, warrant >
proxy_delegation_signed = sign(h(proxy_delegation), ltk)

Y_d = calcY_d(~y, ’G_skp’)
y_d_x = pointx(Y_d)
c = h(proxy_delegation)
s_d = multp( plus(multp(ltk, y_d_x), c), inv(~y) )
proxy_delegation_signed_pair
= < proxy_delegation, proxy_delegation_signed, <y_d_x, s_d> >

in
[ In( <mb_client_hello_msg, c_mb_extension> )

, !PrivateKey(’server’, $S, ltk) ]
--[

ServerSendDelegation(ltk_pub, mb_pubkey, warrant, proxy_delegation)
]->
[ Out( <server_hello_msg, server_key_exchange_signed

, proxy_delegation_signed_pair, s_extension
, server_cert> ) ... ]
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5.3 Formal verification

A Tamarin-based formal model is a set of multiple rules, and these single rules are
made up of three basic components. Facts represent detailed information about
the current execution in the model. States are multisets of facts. During formal
verification, user-defined functions called rules can add or remove facts from the
state. This is often denoted as l →[a] →r, indicating that fact "l" is removed
from the state and replaced by fact "r," with this process traced through the
action denoted as "a." Tamarin, following these principles, can verify whether a
lemma, which is desired to be satisfied throughout the protocol, holds even as the
state changes in the operation. Tamarin’s verification process is based on tracing
the protocol’s state through actions. To evaluate the security of our protocol,
we defined nine security lemmas and one source lemma. Among them, security
lemmas consist of six security lemmas of maTLS and three security lemmas
related to the proxy signature scheme. As previously noted, we described three
security lemmas associated with proxy signatures. Prior to describing them, we
described an additional description of a source lemma designed to assist Tamarin
in accurately verifying the formal specifications.

Source lemma. A source lemma is a concept used for formally verifying the secu-
rity lemmas that a security protocol must adhere to during its execution. When
conducting formal verification of an overall protocol, Tamarin adopts a strategy
of deconstructing the protocol into smaller, more manageable components for
analysis. The verification outcomes for these individual subsets are then used
as supporting evidence to confirm that the entire protocol operates correctly
and meets its prescribed security lemmas. However, during the verification pro-
cess of these subsets, if Tamarin encounters difficulties in distinguishing between
variables as nonce values or ciphertexts, it may face challenges in completing
the verification. This is commonly referred to as a "partial deconstruction". To
address such issues, it becomes necessary to establish a source lemma that pre-
cisely specifies the origin of these variables. From this source lemma, a refined
source is generated, comprising a new set of sources. All security lemmas are
subsequently verified using these refined sources, underscoring the importance
of validating the source lemma to ensure the accurate computation of these re-
fined sources [8, 40]. When we initially omitted the definition of source lemmas,
the formally specified mdTLS model yielded 120 partial deconstructions. Con-
sequently, we defined source lemmas to enable Tamarin to discern the origins
of these problematic variables. Upon closer analysis, it was determined that the
issue of partial deconstruction occurred in 4 distinct segments, one of which per-
tained to the scenario where a middlebox received an encrypted request message
sent by the client. To resolve this particular issue, we formulated a source lemma
indicating that the encrypted message enc received by the middlebox had been
transmitted from the client through the OutClientRequest() action, as shown
below. By employing this approach, we could generate refined sources in a state
of "deconstructions completed". This strategic use of source lemmas proved in-
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strumental in addressing the partial deconstruction challenge and facilitating the
successful verification process within the mdTLS model.

All enc msg #i.
InMbClientRequest( enc, msg ) @ i
==> (Ex #j. KU(msg) @ j & j < i)

| (Ex #j. OutClientRequest( enc ) @ j & j<i)

Security lemma. After resolving the partial deconstruction issue, we verified
that our protocol meets the nine security lemmas outlined in Section 3.2. In
this section, we define three of the nine security goals related to proxy signature
scheme. We also defined detailed information about the formulas that convert
informal definitions into mathematical formulas called lemmas.

- Verifiability: The client must verify whether the middlebox’s certificate, the
proxy signature, was created with the consent of the server. To verify this lemma,
we have to check whether the middlebox generated its certificate based on delega-
tion and warrant sent by the server through the ServerHello message, as specified
in rule Server_Hello.

All warrant mbLtk mbCert #tc.
ClientReceivedProxySign(warrant, pk(mbLtk), mbCert) @tc
==> Ex delegation gy #tmb.

MbGenerateProxySign(delegation, mbLtk, gy, warrant, mbCert)
@tmb & KU(gy) @tmb & not(Ex #tmb. KU(mbLtk) @tmb)
==> Ex sPub #ts.

ServerSendDelegation(sPub, pk(mbLtk), warrant, delegation)
@ts & (#ts < #tmb) & KU(sPub) @ts

- Strong-unforgeability: The proxy signer’s private key, which is used to generate
the proxy signature, must not be revealed. Otherwise, the proxy signature can
be forged by an adversary.

All warrant mbLtk mbCert #tc.
ClientReceivedProxySign(warrant, pk(mbLtk), mbCert) @tc
==> All delegation gy sPub #tmb.

(MbGenerateProxySign(delegation, mbLtk, gy, warrant, mbCert) @tmb
& KU(gy)@tmb & not(Ex #tmb.KU(mbLtk) @tmb))

& (MbReceiveProxyDelegation(sPub, pk(mbLtk), delegation) @tmb)
==> All #ts.

ServerSendDelegation(sPub, pk(mbLtk), warrant, delegation)@ts & KU(sPub)@ts
==> Ex #tmbclient. MbSendPublicKey(pk(mbLtk)) @tmbclient

& KU(pk(mbLtk)) @tmbclient

- Strong-identifiability: The identification of a proxy signer can be proved by its
public key. The public key of the middlebox included in the proxy signature sent
to the client must be the same as the public key of the middlebox sent to the
server for proxy delegation.
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All warrant mbPub mbCert #tc.
ClientReceivedProxySign(warrant, mbPub, mbCert)@tc
==> All delegation mbLtk gy sPub #tmb.

(MbGenerateProxySign(delegation, mbLtk, gy, warrant, mbCert)
@tmb & KU(gy)@tmb & not(Ex #tmb. KU(mbLtk) @tmb))

& (MbReceiveProxyDelegation(sPub, pk(mbLtk), delegation) @tmb)
==> All #ts.

ServerSendDelegation(sPub, pk(mbLtk), warrant, delegation)
@ts & KU(sPub)@ts
==> Ex #tmbclient. MbSendPublicKey(pk(mbLtk)) @tmbclient

& KU(pk(mbLtk)) @tmbclient & (mbPub = pk(mbLtk))

Results of verification The overall result of formal verification is shown in Fig-
ure 4. Figure 4 illustrates that our mdTLS protocol not only satisfies the three
security lemmas introduced above but also aligns with the lemmas validated
for maTLS. Furthermore, Figure 5 shows mathematical proofs (verification pro-
cess) demonstrating the consistent validity of the verifiability lemma within our
mdTLS protocol among the security lemmas outlined in Figure 4.

Fig. 4: Overview of formal verification results

As mentioned earlier, Tamarin formally verifies whether the rules always sat-
isfy the lemma, called validity. A typical approach to verifying validity is negat-
ing the formulas and checking for inconsistencies. Figure 5 shows the negated
lemma for verifiability, followed by verifying whether this formulation leads to
contradictions. Following this process, we have validated all six security lemmas
mentioned earlier.
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Fig. 5: Proof of verifiability lemmas in Tamarin

6 Discussion

We proposed an ECDSA-based cryptographic protocol. However, during the re-
search, we found new insights for improvement. The insight is to use the Schnorr
algorithm instead of ECDSA for the algorithm that generates the digital signa-
ture. Boldyreva et al.’s research [6] used Schnorr signature, and they shows better
outcomes in terms of both performance and security than ECDSA.

– Performance: Schnorr does not have modular inverse calculations that sig-
nificantly affect performance.

– Security: Since Schnorr is strongly unforgeable under chosen message attack
(SUF-CMA), Schnorr is provably secure in the random oracle model [35].

So we compared the performance of the maTLS and mdTLS protocols as-
sumed that both protocols use the Schnorr signature. To measure the perfor-
mance of Schnorr, the number of modular multiplication operations was cal-
culated using the square-and-multiply algorithm. This algorithm requires 1.5
modular multiplications per bit on average. Besides, as mentioned in Schnorr’s
paper [38], we calculated the modular multiplications of the Schnorr verification
equation by multiplying by 1.75 per bit. When the security level is set to 128-bit,
the related parameters’ sizes can be shown below [12].

– Public key size: 3,072 bits
– Private key size: 256 bits
– Hash size: 256 bits
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Table 6 shows the number of modular multiplications at each stage. Here, N
represents the number of middleboxes. The mdTLS reduces the number of mod-
ular multiplications by 51.8% compared to maTLS, demonstrating better per-
formance when using Schnorr than when using ECDSA. Nevertheless, the TLS
standard mandates the utilization of the ECDSA algorithm for digital signature
creation, rendering the adoption of the Schnorr signature algorithm impractical
now.

Table 6: Modular multiplications in maTLS and mdTLS
Stages maTLS mdTLS

Certificate generation 4,293N + 4,293 1,603N + 4,293
Certificate verification 1,792N + 1,792 897N + 1,792

Security parameter blocks 833N + 833 833N + 833
Overall 6,918N + 6,918 3,333N + 6,918

(a) Certificate generation (b) Certificate verification

(c) Security parameter blocks (d) Overall performances

Fig. 6: Performance of protocols when using Schnorr
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7 Conclusion

In this paper, we proposed a middlebox-delegated TLS protocol in which only
middleboxes that have been permitted can participate in the network. To demon-
strate the excellence of our proposed protocol, we verified our protocol from two
aspects of view: performance and security. In the performance view, we calcu-
lated the number of computations in the protocol. We found that the mdTLS
reduces about 39% of the computations compared to maTLS. Also, we formally
verified that our proposal achieved nine security lemmas: server/middlebox/data
authentication, path integrity, path secrecy, modification accountability, verifiabil-
ity, strong-unforgeability, and strong-identifiability. Especially among them, the
latter three security lemmas are newly defined for our protocol by extending
existing concepts. The primary contribution of this work is to show that using
the proxy signature scheme can enhance performance efficiency and maintain its
security level.
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Abstract. Firmware fuzzing aims to detect vulnerabilities in firmware
by emulating peripherals at different levels: hardware, register, and func-
tion. HAL-Fuzz, which emulates peripherals through HAL function han-
dling, is a remarkable firmware fuzzer. However, its effectiveness is con-
fined to firmware solely relying on HAL functions, and it necessitates
intricate firmware information for best outcomes, thereby limiting its
target firmware range. Notably, in commercial firmware, both HAL and
non-HAL (which we call “pseudo-HAL”) functions are prevalent. Identi-
fying and addressing both is crucial for comprehensive peripheral control
in fuzzing. In this paper, we present PHI, a tool designed to identify
HAL and pseudo-HAL functions at the register level. Using PHI, we de-
velop PHI-Fuzz, an enhanced firmware fuzzer operating at the function
level. This fuzzer efficiently manages HAL and pseudo-HAL functions,
demanding minimal prior knowledge yet delivering substantial results.
Our evaluation demonstrates that PHI identifies HAL functions accessing
the MMIO range as effectively as LibMatch of HAL-Fuzz, while over-
coming its constraints in detecting pseudo-HAL functions. Significantly,
when benchmarked against HAL-Fuzz, PHI-Fuzz showcases superior
bug-finding capabilities, uncovering crashes that HAL-Fuzz missed.

Keywords: Security, Firmware, Fuzzing, Hardware Abstraction Layer

1 Introduction

Embedded devices play a crucial role in various applications, including the
Internet of Things (IoT), aviation, and weapons systems. According to State
of IoT—Spring 2023 [1] report, there was an 18% growth in the number of
global IoT connections during 2022, resulting in a total of 14.3 billion active
IoT endpoints. However, when compared to the total vulnerabilities discovered,
firmware vulnerabilities have consistently accounted for about 2% each year since
2017, and as of 2023, 2.41% of firmware vulnerabilities have been identified [2].

⋆ Equal contribution.
⋆⋆ Corresponding author.
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Firmware vulnerabilities, which can result from system crashes, reboots, and
hangs, are exploitable by attackers aiming to compromise embedded devices.
This poses a significant risk to society, thus necessitating dynamic analysis and
proactive detection through firmware fuzzing [14,19,20].

Fuzzing, a dynamic bug-finding technique, provides random input values to
a program and monitors its executions. AFL (American Fuzz Lop) [24] is a
coverage-guided fuzzer that has demonstrated high performance in general soft-
ware fuzzing and can also be utilized for firmware fuzzing on microcontroller
units (MCU) [16, 20, 25]. However, exploring firmware vulnerabilities through
fuzzing techniques can be challenging, particularly for embedded devices with
inherent limitations. To address these challenges, recent firmware fuzzing re-
search has proposed emulation-based fuzzing [10–13,18,26]. Firmware emulation
enables fuzzing on devices with sufficient power and capacity. Nonetheless, us-
ing a general emulator like QEMU [9] can lead to execution failures due to
undefined peripheral access during firmware fuzzing. Consequently, how emula-
tors handle peripherals is crucial for successful firmware emulation and fuzzing.
Emulation through Hardware-In-The-Loop (HITL) method can result in per-
formance degradation due to communication between hardware and the emula-
tor [19]. Recent studies have focused on peripheral modeling as a way to over-
come this limitation. Peripheral modeling techniques can be classified into three
types: hardware-level, function-level, and register-level modeling. Function-level
and register-level modeling do not require hardware during the modeling phase,
resulting in better performance for firmware emulation and fuzzing.

Function-level peripheral modeling involves emulating firmware by hooking a
function during emulation and connecting pre-made handlers. Register-level pe-
ripheral modeling handles each register during emulation. Compared to register-
level modeling, function-level modeling boasts faster processing, as peripheral
functions accessing Memory-mapped I/O (MMIO) are processed with a han-
dler. HALucinator, a firmware emulator, implements function-level peripheral
modeling using Python handlers achieved through Hardware Abstraction Layer
(HAL) function hooking [11]. Building upon this concept,HAL-Fuzz, a firmware
fuzzer, integrates HALucinator with UnicornAFL [3]. HALucinator and HAL-
Fuzz identify functions to be hooked using LibMatch [4], a HAL function
identification tool. Although LibMatch can identify HAL functions, it requires
a software development kit (SDK) containing HAL function object files com-
piled in the same environment as the target firmware. As a result, LibMatch
needs extensive information about the firmware despite its limited capabilities
in identifying functions.

Many modern firmware implementations utilize not only HAL but also pseudo-
HAL functions. Consequently, LibMatch may not fully identify all functions in
the firmware, limiting the effectiveness of HALucinator and HAL-Fuzz. Addi-
tionally, obtaining detailed information about firmware compilation options can
be challenging, and the scripts used in LibMatch are often not openly avail-
able. This makes it difficult to use LibMatch in an ideal operating environ-
ment. To overcome these limitations, we propose the Pseudo-HAL Identification
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(PHI) program, which leverages symbolic execution to identify HAL and pseudo-
HAL functions at the register level without relying on specific firmware compila-
tion environments or firmware stripping. Furthermore, we introduce PHI-Fuzz,
a function-level firmware fuzzer based on HAL-Fuzz that utilizes PHI’s results.
With the scalability provided by PHI, PHI-Fuzz can perform more efficient and
effective fuzzing compared to existing function-level firmware fuzzers.
Contribution. This paper makes the following contributions.

– Pseudo-HAL Identification We propose PHI, a register-level function
identification method for more scalable function-level peripheral modeling.

– PHI-Fuzz We propose PHI-Fuzz, an enhanced and scalable firmware fuzzer
operating at the function level by leveraging PHI.

– For further research, we will release our tool at publication time.

Organization. This paper is organized as follows. Section II provides the nec-
essary background and discusses the existing problems. Section III presents the
design of the proposed system. Section IV describes the implementation of the
system. Section V presents the evaluation of the system. Section VI provides a
discussion of the results and limitations. Section VII reviews the related work.
Finally, Section VIII concludes the paper.

2 Motivation

In this section, we briefly discuss the background of firmware fuzzing, identify
the challenges of existing techniques, and demonstrate their limitations through
a series of experiments.

2.1 Background

Firmware in Embedded Devices Firmware is a type of software that of-
fers low-level control over hardware components, including on-chip and off-chip
peripherals, as well as MCUs integrated into embedded systems. Muench et
al. [19] classified embedded devices into three categories based on firmware: gen-
eral OS-based firmware, embedded OS-based firmware, or monolithic firmware.
Monolithic firmware (also known as bare-metal firmware) is present in approxi-
mately 81% of embedded devices as of 2019 [5]. This firmware type operates by
executing simple functions in a continuous loop and is commonly used in small-
scale embedded systems. Our study focuses on developing a firmware fuzzing
technique that specifically targets monolithic firmware.

Firmware Fuzzing Traditional fuzzing techniques for general software often
require instrumentation to observe and analyze the behavior of the tested pro-
gram. However, firmware fuzzing presents additional challenges due to the high
dependency on heterogeneous peripherals and the lack of reliable emulation tech-
niques. Fully emulating firmware, including both the processor and peripherals,
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Fig. 1. STM32 firmware architecture

can be a complex and time-consuming process owing to the wide variety of pe-
ripherals available. For firmware testing, partial emulation using the hardware-
in-the-loop (HITL) method may be slower than the peripheral modeling method,
as it may cause a bottleneck in the communication process between the emula-
tor and the actual hardware being emulated [19, 22]. Recently, emulation tech-
niques utilizing peripheral modeling have gained popularity for effective firmware
fuzzing [10–13,18,21,26].

HAL(Hardware Abstraction Layer) HAL is a library provided by manu-
facturers to enhance the convenience of firmware development. By abstracting
common functionality for specific devices, HAL makes developers program with-
out relying on a specific hardware target [6]. Since many manufacturers produce
various types of hardware, developing firmware based on specific hardware re-
quires a significant loss of productivity to develop firmware that directly accesses
the hardware. Using HAL has the advantage of facilitating the development
of essential functions when creating firmware. It is presented as higher-layer
functions rather than register units, enabling convenient usage through function
calls without the need for direct register access. For instance, in implement-
ing the functionality to send data over UART, developers can simply call the
HAL UART Transmit() function without directly manipulating the Data Reg-
ister. HALucinator [11] leveraged the characteristics of this HAL in firmware
emulation. Identified HAL function calls and handled them with pre-made han-
dlers, HALucinator improved emulation efficiency. Unlike HALucinator, which
identified HAL functions at the function level, the PHI proposed in this paper
detects not only HAL functions but also various library functions for peripherals
HAL functions at the register level.

2.2 Problem Definition

A central question this study aimed to address is whether function-level
fuzzing, as a peripheral modeling method, is more efficient than register-level
fuzzing. We also examined the scalability of current function-level emulation
techniques. To answer these questions, we conducted several experiments as part
of our research.
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Example 1 Firmware execution code

1: int main(){
2: char a[5];

3: char b = HAL uart getc();

4: a[b] = 1;

5: }

Example 2 Firmware execution code

1: int main(){
2: char a[5];

3: data = HAL UART Receive IT(huart, pData, Size );

4: strcpy(a, data);

5: }

Efficiency of function-level emulation for fuzzing This paper investigates
the use of different levels of peripheral modeling for firmware fuzzing, including
hardware, function, and register levels. While hardware-level modeling necessi-
tates physical devices, function-level and register-level modeling can be achieved
through emulation. To compare the performance of firmware fuzzing at the func-
tion and register levels, we conducted an experiment using recent fuzzers, includ-
ing HAL-Fuzz, P2IM, Fuzzware, and HEFF. HAL-Fuzz employs function-level
modeling, while P2IM and Fuzzware utilize register modeling. HEFF uses dual-
level modeling at both functional and register levels [15]. We tested these fuzzers
on the Drone firmware [12], and the results are presented in Table 9. The exper-
iment indicates that the fuzzing speed of register-level fuzzers (including dual-
level fuzzers) is approximately half as fast as the fuzzing speed of HAL-Fuzz, a
function-level fuzzer. These results suggest that function-level fuzzing is a more
efficient approach.

The difference in fuzzing speed between function-level and register-level fuzzing
(including dual-level) is due to the additional processing overhead incurred by
register-level fuzzing as it handles all accessed registers (also partially handles
accessed registers). Firmware vulnerabilities can arise from processing inputs re-
ceived through peripherals. We provide two examples of vulnerabilities resulting
from buffer overflow in this paper. In Example 1, a vulnerability occurs in line
4, where an external input is received through the HAL function and stored
as a variable. In Example 2, an external input is saved as a variable, leading
to a vulnerability. While both examples use HAL functions, the vulnerabili-
ties arise outside of the HAL function, not within it. In the above-mentioned
case, register-level emulation handles all accesses made inside the HAL function,
whereas function-level emulation handles functions with pre-made handlers, thus
avoiding any processing overhead.

The necessity of identifying pseudo-HAL functions. Figure 1 illustrates
the structure of STM32 firmware, where the HAL acts as an intermediate layer
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Table 1. Peripheral related functions in CNC firmware

Firmware Pseudo-HAL HAL

CNC

dirn wr HAL DeInit

enable tim clock HAL DisableCompensationCell

enable tim interrupt HAL EnableCompensationCell

enable usart clock HAL GPIO DeInit

g540 timer init HAL GPIO EXTI IRQHandler

g540 timer start HAL GPIO Init

g540 timer stop HAL GPIO ReadPin

gpio clr HAL GPIO TogglePin

gpio init HAL GPIO WritePin

gpio rd HAL Init

gpio set HAL RCC ClockConfig

gpio toggle HAL RCC DeInit

mc dwell HAL RCC GetHCLKFreq

set step period HAL RCC GetOscConfig

set step pulse delay HAL RCC GetPCLK1Freq

set step pulse time HAL RCC GetPCLK2Freq

step isr disable HAL RCC GetSysClockFreq

step isr enable HAL RCC MCOConfig

step timer init HAL RCC NMI IRQHandler

step wr HAL RCC OscConfig

SystemClock Config

SystemCoreClockUpdate

SystemInit

TIM2 IRQHandler

usart getc

usart init

usart putc

usart tstc

Total(#) 28 20

between hardware and software, directly writing values to MCU registers or con-
trolling peripheral devices. The HAL is a universal library commonly employed
by developers to manage peripheral devices in firmware implementation. Tools
like HALucinator and HAL-Fuzz are used to identify and hook these HAL func-
tions for handling. The HAL function identification program proposed in [11],
called LibMatch, is currently employed for this purpose. This enables firmware
to operate without requiring physical peripheral devices or separate peripheral
emulations. However, LibMatch has two significant limitations due to its re-
liance on a context-matching technique between the target firmware and the
HAL function object file to extract HAL function information.

A lot of information is required. The first limitation of LibMatch is that
it necessitates the SDK (object file of the HAL functions) to be compiled in an
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Fig. 2. Result of libmatch HAL function identification according to SDK and firmware
combination by compile optimization level

environment with the same compiler version and optimization level as the target
firmware. Figure 2 displays the LibMatch function identification results for
six types of compile optimization levels of the target firmware and their cor-
responding SDKs. The x-axis represents the optimization options for firmware,
while the y-axis represents the optimization options for the SDK. For example,
in Figure 2, the matrix (0,0) represents 96.4% of the matching HAL function
ratio when the firmware is built with the -O0 option and the SDK is built with
the -O0 option, using the libmatch extraction method. When the optimization
levels match (6 out of 36), a high matching rate ranging from 67.9% to 96.4% is
achieved. However, in most cases where the optimization levels do not match (30
out of 36), function search is either impossible or, even if a match is identified,
the matching rate is below 20%. This indicates that Libmatch has a high depen-
dency on the SDK files. If it fails to find an SDK that matches the optimization
options of the target firmware, the matching ratio of HAL functions decreases.

Unidentified functions exist. The second limitation of LibMatch is that it
can only identify HAL functions, as the required SDK file contains only HAL
function information. Consequently, functions other than HAL functions cannot
be identified by LibMatch. However, as demonstrated in the CNC [7] firmware
example in Table 1, not all firmware exclusively depends on HAL functions to
control their peripherals. In such cases, developers define and utilize functions
that behave like HAL but can be controlled in smaller units for convenience.
These functions, referred to as pseudo-HAL functions in this study, perform
functions using registers assigned to peripheral devices while accessing within
the range of the HAL functions and MMIO. Therefore, for scalable function-level
firmware fuzzing, it is crucial to identify both HAL and pseudo-HAL functions.
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FWMCU Information
< e.g, STM32F469NI>

DB ConÞguration
(Section 3.2)

-Extract function name
-Extract status_rw
-Extract MMIO & offset

Firmware Binary

Feature Extraction
(Section 3.3)

-Detect parant nodes
-List up r/w access 
-Extract MMIO & offset

Feature Comparison
(Section 3.4)

-MMIO matching
-Offset matching
-Function name matching

Function Information
<Fun_i, Ins_addr>

Fig. 3. PHI system flow

2.3 Our approach

We propose the use of pseudo-HAL function identification for effective and
scalable firmware fuzzing at the function level. Pseudo-HAL functions are iden-
tified based on register access patterns at the register level. This can be ac-
complished through symbolic execution of MMIO and identifying characteristic
offset information for each function. This approach reduces the reliance on the
SDK compilation environment and enables fuzzing of a wider range of firmware
than HAL-Fuzz. In the next section, we will provide a detailed description of
our PHI system.

3 System Design

3.1 System Overview

In this section, we present an overview of the PHI (Pseudo-HAL Identifi-
cation) system, which involves a two-input, three-step process, as illustrated in
Figure 3. The user provides the target firmware and the corresponding MCU
(Microcontroller Unit) name as inputs. The MCU name is used for selecting
the appropriate DB (Database) file, while the firmware is utilized for feature
extraction to identify functions related to peripheral devices. The PHI process
comprises three steps: DB configuration, feature extraction, and feature com-
parison. DB configuration (Section 3.2) is the first step, which involves creating
a DB for each MCU prior to the PHI operation and selecting the appropriate
DB based on the input MCU name. The second step, feature extraction (Section
3.3), extracts the function features from the firmware using symbolic execution.
This step is the most computationally intensive and involves the extraction of
three features for each peripheral access. In the final step, feature comparison
(Section 3.4), the functions used in the firmware are identified by matching the
extracted features with the DB. The extracted files in this step are utilized for
fuzzing.

3.2 DB Configuration

The process of configuring the DB includes two primary steps: DB creation
and DB selection. DB creation involves extracting the features of peripheral

Session 4 - 1 The 26th Annual International Conference on Information Security and Cryptology

ICISC 2023 211



PHI: Pseudo-HAL Identification for Scalable Firmware Fuzzing 9

 
 ADC_GetResolution               
 ADC_IsEnabled                      
 ADC_INJ_SetOffset                

 USART_IsEnabledIT_TXT      
 USART_SetStopBitsLength    
 USART_TransmitData9            

…
 0          0x40012000      0x4
 0          0x40012000      0x8
 1          0x40012000      0x14
…
 0          0x40011000      0xc
 1          0x40011000      0x10
 1          0x40011000      0x4 
…

Fig. 4. Example of DB

functions used in each MCU from MMIO (Memory-Mapped Input/Output) and
offset that can be called from the embedded board, and converting them into
a database. This process is essential for obtaining the necessary information to
accurately map the functions used in the firmware to the MCU. It involves ana-
lyzing the registers used and their corresponding states, as well as dividing the
base address and offset of each peripheral device to enable further classification.
As a result, the database structure can be represented as <func i, state rw,
peri addr, offset>. Figure 4 illustrates an example of a database (DB). DB
includes the name of low-level functions (func i), whether the function involves
reading or writing to the MMIO registers (state rw), the MMIO address asso-
ciated with the function (peri addr), and the register access offset (offset). For
the indication of reading or writing to MMIO registers, 0 represents the state
of reading from the MMIO register, and 1 represents the state of writing to the
MMIO register. In the first row of the Figure 4, ADC GetResolution represents
the function name, 0 indicates reading from the MMIO register, 0x40012000 in-
dicates the base address of peripheral and 0x4 indicates the offset for accessing
the MMIO register.

DB selection, on the other hand, is the process of selecting the appropriate
DB based on the MCU name input for PHI. This step is crucial for effective
and accurate PHI operation. These DBs are stored in a single folder, and DB
selection is the process of selecting a DB corresponding to the entered MCU
name. The reason for configuring various DBs is that the register addresses used
for each MCU are different, and selecting the correct DB ensures the proper
mapping of peripheral functions to the specific MCU.

3.3 Feature Extraction

The feature extraction step extracts the features of functions called when the
target firmware is executed using symbolic execution, a static analysis technique.
Typically, to identify functions at the function-level, an object file containing
function information is necessary, as in the case of LibMatch results. However,
this paper proposes a register-level function detection approach that extracts
function features from all register-level accesses without requiring detailed func-
tion information, such as function names. As a result, we leverage symbolic
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Table 2. Information of USART

Register Offset

Status Register SR 0x00

Data Register DR 0x04

Baud Rate Register BRR 0x08

Control Register
CR1 0x0C

CR2 0x10

CR3 0x14

Guard Time and Prescalar Register GTPR 0x18

execution to identify functions at the register level without relying on detailed
information, instead of using a matching method that requires such information.
This approach is possible because peripheral registers in firmware are assigned
to specific memory ranges, such as the MMIO range of 0x40000000–0x5fffffff
for ARM Cortex-M4 MCUs, for example.

Consider the case of USART, which manages asynchronous serial commu-
nication between computers. In an ARM Cortex-M4 MCU, the peripheral base
address for USART is 0x40011000, and offsets such as SR, DR, BRR, CR, and
GTPR are allocated to it, as shown in Table 2. By utilizing these offsets and
their corresponding USART functions, which control USART using the related
registers, it is possible to identify functions at the register level without the need
for detailed information, such as function names. MMIO ranges, peripheral base
addresses, and offset information can be obtained from the datasheet for each
MCU, facilitating the construction of this information. Therefore, to extract
the features of functions related to firmware peripherals, the following steps are
performed:

1. List the functions that access the MMIO range.

2. Check the base address and offset used by each function.

3. Record whether the function reads or writes to that memory.

To accomplish this, the top-level parent node is first extracted from the target
firmware. Then, the function call flow within the firmware is checked, starting
from all parent nodes. All accesses that read or write memory information within
the MMIO address range are recorded. These accesses are listed by creating
the tuple <instruction address (ins addr), block address (block addr), state rw,
peri addr, and offset>. Typically, functions can access the MMIO range multi-
ple times, and memory reads/writes can occur sequentially. If a function has a
continuous sequence of the same type of operation, such as read/read/read/... or
write/write/write/..., the sequence of accesses is summarized into a single input.
However, if both read and write operations occur in the same function with the
same offset, they are summarized as a write operation because the same offset
is read and written when writing to a specific register for a function.
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3.4 Feature Comparison

In the feature comparison step, a list of functions for fuzzing is extracted
by matching the feature extraction results, which consist of instruction address,
block address, status (read or write), peripheral base address, and offset, with
the previously constructed database. These function names are used as keys
when connecting to a function handler after function hooking. The corresponding
function search result field is the same as that of <func i, ins addr>. In this step,
the corresponding results are extracted to a file and used for function hooking
during fuzzing.

4 Implementation

In this study, we implemented PHI, PHI-Fuzz, and a handler. PHI takes the
firmware binary and the name of the MCU on which the firmware is loaded
as input, then selects the DB corresponding to the MCU name. The PHI is
implemented as a Python script consisting of 479 lines, which configures the
function information DB, totaling 972 lines of code.

To configure the DB and identify the pseudo-HAL, PHI utilizes angr [8], a
symbolic execution tool. The angr functions used include Control-Flow Graph
(CFG) analysis and Data Dependency Graph (DDG) results. The CFG func-
tions were divided into CFGFast and CFGEmulated. CFGFast was employed to
extract the parent node, while CFGEmulated (with a call depth of 7) was used
to extract the DDG.

PHI-Fuzz is implemented based on HAL-Fuzz and receives the PHI result as
an addr.yaml file, saves it, and fuzzes the target firmware through a modified
handler. The essential handler functions for fuzzing were implemented by adding
them to the existing HAL function handler file. Specifically, the existing HAL
function handler was connected with the pseudo-HAL function, which played a
similar role, to enable fuzzing. Functions discovered through PHI that could not
be replaced with existing functions were implemented and added to the existing
handler file.

5 Evaluation

The evaluation of PHI-Fuzz was experimentally conducted to answer the
following research questions:

– RQ1: How scalable is a PHI that uses only firmware images for identifica-
tion?

– RQ2: How effective is the PHI in terms of function identification?

– RQ3: How good is the PHI-Fuzz in Bug finding?
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Table 3. Firmware tested in Section 5.2, 5.3, 5.4

Firmware MCU OS Library
Peripherals

GPIO UART I2C SPI

UART transmit

STM32F469NI

Baremetal

HAL

✓ ✓

UART receive Baremetal ✓ ✓

I2C receive Baremetal ✓ ✓ ✓

SPI receive Baremetal ✓ ✓ ✓

UART
Baremetal ✓ ✓

HyperTerminal IT [11]

Drone [12]
STM32F103RB

Baremetal HAL ✓ ✓ ✓

CNC [12] Baremetal
HAL,

✓ ✓ ✓
Pseudo-HAL

Baremetal I2C

STM32F469NI

Baremetal

Pseudo-HAL

✓ ✓ ✓

FreeRTOS I2C FreeRTOS ✓ ✓ ✓

Baremetal UART Baremetal ✓ ✓

FreeRTOS UART FreeRTOS ✓ ✓

RIOT I2C receive RIOT OS ✓ ✓

RIOT I2C transmit RIOT OS ✓ ✓ ✓

RIOT SPI receive RIOT OS ✓ ✓

RIOT UART
STM32F103RB

RIOT OS
Pseudo-HAL

✓ ✓

RIOT SPI RIOT OS ✓ ✓ ✓

RIOT I2C RIOT OS ✓ ✓ ✓

5.1 Experimental Setup

Experimental environment. Experiments for PHI and PHI-Fuzz evaluation
were conducted in an Intel® Core™ i7-8700 CPU @ 3.20GHz, 8GB RAM, and
Ubuntu 18.04.4 LTS (VM) environment.

Experiment data.

Table 3 presents the information on the firmware used to evaluate PHI and
PHI-Fuzz. The firmware was based on STM32F469NI and STM32F103RB, with
the source code collected from an open-source project on GitHub and then ported
for use. The per firmware included GPIO, UART, I2C, and SPI for evaluation.
In total, four HAL-based firmware and ten pseudo-HAL-based firmware were
created and used for the experiments. Additionally, one HALucinator benchmark
firmware and two P2IM benchmark firmware were used in the experiment. The
firmware was compiled without optimization using the 2018 q4 (gcc8) version.
The HAL object file required for Libmatch, a program that compares with PHI,
was also compiled with the 2018 q4 (gcc8) version and without optimization.
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Table 4. PHI result of UART Hyperterminal IT by Optimization level

Optimization level Total(#) Result(%)

-O0 No optimization 16 69
-O1 Reduced code size, execution time 15 75
-O3 Optimization of inline functions and registers 15 75
-Os Omit optimizations that increase code size 15 75
-Og Remove optimizations that confuse debugging 15 75

5.2 Scalability of PHI (RQ1)

To demonstrate PHI’s scalability, this study shows that identifying pseudo-
HAL functions is feasible with only the MCU name, without relying on de-
tailed firmware information. To validate this claim, function identification ex-
periments were conducted on compiled firmware at various optimization levels,
and the function identification rates were compared with LibMatch’s HAL
function identify results when the compiler versions of the SDK file and the
target firmware differed. The reason for demonstrating scalability through re-
sults obtained with different compilation options is that LibMatch, which uses
the specific SDK, exhibits varying results depending on compilation options, as
shown in Figure 2. Therefore, by achieving consistent results without using the
SDK, PHI establishes its scalability. Table 4 presents the PHI results for the
UART Hyperterminal IT [11] firmware compiled at different optimization levels
using the same source code. Optimization led to a reduction of one in the total
number of peripheral-related functions (HAL functions), but at all optimization
levels, 15 identical pseudo-HAL function identifications were possible. In com-
parison, LibMatch’s identification rate varies depending on the compilation
level of the SDK and firmware, unlike PHI, which not only requires the SDK
but also shows consistent identification results in target firmware compiled at
each optimization level.

As an additional experiment, a comparison experiment was conducted by
detecting with a different compiler. While the original experimental firmware
and SDK files were compiled with 2018 q4 (gcc8), for this experiment, only the
experimental firmware was compiled with 2016 q4 (gcc6) to compare the results
in the unideal environment. Figure 5 and 6 show the results of PHI and Lib-
Match with four types of firmware that utilize HAL functions and compiled with
2018 q4 (gcc8) and 2016 q4 (gcc6) each. Figure 5 represents the identification
results in an ideal environment for using LibMatch. As a result, PHI exhibited
an average exploration rate of around 69%, while LibMatch showed an average
exploration rate of approximately 75%. Figure 6 illustrates the results of exper-
iments conducted using firmware compiled with 2016 q4 (gcc6), which did not
occur in an ideal environment. PHI, since it doesn’t rely on the SDK, produced
the same results as the exploration with the firmware compiled with 2018 q4
(gcc8). However, LibMatch did not achieve the same results. LibMatch de-
tected only NVIC-related functions, resulting in detection performance of up to
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Fig. 5. Comparison of HAL function identification rates between PHI and LibMatch.
The figure shows the execution outcome of the LibMatch with the ideal compiler
version.

Fig. 6. Comparison of HAL function identification rates between PHI and LibMatch.
The figure shows the execution outcome of the LibMatch without the ideal compiler
version.

17% or less. As a result of these experiments, it was confirmed that PHI can
explore functions consistently across various compilation optimization options
and compiler versions, demonstrating its scalability as a program. With this
scalable feature of PHI, it is possible to detect peripheral-related functions in
commercially available firmware without prior information. These detection re-
sults can subsequently be used for vulnerability exploration through PHI-Fuzz.
The experimental results related to this will be presented in Section 5.4.

5.3 Effectiveness of PHI (RQ2)

In Section 5.2, it was observed that LibMatch’s identification rate is fa-
vorable when the SDK is in an ideal environment. Therefore, in this section,
we compare LibMatch and our approach in the ideal environment. Gener-
ally, the HAL function identification rate of PHI closely resembled LibMatch’s
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Table 5. HAL function identification result for SPI receive firmware

Function Libmatch PHI

HAL GPIO Init ✓

HAL NVIC SetPriority ✓

HAL NVIC SetPriorityGroup ✓

HAL RCC ClockConfig ✓ ✓

HAL RCC GetHCLKFreq ✓

HAL RCC GetPCLK1Freq ✓ ✓

HAL RCC GetPCLK2Freq ✓ ✓

HAL RCC GetSysClockFreq ✓ ✓

HAL RCC OscConfig ✓ ✓

HAL SPI Init ✓

HAL SPI MspInit

HAL SPI Receive ✓

HAL SPI Transmit ✓

HAL SPI TransmitReceive ✓

HAL UART Init ✓

HAL UART MspInit ✓

HAL UART Transmit ✓ ✓

Total 10 12

rate (as shown in Figure 5). However, for UART transmit, UART receive, and
I2C receive firmware, LibMatch displayed a higher search rate than PHI. What
could be the reason? The functions identified by LibMatch but not by PHI
were NVIC-related functions, specifically HAL NVIC SetPriority and HAL NVI
C SetPriorityGrouping. PHI failed to identify these functions because the NVIC-
related DB configuration was not established in PHI since the access address was
outside the MMIO range. Conversely, for SPI receive firmware, PHI exhibited a
higher search rate than LibMatch. In Table 5, while PHI did not identify two
NVIC-related functions, LibMatch could not identify four other SPI-related
functions. This confirms that LibMatch cannot identify all HAL functions,
whereas PHI can identify functions that LibMatch cannot.

Additionally, Table 6 shows the results of another function identification
experiment using 10 firmware that call pseudo-HAL functions instead of HAL
functions. While LibMatch had a detection rate of 0%, PHI could identify
functions at a significantly high rate of 92.3%. As a result, PHI can identify HAL
functions with performance similar to or even superior to LibMatch, which has
access to all SDK information, even without utilizing the SDK. Additionally,
PHI can also identify pseudo-HAL functions that were previously inaccessible for
exploration with LibMatch. Furthermore, similar to the results in Section 5.2
, PHI’s effectiveness in detecting a wider range of peripheral-related functions
allows for more efficient fuzzing, making it beneficial.
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Table 6. Pseudo-HAL function identification(%)

Firmware Libmatch PHI

Baremetal I2C 0 68.1
FreeRTOS I2C 0 63.6
Baremetal UART 0 64.2
FreeRTOS UART 0 64.2
RIOT I2C receive 0 60
RIOT I2C transmit 0 62.5
RIOT SPI receive 0 60
RIOT UART 0 64.7
RIOT SPI 0 92.3
RIOT I2C 0 84.2

Table 7. Fuzzing experiment

Firmware HAL-Fuzz PHI-Fuzz

UART receive O O
I2C receive O O
UART HyperTerminal IT O O
Drone O O
CNC X O
Baremetal I2C X O
FreeRTOS I2C X O
Baremetal UART X O
FreeRTOS UART X O

5.4 Effectiveness of PHI-Fuzz in bug finding (RQ3)

To demonstrate the effectiveness of PHI-Fuzz, the fuzzing results of PHI-Fuzz
and HAL-Fuzz were compared. Table 7 represents the results of testing the fea-
sibility of fuzzing on nine firmware, using HAL-Fuzz and PHI-Fuzz. Among the
experimental firmware, UART receive, I2C receive, UART HyperTerminal IT,
and Drone contain HAL functions, and both HAL-Fuzz and PHI-Fuzz can be
used to fuzz these samples. However, CNC, Baremetal I2C, FreeRTOS I2C,
Baremetal UART, and FreeRTOS UART contain pseudo-HAL functions, and
can only be fuzzed using PHI-Fuzz.

Table 8 shows the execution results of HAL-Fuzz and PHI-Fuzz on Drone
and CNC. The experimental results reveal that both fuzzers could run on Drone,
but only PHI-Fuzz was capable of running on CNC. PHI-Fuzz outperformed in
terms of fuzzing execution speed and execution path on Drone, as more func-
tions were identified and handled. Furthermore, PHI-Fuzz discovered six unique
crashes not detected by HAL-Fuzz, indicating that PHI-Fuzz demonstrated
superior performance in finding bugs.
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Table 8. Fuzzing experiment with Drone and CNC firmware

HAL-Fuzz PHI-Fuzz
Firmware

Exec. #Path #Crash Exec. #Path #Crash

Drone 2,981,648 473 ✗ 3,511,621 491 ✗

CNC ✗ ✗ ✗ 4,020,289 958 6

Table 9. Drone firmware fuzzing Performance Comparison in terms of execution speed
& a number of basic blocks.

HAL-Fuzz [3] P2IM [12] HEFF [15] Fuzzware [20] PHI-Fuzz

Modeling level Function Register Dual Register Function

Function scalable HAL
HAL HAL HAL HAL

Pseudo-HAL Pseudo-HAL Pseudo-HAL Pseudo-HAL
Speed(exec/s) 49 20 21 23 53

Executed BB (#) 254 519 707 377 210

6 Discussion & Limitation

The results presented in Section 5.2 demonstrate that PHI can effectively
identify both pseudo-HAL and HAL functions independently of firmware in-
formation, as shown in Section 5.3. Moreover, due to its scalability, PHI can
efficiently find bugs, as discussed in Section 5.4. Furthermore, the HAL function
identification results in Table 5 reveal that PHI outperforms LibMatch, since
it identified four out of the five SPI-related functions that LibMatch failed to
identify. However, LibMatch has not yet identified HAL RCC GetHCLKFreq
and HAL UART MspInit. Therefore, to achieve high function coverage during
fuzzing, a dual identification technique can be employed. This approach involves
first identifying function information through LibMatch and then executing
PHI to identify functions related to all peripheral devices within the MMIO
range.

Table 9 compares the fuzzing performance of firmware fuzzers at various
levels. As seen in the table, PHI-Fuzz exhibits more than twice the speed com-
pared to register-level fuzzers and is 8% faster than the function-level firmware
fuzzer HAL-Fuzz, achieving the best results in terms of fuzzing speed. How-
ever, it also obtained the lowest number of executed basic blocks. This is because
register-level firmware fuzzers process all registers, resulting in a larger number
of executed basic blocks. On the other hand, function-level firmware fuzzers
execute a relatively smaller number of basic blocks since they have predefined
handlers for each function call. In this context, PHI explored and handled more
functions than HAL-Fuzz, leading to the execution of the fewest basic blocks.
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7 Related Work

Firmware fuzzing for an MCU target requires firmware emulation. Unlike
general software, firmware depends on various peripheral devices, making pe-
ripheral device emulation the core of firmware emulation. To address this depen-
dency problem of peripheral devices, various firmware emulation studies have
been conducted. In this section, we introduce the firmware emulation technique
and the latest fuzzers that utilize it.

7.1 Firmware Emulation

In WYCINWYC [19], firmware emulation is divided into two categories: full
emulation, which emulates both the core and peripheral devices of the firmware,
and partial emulation, which emulates only the core device and handles periph-
eral device emulation through physical hardware or peripheral modeling. Full
emulation requires significant engineering effort, as all peripherals must be di-
rectly configured into the emulator. In particular, in the case of MCUs, which
can have various manufacturers and peripheral devices, directly emulating all
of them incurs high costs. On the other hand, partial emulation is proposed to
mitigate the inefficient development effort of peripheral devices required during
full emulation. This method was studied using hardware-in-the-loop (HITL) and
peripheral modeling techniques.

The hardware-in-the-loop emulation handles peripheral access by using real
peripheral hardware [17, 23]. This approach performs firmware emulation by
communicating with peripherals not supported by the emulator using actual
peripheral hardware. However, its availability is limited due to the requirement
of actual peripheral hardware. On the other hand, peripheral modeling emulates
I/O processing for peripheral devices through a model of the peripheral de-
vice [10–13, 26]. This method does not use actual peripheral devices, making it
easier to use and reducing engineering efforts. Muench et al. [19] demonstrated
that emulation through peripheral modeling is more effective than the HITL
method and improves emulation performance.

7.2 Hardware-Level Emulation

Peripheral modeling can be categorized into hardware-level, function-level,
and register-level modeling based on the modeling level of the peripheral device.
Pretender [13] models a peripheral device based on hardware values obtained
by inputting values for the actual device. The modeling process uses machine
learning, and firmware fuzzing is performed using the implemented model. This
is different from the HITL method in that the hardware is used only during the
peripheral modeling phase. Thus, fuzzing can proceed without an actual device,
relying solely on the modeled result. However, a drawback of this approach is
that various hardware is eventually required for the peripheral modeling phase.
In contrast, PHI makes it possible to identify functions related to peripheral
devices using only firmware binary images and MCU names, without the need for
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actual hardware at any stage. This enables more scalable fuzzing than Pretender
and other peripheral modeling-based approaches.

7.3 Function-Level Emulation

HALucinator [11] is an emulator that allows developers to model peripheral
devices of MCU devices directly using the Hardware Abstraction Layer (HAL).
Compared to full emulation, which requires detailed modeling of the register
unit, HALucinator reduces overhead by allowing developers to directly model
the HAL, which is commonly used in many MCU target operating systems.
When HAL functions are called, HALucinator handles them by using modeled
function handlers. Moreover, HALucinator provides emulation for each periph-
eral device in the HAL layer, making it possible to fuzz without emulating com-
plex hardware. PHI-Fuzz uses a self-modified HAL-Fuzz function handler for
fuzzing. Furthermore, PHI’s ability to identify pseudo-HAL functions addresses
the limitation of HALucinator, which could only identify HAL functions.

7.4 Register-Level Emulation

Compared to HALucinator, which focuses on handling functions, P2IM [12]
is designed for dynamic testing and fuzzing of individual I/O devices at the
register level. When the firmware is executed in the emulator, P2IM classifies
the access pattern of the peripheral’s MMIO registers into categories such as
CR, SR, DR, and C&SR using a proposed heuristic and performs peripheral de-
vice modeling with each register handling method. As a result, P2IM does not
require prior knowledge of which specific peripheral devices are connected to the
MCU since peripheral device handling is performed automatically. PHI leverages
P2IM’s register access pattern classification to identify peripheral functions. By
analyzing the MMIO information output through DDG, PHI classifies periph-
erals and calculates the used offset, categorizing them into memories such as
SR, DR, and CR. Through this classification process, PHI identifies the accesses
performed by the HAL and pseudo-HAL functions. In contrast to P2IM, which
automatically creates and operates a handler during fuzzing, PHI-Fuzz requires
only a pre-written function handler for the identified function, enabling faster
fuzzing.

Laelaps [10] performed firmware emulation through dynamic symbolic execu-
tion when an undefined peripheral device access occurred in the emulator while
being emulated through QEMU. µEmu [26] analyzed register access patterns for
peripheral access via symbolic execution, prior to firmware fuzzing. During sym-
bolic execution, rules for responding to unknown peripheral accesses are inferred,
stored in the Knowledge Base (KB), and referenced in the firmware analysis. To
address the limitations of Laelaps and µEmu, Fuzzware [20] proposes a solution
for limiting fuzzing coverage expansion through path removal during symbolic
execution and partial input overhead. PHI also leverages symbolic execution
to extract the called functions. Function identification information is provided
through Angr, a symbolic execution tool. The offset used when the address of
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the called function is in the MMIO range is extracted, and function matching is
performed through this information.

8 Conclusion

This study aims to improve firmware fuzzing efficiency by identifying both
HAL and pseudo-HAL functions at the register level and implementing PHI and
PHI-Fuzz as firmware fuzzers based on HAL-Fuzz. The proposed method was
able to identify HAL functions accessing the MMIO range at a comparable level
to LibMatch, while also addressing the limitation of LibMatch in identify-
ing pseudo-HAL functions. PHI-Fuzz proved to be more effective in bug finding
than HAL-Fuzz, as it discovered additional crashes not found by HAL-Fuzz.
However, there are still some functions that LibMatch can identify but PHI
cannot. To address this, future work will involve conducting a study that com-
bines LibMatch and PHI to increase the function identification rate.
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Abstract. As the need for on-site monitoring using surveillance cameras in-
creases, there has been a growing interest in automation research incorporating 
machine learning. However, traditional research has not resolved the perfor-
mance and resource efficiency trade-offs. Therefore, we proposed a lightweight 
learning model that is more efficient and with minimal performance degradation. 
The proposed model reduces the resolution of the image until the performance is 
maintained, finding where the trade-off is resolved for each dataset. Using this, 
we suggested a real-time lightweight fire detection algorithm. The proposed 
mechanism is approximately 30 times more memory efficient while maintaining 
the detection performance of traditional methods. 

Keywords: surveillance camera, abnormal detection, CNN 

1 Introduction 

The need for on-site monitoring using surveillance cameras for public management, 
security, and safety has recently increased. However, interpreting surveillance camera 
footage is a human task, and as individuals monitor multiple cameras simultaneously, 
there are clear limitations regarding efficiency and accuracy[1]. When humans manage 
surveillance cameras, issues arise related to human resources, maintenance costs for 
installing and managing cameras, and other associated costs[2].  

Research on anomaly detection using machine learning is being actively pursued to 
address these issues. [3-6]. Deep learning, a subset of machine learning, allows training 
without human intervention and delivers high-level results in object detection, data 
classification, and natural language processing[3]. In particular, the CNN (convolu-
tional neural networks) model, which directly learns features from datasets, is being 
utilized for anomaly detection in various fields ranging from medicine to agriculture[4]. 
However, traditional research has been increasing the resolution of images to the max-
imum, using ultra-high-resolution images as datasets or relying on high-quality images 
to enhance the accuracy of CNN models[5]. IoT devices, including surveillance cam-
eras, are constrained in energy, memory, and cost[13-14]. High-quality datasets can 
maintain high model performance but are unsuitable for real-time surveillance camera 
detection [6-7]. Various research has been conducted for lightweight CNN learning[8-
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11]. However, traditional studies have not effectively addressed the trade-off between 
model performance and cost, underscoring the need for further research in this area. 

The proposed model identifies the optimal resolution where the CNN model can 
maintain its performance on the fire dataset and suggests a more efficient fire detection 
mechanism. The suggested mechanism maintained a lowered camera resolution and 
switched to a clearer quality when the likelihood of fire detection exceeded a threshold. 
The contributions of this study are as follows. 

- By classifying the fire dataset based on the fire size and adjusting the resolution 
to identify the point at which accuracy is maintained, we have addressed the 
trade-off issue between performance and cost, a limitation of previous research. 

- We proposed a universal mechanism not limited to surveillance cameras, mak-
ing it easier for lightweight CNN learning to be applied across various research 
and environments. 

- We proposed a lightweight fire detection mechanism that maintains the perfor-
mance of fire detection while reducing memory consumption by 31.8 times. 

The structure of this study is as follows: In Section 2, we investigate and analyze 
research aimed at improving overheads in deep learning training and memory con-
sumption. Section 3 introduces the proposed model and suggests a lightweight fire 
detection mechanism. Section 4 analyzes the experimental environment, content, 
and results, and Section 5 concludes with an introduction to future research. 

2 Related Works 

Various studies are being conducted to address issues like training time and memory 
consumption in data learning using images. This section compares and analyzes previ-
ous research, describing the limitations of past studies and the contributions of our pro-
posed research. 

In the study proposed by [8], a lightweight, intelligent CNN model was designed to 
reduce the computational cost of the model. The research addressed power consump-
tion limitations when converting analog signals to digital signals and the computational 
cost aspects of the image sensor module. Two lightweight CNN models were imple-
mented by reducing the bit precision of the analog-digital converter (ADC) to save 
power and reduce the number of parameters. The paper experimented with the designed 
pipeline in MobileNetv2 and GhostNet architectures to assess their generalization ca-
pability and performance. While the study demonstrated the generalization ability and 
reduced power consumption of the model, it could not resolve the slight decrease in 
model accuracy when reducing ADC bit precision. Additionally, there were limitations 
related to the dataset, this paper uses high-quality, high-capacity, advanced datasets to 
improve model performance, making it unsuitable for use in lightweight models.In the 
study [9] aimed at addressing power consumption in image and video processing and 
computational cost issues of computer vision applications, an intelligent compression 
system was proposed to solve the power consumption problem during wireless capsule 
endoscopy video processing. A deep learning-based classification feedback loop was 
proposed to determine the importance of images. Important images were enhanced to 
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include additional content, while the less important ones were compressed into lower 
quality for storage. In this study, we conducted compression and classification experi-
ments on wireless capsule endoscopy(WCE) videos to evaluate the performance of 
the proposed model, verify the gain of the intelligent compression system, and predict 
the number of additional transmittable images. The experiments demonstrated the con-
tributions of the study by verifying that achieving high compression rates and classifi-
cation accuracy is possible while maintaining video quality. However, we did not con-
sider the processing time complexity, and the learning and experiments were limited to 
specific gastrointestinal organs and lesion presence in the data, making it unclear 
whether we could achieve the same performance in other learning scenarios.  

Study [10] aimed at enhancing the speed of predicting anomalies to detect fire situ-
ations. It is emphasized that while recognizing patterns with high accuracy is vital, op-
timization for real-time execution is also critical. The research adopts the capabilities 
of Deeplabv3+ and the OpenVINO toolkit to propose an approach close to real-time 
detection, with experiments and evaluations focusing on process acceleration. The re-
sults showed an achieved inference process acceleration of 70.46% to 93.46%. When 
using a GPU with FP16 precision, the inference process speed was approximately dou-
ble compared to FP32. This study contributes by considering the accuracy of the detec-
tion model and process acceleration and speed in time complexity. However, its limi-
tation lies in analyzing only the impact from a temporal perspective without considering 
memory availability and accuracy. 

In a study [11] using a CNN model trained on actual fire incident images, a custom 
framework for fire detection was presented using transfer learning. The gradient-
weighted class activation mapping (Grad-CAM) method was employed to visualize the 
fire and pinpoint its location. Experiments were conducted using a composite large-
scale dataset formed by merging the fire detection dataset, DeepQuestAI, Saied, Carlo, 
and Bansal datasets, and the detection performance was evaluated. Experimental results 
revealed that while the detection accuracies of GoogLeNet, VGG16, and ResNet50 
were 88.01%, 64.48%, and 92.54%, respectively, the proposed EfficientNetB0 model 
exhibited an improved accuracy of 92.68%. However, while traditional research anal-
yses considered model lightweightness and computational costs, this study did not fur-
ther analyze other metrics besides accuracy. Moreover, while the study introduced Ef-
ficientNetB0 as a better method, supposedly lighter than the similarly performing Res-
Net50, it does not provide concrete evidence to confirm the lightweight nature of the 
model. 

Table 1 summarizes the preceding research that was analyzed. 

Table 1. Related research summary table. 

Ref. Features Limitation 

[8] 
- Research on lightweight, intelligent 
CNN models for reduced computational 
cost 

- Uses high-quality, high-capacity 
datasets   
- It unsuitable for use in light-
weight models. 
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- Proposed method to reduce power con-
sumption by decreasing the bit precision 
of ADC 

- Failed to address the decrease in 
model accuracy when ADC bit pre-
cision is reduced 

[9] 

- Research on intelligent compression sys-
tems to address power consumption issues 
during wireless capsule endoscopy video 
processing 

- Time complexity was not consid-
ered 

- Proposed deep learning-based classifica-
tion feedback loop based on importance 

- The data used for training and ex-
periments was limited to specific 
conditions such as lesions and spe-
cific digestive organs 

[10] 

- Acceleration of the process speed for fire 
situation detection models 

- Various complexities are men-
tioned, but only time complexity is 
considered, without accounting for 
spatial complexities like memory 
availability 

- Research on optimization for real-time 
execution 

- Did not conduct performance 
analysis 

[11] 

- Proposed fire detection framework using 
transfer learning 

- While lightweight and computa-
tional cost aspects are mentioned, 
these metrics are not considered in 
the experiments 

- Fire visualization and location identifica-
tion using Grad-CAM 

- No evidence is provided to sup-
port the claim of proposing a light-
weight model 

 
This research showed that not many actively considered optimization among tradi-

tional image and video processing studies. Most previous studies either analyzed per-
formance aspects alone or focused on optimization excluding performance, thereby 
conducting performance analyses limited to specific areas. Some studies that consid-
ered accuracy and complexity simultaneously couldn't resolve the trade-off relationship 
where an increase in accuracy led to increased complexity and improving the complex-
ity aspect resulted in a decrease in accuracy. Therefore, we proposed a mechanism that 
detects fire by finding the optimal resolution point while maintaining the CNN model 
performance to address the trade-off issue and enhance fire detection efficiency. 

3 Proposed Mechanism 

This section details the proposed preprocessing steps and mechanism, elaborating on 
each stage in depth. First, we explained the criteria used to divide the fire dataset used 
in the experiment into large fires, medium fires, and small fires. We then discuss how 
adjusting the resolution helps determine two threshold values. Subsequently, based on 
the details mentioned above, we discussed the proposed lightweight fire detection 
mechanism. 
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3.1 Adjusting Resolution 

 
Fig. 1. Flowchart of the mechanism for real-time fire detection. 
 
This study aimed to reduce memory while maintaining performance by reducing image 
resolution to a point where accuracy is sustained. However, for data where the target 
object size being detected affects performance, performance differs based on that size. 
For example, in a medical imaging dataset for tumor detection, one can differentiate 
between early, middle, and terminal stages based on the tumor size. The early stage 
would require higher resolution compared to the advanced stage. For reliable experi-
ments, it is necessary to measure the performance separately based on the size of the 
dataset. 

The flow of image resolution adjustment is depicted on the left side of Fig. 1. The 
original image dataset has a dimension of 224 pixelsAfter adjusting it from 100 to 1, 
we aimed to identify the resolution point N where performance remained close to the 
original. When fire is detected using the model with the lowest performance, we calcu-
late the predicted probability estimates for fire classification to derive the average de-
tection likelihood, denoted as M. 
 
3.2 Lightweight fire detection model 

After deriving N and M, we proposed a lightweight fire detection mechanism, the dia-
gram shown on the right side of Fig. 1. N represents the threshold value for the mini-
mum resolution, while M serves as the real-time fire detection threshold. In the pro-
posed mechanism, surveillance cameras operate at resolution N, but if they detect a 
probability exceeding M, they update to a higher resolution. In this context, 'probability' 
refers to the model's estimation of the likelihood of a fire. When the resolution is 'N,' if 
the probability exceeds 'M,' the model increases the resolution and performs the 
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detection again in the zone where all models converge in accuracy. If the probability 
surpasses the threshold 'M,' it is classified as an anomaly. 

4 Evaluation 

In this section, we describe the experimental environment for implementing and testing 
the proposed model, mention the content of the experiments, and discuss the results. 
 
4.1 Experimental Environment 

We conducted the experiments in an environment with an Intel(R) Core(TM) i9-
10850K CPU, 32.0GB RAM, and 930GB Memory, running on the Windows 10 Pro 
operating system. The tools used were Anaconda3 and Python version 3.10.9. Table 2 
provides information on the modules used. 

Table 2. Table of used modules. 

Module Name Version 
keras 2.10.0 

sklearn 1.0.2 
numpy 1.23.5 

matplotlib 3.5.3 
tensorflow 2.10.0 

glob 2.69.1 
pandas 1.4.2 
seaborn 0.11.2 

 
The fire-detection dataset is used [12], an image dataset for detecting fires. This 

study only used a portion of the dataset, and the fire images were manually verified and 
categorized into large, medium, and small fires. A large fire is where the fire occupies 
more than half of the image, a medium fire occupies less than half but more than a 
quarter of the image, and a small fire takes up less than a quarter of the image. Each 
large, medium, and small fire is trained separately, and the control group of normal 
images is used identically in all three models. Table 3 shows the ratio and number of 
images used in each experiment.  

 

Table 3. Distribution of datasets used by experiment. 

Experiment Image Type Train Test Valid 

Large-fire Classification 
Large-fire image 140 40 20 

normal image 140 40 20 
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medium-fire Classification 
medium-fire image 140 40 20 

normal image 140 40 20 

small-fire Classification 
small-fire image 140 40 20 

normal image 140 40 20 

 

 
Fig. 2. Layers and input values for the exception model being used. 
 

In the experiment, we used a transfer learning CNN model. Transfer learning models 
utilize pre-trained models, which can deliver good performance even with data. This 
made them frequently used models for training with limited images. Fig. 3 shows the 
operational scenario of the real-time fire detection mechanism. As for other parameter 
values, we used three channels, the Adam optimizer, and binary_crossentropy, for the 
loss function. We conducted the training for ten epochs. 
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4.2 Adjustment of fire image resolution 

 
Fig. 3. Operational scenarios of real-time fire detection mechanism 
 
The first experiment aimed to identify the image resolution range where performance 
is maintained. We reduced the image resolution from 100 to 1 and conducted a binary 
classification of fire and non-fire, after which we measured the performance. The ex-
periment adjusted the resolution from 100 to 5 pixels in increments of 5. However, 
since the performance converged from 20 to 100 pixels, we only visualized and ana-
lyzed from 5 to 20 pixels. Fig. 4 shows the graph depicting the accuracy according to 
image resolution.  
 

 
Fig. 4. Evaluation results of detection accuracy by resolution. 
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Fig. 5. Evaluation results of memory usage by resolution. 
 

For the large-fire category, the model maintains an accuracy of 99.3 up to a resolu-
tion of 5 pixels. The medium-fire maintains a high accuracy of 96.6 at 5 pixels. How-
ever, for the small-fire category, even though it sustains a high accuracy of 95 at a 
resolution of 20 pixels, it drops to a lower performance of 85 when the resolution is at 
5 pixels. Therefore, for each dataset, the maximum points where the performance is 
maintained while reducing the image resolution are confirmed to be 5 for both large- 
and medium-fire and 20 for small-fire. Fig. 5 shows the evaluation results of the 
memory usage at each resolution. The original size of 224 pixcels consumes approxi-
mately 4.6 million bytes. At the performance retention point for large-fire and medium-
fire, which is 5 pixcels, it uses 59,550~65,307 Bytes, while the small-fire at a resolution 
of 20 utilizes 405,496~416,853 Bytes. This indicates that large- and medium-fire can 
reduce memory size by up to 70 times, whereas small-fire can save memory by a factor 
of 10. 

In the experiment mentioned above, the small-fire detection demonstrated the least 
effective performance. However, fires typically spread from small to larger ones, and 
detecting the fire when it is still a small flame is crucial. Therefore, in the subsequent 
experiment, we will detect fire using the small-fire dataset to devise an efficient and 
lightweight fire detection algorithm. 
 
4.3 Evaluation of a lightweight fire detection model 

The second experiment evaluated a lightweight fire detection model system for en-
hanced memory efficiency and effective detection. The proposed mechanism increased 
the resolution when the probability exceeded a certain threshold, up to a maximum of 
20 pixels. The proposed model aimed to detect fires when they are small, so the exper-
iment primarily focused on small-fire detection from the three tests previously con-
ducted. Performance is assessed by measuring the probability, representing the 
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likelihood of matching a particular label. We used the predict function provided by 
scikit-learn for this purpose. 
 

 
Fig. 6. Evaluation results of probability by resolution. 
 

The probability based on the resolution for small fire is represented in Fig. 6. When 
the resolution was at 5, it displayed a probability of 46% for fire data. At 10, it showed 
74%, and at 20, it converged to 99%.  
 

5 Conclusion 

In this study, we proposed a lightweight fire detection model to address the conven-
tional deep learning research limitation of balancing performance with cost. We ad-
justed the resolution of the images and evaluated the performance for each resolution 
to determine the threshold value of the proposed model. For the large-fire and medium-
fire datasets, a 99.3% accuracy was demonstrated at a resolution of 5, proving 70 times 
more memory efficient than the original. Furthermore, the small-fire dataset exhibited 
a 95% accuracy at a resolution of 20, demonstrating it to be ten times more memory 
efficient. Subsequently, we proposed a two-stage fire detection mechanism, focusing 
on the small-fire dataset with the lowest performance. This proposed mechanism ad-
justed the resolution based on the probability of deemed fire and used the measured 
probability from the small-fire dataset as its threshold. Ultimately, the proposed model 
proved to be approximately 31 times more memory efficient while maintaining fire 
detection performance. 

However, this study utilized a limited dataset, and various variables may have influ-
enced the experimental results. To derive more reliable results, repetitive testing with 
vast data is necessary. Therefore, in the future, we plan to conduct experiments 
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targeting a broader and more diverse dataset and aim to derive trustworthy outcomes 
through repeated experiments. 
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Abstract. Kyber, selected as the next-generation standard for key en-
capsulation mechanism in the third round of the NIST post-quantum
cryptography standardization process, has naturally raised concerns re-
garding its resilience against side-channel analysis and other physical
attacks. In this paper, we propose a method for profiling the secret key
using multiple features extracted based on a binary plaintext-checking
oracle. In addition, we incorporate deep learning into the power analysis
attack and propose a convolutional neural network suitable for multi-
feature recognition. The experimental results demonstrate that our ap-
proach achieves an average key recovery success rate of 64.15% by es-
tablishing secret key templates. Compared to single-feature recovery, our
approach bypasses the intermediate value recovery process and directly
reconstructs the representation of the secret key. Our approach improves
the correct key guess rate by 54% compared to single-feature recovery
and is robust against invalid attacks caused by errors in single-feature
recovery. Our approach was performed against the Kyber768 implemen-
tation from pqm4 running on STM32F429 M4-cortex CPU.

Keywords: Lattice-Based cryptography · Side-channel analysis · Plaintext-
checking oracle · Kyber · Convolutional neural network.

1 Introduction

Classical public key cryptosystems rely on the intractability of certain mathe-
matical problems. However, the rapid development of quantum algorithms and
quantum computers poses a grave threat to these cryptographic schemes in use
today. Integer factorization and discrete logarithm problems can be solved in
polynomial time using Shor’s algorithm [17]. Furthermore, a recent study es-
timated the possibility of factoring a 2048-bit RSA integer in 8 hours using
“20 million noisy qubits” [5]. Therefore, it is necessary to develop novel, post-
quantum secure cryptographic primitives for long-term security.
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In 2016, the National Institute of Standards and Technology (NIST) initiated
a process [12] to select the best post-quantum cryptography (PQC) primitives for
standardization. In July 2022, NIST announced the first group of winners from
its six-year competition [2]. Lattice-based cryptography prevailed, with 3 out
of 4 winners, demonstrating their foundational role in PQC standards. Among
them, Kyber [16], the KEM part of the Cryptographic Suite for Algebraic Cipher
Suite (CRYSTALS), was chosen by NIST as the only public key encryption or
key encapsulation mechanism (KEM) algorithm for standardization [2]. Shortly
after, the National Security Agency included Kyber in the suite of encryption
algorithms recommended for national security systems [1]. Currently, the NIST
PQC process has entered the fourth round.

In addition to other desired security properties, NIST has prioritized the
resilience against side-channel attacks (SCAs), before deploying these PQC al-
gorithms in real-world applications, particularly in scenarios where an attacker
could physically access an embedded device.

SCAs were first introduced by Kocher in 1996 [9]. Research has shown that
power consumption, electromagnetic emanations (EM), thermal signatures, or
other physical phenomena are often correlated with encrypt and decrypt oper-
ations occurring on a device [10]. Thus enabling attackers to extract sensitive
information such as the long-term secret key. Based on this approach, several
SCAs against lattice-based KEMs in the NIST PQC standardization process
have been proposed, such as [3,6,15,18–21]. Most of them are chosen-ciphertext
attacks (CCAs) due to the fact that NIST PQC KEMs are always targeting
CCA security.

The recovery goals of these CCAs can be categorized into two groups: one for
decrypted messages recovery [18,20] and the other for key recovery [3,6,15,19,21].
Since key recovery is more powerful than message recovery, we focus our study on
key recovery SCAs. Guo et al. in [6] first proposed an oracle based on decryption-
failure and instantiated the attack model to complete a timing attack on Frodo
KEM. Xu et al. presented a full-decryption-based oracle in [21]. They proved that
an attacker only needs 8 traces to recover a specific implementation of Kyber512
compiled at the optimization level -O0. D’Anvers et al. [3] exploited the variable
runtime information of its non-constant-time decapsulation implementation on
the LAC and successfully recovered its long-term secret key. This key recovery
attack, named plaintext-checking (PC) oracle in [14] which was defined as a
message-recovery-type attack, finds a link between the long-term secret key and
specifically chosen messages and recovers the key by recovering the message.
Ravi et al. [15] continue this attack conception by exploiting the leaked side
information in Fujisaki-Okamoto (FO) transformation [4] or error correcting
codes to propose a generic EM chosen-ciphertext SCA. Qin et al. [13] optimized
the approach of [15] in terms of query efficiency. Ueno et al. in [19] further
investigated the attack methods against adversaries. More appealing is that they
implemented a deep-learning-based distinguisher to assist PC oracle attacks.

Session 4 - 3 The 26th Annual International Conference on Information Security and Cryptology

ICISC 2023 239



Side-Channel Analysis on Lattice-Based KEM 3

Our contributions. In this paper, we proposed a novel multi-feature-based
side-channel attack (Multi-feature-based SCA) by extracting profiling informa-
tion from multi-features. Multi-feature-based SCA constructs templates of each
secret key value based on a convolutional neural network (CNN) and successfully
recovers the secret key of Kyber768. In addition to improving the success rate of
recovering the secret key, our approach also eliminates the occurrence of invalid
attacks. In summary, we make the following contributions:

- We propose a new profiling approach named Multi-feature-based SCA, which
uses multiple features to build templates for the secret key. Our approach
eliminates invalid attacks and can directly recover the secret key values,
bypassing the intermediate step of recovering the decrypted message.

- We build a CNN to recognize secret keys. The experimental results prove
the huge advantages of CNN in constructing templates, and its recognition
accuracy reached around 90%.

- Furthermore, we instantiate the described attack framework on Kyber768
and show the details in each step of the new procedure. Compared to Ueno
et al.’s [19] method, our approach demonstrates an average success rate en-
hancement of 27.45%. Additionally, when contrasted with Ravi et al.’s [15]
method, our approach exhibits an average attack success rate improvement
of 53.69%.

Outline. The remainder of this paper is organized as follows. In Sect. 2, we
examine the details of Kyber and the conception of binary PC oracle. Then
we enumerate some previous SCAs on it. Sect. 3 outlines the basic idea of our
approach, Multi-feature-based SCA. In Sect. 4, we detail our experimental setup
and illustrate our attack method and the CNN construction we used. We further
demonstrate the effect of our approach on improving the probability of attack
success. Lastly, Sect. 5 concludes our work.

2 Background

2.1 Kyber and the binary PC oracle

KEM is a public key cryptographic primitive that encapsulates a secret key.
Kyber is a chosen-ciphertext secure (CCA-secure) KEM based on the Module-
learning with error (M-LWE) problem. The M-LWE problem evolves from the
Ring-LWE (R-LWE) problem, with their theoretical basis being to add noise to
the b = As problem, making it difficult to recover b = As+ e. However, in
R-LWE problem, s and each column of A are chosen from a polynomial ring,
while in M-LWE, s and each column of A are selected from a module. Therefore,
the M-LWE problem offers more flexibility and computational efficiency.

In Kyber, define a polynomial ring Rq = Zq[x]/(x
n + 1), where modulus

q = 3329 and n = 256. For every polynomial f(x) = a0 + a1x + a2x
2 + · · · +

an−1x
n−1 ∈ Rq , each coefficient ai ∈ Zq (0 ≤ i ≤ n− 1), represents a ring with
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all elements are integers modulo q. Additions, subtractions, and multiplications
of polynomials all require modulus xn + 1. We use bolded uppercase letters for
matrices and bolded lowercase letters for polynomial vectors. Matrix A ∈ Rk×k

q ,
where its vector (A[0], · · · ,A[k − 1]) represent a polynomial. s, e ∈ Bk

η , where
Bη represents the centered binomial distribution with parameter η, and can be
generated by

∑η
i=1(ai − bi). In Kyber, ai and bi are uniformly random samples

independently selected from {0, 1}.
Based on the above, Kyber provides three security levels with Kyber512

(NIST Security Level 1), Kyber768 (Level 3) and Kyber1024 (Level 5) with
dimension k = 2, 3 and 4 respectively. In this paper, we focus on the implemen-
tation of Kyber768, but our approaches can also be applied to the other two
sets. Parameters in Kyber768 are shown in Table 1. k = 3 means secret key sk
has 3 polynomials. (η1, η2) = (2, 2) means the coefficients in sk belong an integer
between [−2, 2]. (du, dv) were used in Compress and Decompress fuction.

Table 1. Parameters used in Kyber768

Parameters
n q k (η1, η2) (du, dv)

values 256 3329 3 (2, 2) (10, 4)

Generally, a KEM consists of key generation, encapsulation, and decapsula-
tion. But PC-based SCA is only against the decapsulation part. Thus, in Algo-
rithm 1 and Algorithm 2, we only introduce the main parts of encapsulation and
decapsulation of Kyber, ignoring details such as the Number Theoretic Trans-
form (NTT).

Let ⌈x⌋ denotes the nearest integer to x. In the following, we first define two
functions, Compressq(x, d) and Decompressq(x, d).

Definition 1. The Compression function is defined as: Zq → Z2d

Compressq(x, d) =

⌈
2d

q
· x

⌋
(mod 2d). (1)

Definition 2. The Decompression function is defined as: Z2d → Zq

Decompressq(x, d) =
⌈ q

2d
· x

⌋
. (2)

We can get in [16], Compressq(x, d) and Decompressq(x, d) need polynomials
for their inputs. The above operation is separately done on each coefficient in
the input polynomial. Kyber uses a version of the FO transformation to achieve
its stated security goals, i.e., for the chosen-plaintext secure (CPA-secure) to
CCA-secure. In the following two algorithms, G represents a hash operation to
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Algorithm 1 CCA-secure Kyber KEM based on FO transformation (Encaps)
Input: Public key pk
Output: Ciphertext c = (c1, c2), session key k
1: m ← {0, 1}256
2: (K̄, r) = G(m||H(pk))
3: ▷ c = CPA.Encrypt(pk,m, r)
4: A ← Rk×k

q

5: r ← Bk
η1
, e1, e2 ← Bk

η2

6: u = AT r+ e1
7: v = pkT r+ e2 + Decompressq(m, 1)
8: c1 = Compressq(u, du)
9: c2 = Compressq(v, dv)

10: k = KDF(K̄||H(c))
11: return c, k

get a 64-byte variant meanwhile, H represents a hash operation to get a 32-byte
variant.

During Algorithm 1, the message generates a 32-byte m from the 0,1 space.
By m and H(pk), we can get the pre-shared secret K̄ and a random coin r.
In the encapsulation, a CPA-secure encryption operation is used to output c1
and c2. Then, the shared secret k is calculated from K̄ and H(c) through the
key-derivation function (KDF).

Algorithm 2 CCA-secure Kyber KEM based on FO transformation(Decaps)
Input: Ciphertext c, secret key sk
Output: Session key k
1: pk,H(pk), z ← UnpackSK(sk)
2: ▷ m′ ← CPA.Decrypt(sk, c)
3: u′ = Decompressq(c1, du)
4: v′ = Decompressq(c2, dv)

5: m′ = Compressq(v
′ − skTu′, 1)

6: (K̄ ′, r′) = G(m′||H(pk)) /* Attack loaction */
7: c′ ← CPA.Encrypt(pk,m′, r′)
8: if c = c′ then
9: return k ← KDF(K̄ ′, c)

10: else
11: return k ← KDF(z, c)
12: end if

CCA.Decaps first performs the CPA decryption. In CPA-secure decryption,
from c1 and c2 using Compress, we obtained the plaintext m′ . Then, similar
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to CCA.Encaps, CCA.Decaps generates r′ and K̄ ′ , and evaluates CPA.Encrypt
(pk,m′, r′). This procedure is called re-encryption. At Algorithm 2 line 8, the al-
gorithm executes equality checking, namely, examines whether the re-encryption
result c′ is equal to the ciphertext c. If equals, the CCA.Decaps algorithm re-
turns the shared secret k as the ciphertext is valid; otherwise, the algorithm
returns a pseudorandom number of KDF(z, c) (instead of ⊥) as the ciphertext is
invalid. Thus, the KEM scheme gives any active attacker no information about
the PKE decryption result for invalid ciphertext.

The CPA-secure KEMs are vulnerable to chosen-ciphertext attacks when the
secret key is reused. These attacks are generally operated in a key-mismatch or
PC Oracle. The working principle of PC oracle is to recover one coefficient of
the secret key polynomial at a time. Algorithm 3 depicts the PC oracle, in which
the adversary sends ciphertext c and a reference message m to the oracle. The
oracle tells whether m equals the CPA decryption result m′ or not.

Algorithm 3 PC oracle
Input: Ciphertext c,message m
Output: 0 or 1
1: m′ ← CPA.Decrypt(sk, c)
2: if m = m′ then
3: return 1
4: else
5: return 0
6: end if

The key recovery process is based on the recovery of message m′ in Algo-
rithm 3. By constructing the selected ciphertext, we can combine every possible
coefficient value in Kyber with a set of oracle response sequences. With multiple
queries, we are able to recover this coefficient value. Using the rotation prop-
erty of the polynomial ring, we are then able to recover the complete secret key
polynomial of Kyber.

2.2 PC oracle-based SCA attacks

The LWE-based KEM in the CPA model can be upgraded to a CCA-secure
KEM through FO transformation. As we described in Section 2.1, using FO
transformation, the attacker cannot obtain any prompt information about the
decapsulation failure when decapsulating. This theoretically provides a strong
security guarantee for CPA security KEM, which can prevent selected ciphertext
attacks.

However, with the help of side information, such as analyzing the power
or electromagnetic waveforms of certain operations during the decapsulation
process, an attacker can directly discover the CPA-secure operations inside the
CCA-secure model and launch the same attack.
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At CHES 2020, Ravi et al. launched a PC oracle-based SCA attack against
NIST KEM by utilizing side information leaked from the re-encryption process
in the FO transform [15]. Taking the attack against Kyber as an example, the at-
tacker only needs to control m′ to be O = (0, 0, 0, 0, · · · ) or X = (1, 0, 0, 0, 0, · · · ).
In this way, they build a PC Oracle with a side-channel waveform distinguisher.
In [15], Ravi et al. used simple Euclidean distances to create a recognizer with
profiled waveform templates. More specifically, they first collected two sets of
re-encrypted waveforms with m′ = O and m′ = X. Then, they performed a Test
Vector Leakage Assessment (TVLA) between the two sets to select the Point of
Interest (PoI). In the attack phase, they achieve binary classification by com-
puting the Euclidean distance between the collected PoI waveforms and the two
waveform templates. If each PC oracle query is correct, then Ravi et al. need 5
queries to recover a coefficient. In total, they need 256× 2× 5 = 2560 queries to
recover Kyber512.

After that, Qin et al. improved the query efficiency by using an optimal
binary tree similar to Hoffman tree encoding to reduce the average number of
queries to recover Kyber512 to 1312, which can be found in [13].

We call all the above recovery methods single-feature recovery, and if the
value of the private key cannot be found based on the private key identifier
obtained from a set of oracle queries, we call this case an invalid attack.

This type of key recovery approach designed by them cannot always tell
the truth due to the influence of ambient noise and the accuracy of the side
channel distinguisher itself. And since we cannot determine the location of the
error, the complexity of brute force cracking is quite high. Therefore, additional
techniques are needed to enhance the recovery procedure or tolerate the error.
One commonly used technique is majority voting, which was also used in the
Ravi et al. attack. With multiple votes, we can obtain a more accurate Oracle.

2.3 Convolutional neural network in SCAs

Convolutional neural networks are a powerful class of neural networks designed
for processing image data. It has achieved widespread success across domains,
including side-channel analysis. It is not surprising, as deep learning excels at
identifying patterns and relationships, which aids in extracting information from
power consumption time series. This is especially useful for template attacks.

In [11], Maghrebi et al. first applied deep learning in a side-channel con-
text. They found that against unprotected cryptographic algorithm implemen-
tations, DL-based attacks are more effective than machine learning-based and
traditional template attacks. Notably, their experimental results show that the
feature extraction-based model performed very well on both datasets. This could
be explained by the fact that CNN applies a nice features extraction technique
based on filters allowing dealing with the most informative samples from the
processed traces. The work of [8] also proves this.

At CHES 2022, Ueno et al. used CNN to design a side-channel distinguisher
and achieve a similar binary classification [19]. With the CNN distinguisher, they
can get higher accuracy of single-feature recognition.
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2.4 Open problem

We reproduce the method of Ravi and Ueno in [15] and [19] using energy analysis.
As an example, 20 coefficient values are recovered, as shown in Fig. 1, the average
success rate for recovering a single-feature (i.e., message m′) using Ravi’s method
is 64.58%. However, for recovering the complete label, the entire attack fails even
if one-bit feature is incorrectly recovered. Hence, the average success rate of secret
key recovery using the method in [15] is only 10.46%.

(a) recover message success rate. (b) recover key success rate.

Fig. 1. The success rates of using Ravi [15] and Ueno [19] methods in recovering
message bit and a certain secret key coefficient respectively.

As illustrated in Fig. 1, using Ueno’s method in [19], the CNN model leads
to significant performance gains, with the average success rate of recovering
message m′ directly improved from 64.58% to 81.4%. However, the success rate
of secret key recovery using the method in [19] remains only 36.7%.

We also noticed that with both methods in [15] and [19], this attack approach
of recovering the secret key value bit-by-bit according to the single-feature of m′

has a very large invalid attack space. That is, the recovered binary label string
may represent neither the correct secret key value nor the wrong secret key
value, but rather a meaningless label string. Shockingly, the average occurrence
probability of invalid attacks at 75.17% in [15], shown in Fig. 2. Although using
CNN in [19] reduces the occurrence of this event, the proportion of invalid attacks
still reaches over 50%.

So how to improve the success rate of attacks and avoid such invalid attacks?

3 Multi-feature-based SCA on Kyber

In this section, we elucidate in detail the methodology for constructing multi-
features of secret key and use it to recover Kyber768 using power analysis attacks.
Using this approach, we eliminate the occurrence of invalid attacks.
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Fig. 2. Invalid attack rate in Ravi [15] and Ueno [19].

3.1 Construction of multiple features

In this part, we describe the full-key recovery framework of the new attack.
All previous attack methods take recovering m′ as an intermediate step (in-

cluding [15] and [19]), with the decrypted message value m′ as the profiling tar-
get. In contrast, our approach bypasses this intermediate process and directly
builds templates for the key. The comparison between the two approaches is
illustrated in Fig. 3.

Fig. 3. Our profiling strategy.

In order to eliminate the invalid attack presented above, we propose a new
profiling method that builds templates for secret keys from multi-features. We
integrate the modeling and matching of m′ and build a template for the secret
key instead of the decrypted message m′. Instead of recovering the key’s binary
label bit by bit, the new key feature construction method stitches single-features
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m′ together based on a specific ciphertext query result. Compared to single-
feature recovery, we absorb the invalid attack space into the guess space for the
entire secret key value, avoiding such situation.

3.2 Our attack scenario

We denote the i-th coefficient of the private key polynomial as sk[i]. The overall
workflow of the profiling stage and attack stage are shown in Fig. 4 and Fig.
5, respectively. We assume the adversary can manipulate the target device and
collect the leaked power traces during cryptographic operations.

Fig. 4. Profiling stage of the Multi-feature-based SCA of key recovery. The NN model
learns to find the combined message bit m′.

By querying the PC oracle with constructed ciphertexts multiple times, the
attacker obtains a set of pre-modeled power traces with the decrypted message
m′ being 0 or 1. Based on the mapping between the chosen ciphertexts and
the private key values, the adversary acquires the multivariate feature labels
representing the coefficients of the private key polynomial. Using the multivariate
feature identifiers for each private key value, we construct the modeled power
traces for sk[i] and label these traces based on the value of sk[i]. Finally, they
are fed into the network for training.

During the attack stage, as shown in Fig. 5, the attacker replaces the cipher-
text with five preset chosen ciphertexts and polls the decrypted messages m′

from the target device by decrypting these five chosen ciphertexts. After that,
the five obtained traces are concatenated in order and preprocessed into the sk[i]
template style during the modeling stage. Finally, the preprocessed power trace
is fed into the trained network, which will directly output the value of this sk[j].
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Fig. 5. Attack stage of the Multi-feature-based SCA of key recovery.

3.3 Generate qualified ciphertexts

The process of obtaining these five chosen ciphertexts is as follows:
In CCA.Decaps of Algorithm 2, an attacker can construct the ciphertext

c = (u,v). And set u = ku · x0 and v = kv · x0 where (ku, kv) ∈ Zq.
Let us take the example of recovering sk[0] (i.e., the lowest coefficient in the

first polynomial of sk). We take a long rectangle to represent a polynomial, and
each small rectangle in it represents a coefficient. In Kyber768, the polynomial
vector has three dimensions, so sk and u′ each have three long rectangles. We
omit certain modules, such as Compress operations. The connection between the
decrypted m′, the selected ciphertext c and the secret key is as shown in Fig. 6:

Fig. 6. The abstract compute relation for m′ in line 5 in Algorithm 2. We fill the
nonzero coefficients of each polynomial in m′, sk, u′, and v′ with a different color,
with a white rectangle indicating that the coefficient is 0.

Session 4 - 3 The 26th Annual International Conference on Information Security and Cryptology

ICISC 2023248



12 Y. Ma et al.

From Fig. 6, we can see that all coefficients in m′ except for the lowest
coefficient, the remaining are all zeros. This allows the attacker to establish a
binary distinguishing identity for sk[0] by controlling m′ = 0/1. By instantiating
this binary plaintext checking mechanism through the side channel, sk[0] can be
recovered through multiple queries, and the remaining coefficients of sk can be
recovered by exploiting the rotational property of polynomial multiplication in
the ring.

Therefore, for the above selected u,v (i.e., u = ku ·x0,v = kv ·x0), the lowest
bit of the decrypted message m′[0] can be expressed as:

m′[0] =

{
kv − ku · sk[0] if t = 0

kv − ku · −sk[n− t] if 0 < t ≤ n− 1
(3)

By iterating through the positions of t from 0 to n − 1, we can recover the
coefficients of the first polynomial in secret key s in the order of sk[0],−sk[n−
1],−sk[n− 2], . . . ,−sk[1].

Since the coefficient values of the secret key in Kyber768 are within [−2, 2], we
construct Table 2 to enumerate the mapping between the binary string represen-
tation of the decrypted message from a chosen ciphertext and the corresponding
secret key value. Where X represents the decrypted m′ = 1, and O represents
m′ = 0.

Table 2. Chosen ciphertext pairs

(ku, kv)
Coeff. (0, 0) (0, q/2) (110, 657) (240, 2933) (110, 832) (182, 2497) (416, 1248)

−2 O X X O X O X
−1 O X O O X O X
0 O X O O O O X
1 O X O O O O O
2 O X O X O X O

Traces pre-process. As obtained above, Table 2 provides a unique binary label
string mapping to each secret key value. Our new profiling approach directly
builds templates from this label string to the range of secret key values, instead
of mapping the profiled m′ = 1 and m′ = 0 to the binary representation. This
expands the original binary message recognition into a 5-class secret key value
recognition problem. In the attack phase, we iterate through the five ciphertexts
constructed using Table 2 (last five columns), collecting the power traces over the
last four rounds of the hash function during decapsulation for each ciphertext.
These are concatenated to form the combined multivariate feature information.
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4 Experiments

4.1 Equipment setup

Our measurement setup is shown in Fig. 7. It consists of the Laptop, the versa-
tile current amplifier, the STM32F429 target board, and the PicoScope 3403D
Oscilloscope. We target the optimized unprotected implementation of Kyber768,
taken from the public pqm4 library [7], a benchmarking and testing framework
for PQC schemes on the 32-bit ARM Cortex-M4 microcontroller. In our ini-
tialization, the implementation is compiled with arm-none-eabi-gcc using the
optimization flag “-O1”. We set the operating clock frequency of the target board
to 16 MHz and utilized the power analysis side-channel for our experiments. For
traces acquisition, we set the trigger at pin PC6, and the measurement results
were collected on the oscilloscope with a sampling rate of 62.5 MSam/s.

Fig. 7. Equipment for trace acquisition and the board used in the experiment.

4.2 Target operation

The ensuing problem is how to capture this leakage in the side channel. We
assume that the attacker has the ability to completely manipulate the target
device and is able to measure the power consumption during the execution of a
cryptographic algorithm. Then during the inference phase, the adversary aims at
recovering the unknown secret key, processed by the same device, by collecting
a new set of power consumption traces. To guarantee a fair and realistic attack
comparison, we stress the fact that the training and the attack data sets must
be different.

Target Operation. Using the key recovery methods in Sect. 3, we find a chosen
ciphertext correspondence that is sufficient to distinguish the values of the poly-
nomial coefficients of the secret key. By means of the binary plaintext checking
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oracle described above, the attacker constructs a distinction of the decrypted
message m′. Exactly through the hash function execution process in the FO
transformation, the attacker can amplify the difference of the decrypted mes-
sage m′ from 1 bit message bit to 256 bits.

The KeccakF1600_StatePermute function in G includes twelve for loops.
Therefore, the target option we choose is the last four rounds of the hash oper-
ation, as shown in Fig. 8. That is, line 6 in Algorithm 2. The TVLA result of
our target operation is as shown in Fig. 9:

Fig. 8. Original power trace of Kyber768. (a) The whole hash operation G with twelve
for loops in Kyber.KEM.Decaps() (i.e., line 6 in Algorithm 2); (b) The last four rounds
of G.

Traces Acquire. We set the STM32F429 microcontroller as a server and our
laptop as a client. Every time we selected a random message m and encapsulated
it with the public key into ciphertext c on the client, then we sent c to the server
through a socket.

During the decapsulation of the profiling stage, we captured power traces
and saved O or X (i.e., m′ = 0 or m′ = 1) as labels. For each type of template,
we collected 9,000 traces, each with a length of 30,000. Then we combined the
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Fig. 9. TVLA results for the last four rounds between O and X.

traces in order of the five chosen ciphertexts in Table 2. The templates we get
are as shown in Fig. 10, and we only selected two localized positions for zoomed-
in display (five values of sk[i] are represented by five lines with different colors
respectively):

Fig. 10. Constructed template of sk[i]. (a) Complete template for sk[i] after trace
pre-process; (b) and (c) The expansion of an interval somewhere in the template of
sk[i].

In the attack stage, we only need to poll these five chosen ciphertexts in
order and collect the same power traces as in the profiling stage for the same
pre-processing.
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4.3 Model Training

By adjusting the CNN network architecture and hyperparameters, we obtained
the CNN model that performs best on our dataset. This model is inherited from
[19]. The architecture of which is shown in Table 3. It has seven convolutional
layers and four fully-connected layers. In the Function row, conv1d(F ) denotes
the operation at each layer and F is the filter size. The stride of the filter is two
and the padding of it is one. After each convolutional layer, batch normalization
and SeLU activation are used, and finally, a 2 × 2 size average pooling layer is
connected to reduce the dimensionality. The convolutional layers are followed by
four fully-connected layers in our network architecture. The first fully-connected
layer consists of 1000 neurons. Then followed by two fully-connected layers with
200 neurons each. The final layer has 5 neurons and utilizes softmax activation
for classification.

Table 3. NN architecture

Input Output Function Normalization Activation Pooling

Conv1 150000× 1 4 conv1d(3) Yes SELU Avg(2)
Conv2 75000× 4 4 conv1d(3) Yes SELU Avg(2)
Conv3 37500× 4 4 conv1d(3) Yes SELU Avg(2)
Conv4 18750× 4 8 conv1d(3) Yes SELU Avg(2)
Conv5 9375× 8 8 conv1d(3) Yes SELU Avg(2)
Conv6 4687× 8 8 conv1d(3) Yes SELU Avg(2)
Conv7 2343× 8 8 conv1d(3) Yes SELU Avg(2)
Flatten 1171× 8 9368 flatten - - -
FC1 9368 1000 dense - SELU -
FC2 1000 200 dense - SELU -
FC3 200 200 dense - SELU -
FC4 200 5 dense - Sigmoid -

In the following experiments, we employed CUDA 11.6, cuDNN 8.3.0, and
Pytorch-gpu 1.13.1 on NVIDIA GeForce GTX 3050 to carry out the NN training.
The Adam optimizer is utilized with a learning rate of 0.00005, the batch size was
128, and the number of epochs was 50. We used the cross-entropy loss function
during training and validated it after each epoch.
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4.4 Experimental results and comparison

The loss values of this model trained on our dataset for 50 epochs and the
accuracy of the validation set are shown in Fig. 11. After 50 epochs of training,
the model’s loss stabilizes around 0.9 and the accuracy of the validation set
improves to 88%.

Fig. 11. Train loss (a) and validation accuracy (b) of our approach..

As shown in Fig. 12, our approach significantly improves the success prob-
ability of recovering secret key values. Compared to Ravi’s method [15], the
average attack success rate for a secret key value increases by 53.69%. It also
outperforms distinguishing message m′ using neural networks [19] by 27.45%.
Our approach can also tolerate invalid attacks due to errors in single-feature
recovery.

Fig. 12. Compare three methods of key recovery success rate (a) and invalid attack
rate (b).
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5 Conclusion

Our Multi-feature-based SCA is a novel attack technique that extracts secret
key templates from multivariate features and employs the optimal CNN archi-
tecture. All attacks presented in this paper are performed directly on the target
device. Our experimental results demonstrate that CNN can significantly im-
prove profiling efficiency as an effective approach. Notably, our approach only
uses the traces collected in a single experiment when recovering the secret key.
Based on the results, voting across multiple experiments can achieve 100% attack
success rate. Our work reiterates the need for effective countermeasures against
side-channel attacks in cryptographic implementations.
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Abstract. Random number generators (RNGs) play a vital role in cryp-
tographic applications, and ensuring the quality of the generated random
numbers is crucial. At the same time, on-the-fly test plays an important
role in cryptography because it is used to assess the quality of the se-
quences generated by entropy sources and to raise an alert when fail-
ures are detected. Moreover, environmental noise, changes in physical
equipment, and other factors can introduce variations into the sequence,
leading to time-varying sequences. This phenomenon is quite common
in real-world scenarios, and it needs on-the-fly test. However, in terms
of speed and accuracy, current methods based on mathematical formu-
las or deep learning algorithms for evaluating min-entropy both fail to
meet the requirements of on-the-fly test. Therefore, this paper intro-
duces a new estimator specifically designed for on-the-fly min-entropy
estimation. To accurately evaluate time-varying data, we employ an ap-
propriate change detection technology. Additionally, we introduce a new
calculation method to replace the original global prediction probability
calculation approach for accuracy. We evaluate the performance of our
estimator using various kinds of simulated datasets, and compare our es-
timator with other estimators. The proposed estimator effectively meets
the requirements of on-the-fly test.

Keywords: On-the-fly test · Entropy estimation · Prediction estimator
· Change detection technology · Confidence interval.

1 Introduction

In today’s cryptographic engineering applications, random numbers have become
increasingly important. For instance, in key distribution and mutual authenti-
cation schemes, two communicating parties collaborate to exchange information
for key distribution and authentication purposes. These random numbers are
generated by random number generators that contains entropy sources, and en-
tropy sources are divided into two categories: stationary sources and time-varying
sources. Secure random numbers are often used as security primitives for many
⋆ Corresponding author: chentianyu@iie.ac.cn.
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cryptographic applications, so it is necessary to evaluate the quality of random
numbers.

Current methods for evaluation are mainly divided into two categories: white-
box test and black-box test. White-box test, also known as theoretical entropy
evaluation, requires an understanding of the internal structure and generation
principle of the entropy source. It establishes a mathematical model according
to appropriate assumptions to calculate the theoretical entropy of the output
sequence [8]. However, given the complex and varied structures of many entropy
sources, it becomes challenging to model them accurately, thereby limiting the
applicability of theoretical entropy evaluation. Black-box test includes statisti-
cal test and statistical entropy evaluation: statistical test uses hypothesis-testing
methods to conduct tests on the sequence for some properties, determining
whether the tested sequence meets the null hypothesis (indicating randomness)
or exhibits statistical defects [13]. Nevertheless, it is worth noting that certain
specifically constructed pseudo-random sequences may exhibit favorable statisti-
cal properties and successfully pass these tests, posing potential security threats.
Statistical entropy does not require the knowledge of the internal structure and
generation principle of entropy sources. It evaluates the safety of the random
numbers from the perspective of “entropy” [15]. In summary, to meet the re-
quirements of generality and security, statistical entropy evaluation has become
an indispensable approach.

Statistical entropy evaluation methods can be categorized into two main cat-
egories: those based on mathematical and statistical theories, and those based
on deep learning. However, some estimators in the former, represented by the
NIST SP800-90B standard, have been found to have overestimation and un-
derestimation problems when faced with some typical datasets during entropy
evaluation [21]. The latter has a problem of high time consumption. They both
don’t perform well in time-varying sequence which is common in reality. Thus,
in order to detect RNG failures quickly and reliably, we need an on-the-fly test
that is suitable for time-varying datasets.

To design a suitable estimator for on-the-fly test, we need solve two issues.
Firstly, as mentioned above, we should update the model in a timely manner,
especially for time-varying datasets. To address it, we utilize the change detec-
tion technique. Secondly, we introduce a new calculation method for global pre-
dictability of entropy estimation [15], specifically designed to handle situations
involving small samples or extreme probabilities (i.e., probabilities approaching
0 or 1), which is different from the SP800-90B Standard, because the raw method
is no longer suitable for on-the-fly test.

Our goal is to design an entropy estimator which meets the requirement of
speed and accuracy for on-the-fly test. We present several significant contribu-
tions in this paper:

1) We propose a modified version of the prediction estimators from SP800-
90B, enabling an on-the-fly test for evaluating the quality of entropy sources
timely. To support the new framework, we proposed two key technologies: change
detection technique and new calculation method for global predictability.
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2) By leveraging the characteristics of the prediction estimator model and
drawing inspiration from neural network parameter adjustments during training,
we design a novel change detection technique suitable for online entropy estima-
tion. Besides, we are the first to address the challenges associated with evaluating
min-entropy in scenarios involving small sample datasets and extreme probabil-
ities. We provide a reasonable solution to this issue, which plays a critical role
in on-the-fly test.

3) We compare the performance among our estimator and other existing es-
timators, using different types of simulated datasets with known entropy values.
The experimental results show that, our estimator performs well for all different
types of tested datasets, outperforming the other ones.

The rest of this paper is organized as follows. In Section 2, we introduce the
definition of min-entropy, along with an overview of the 90B standard. In Section
3, we expound and analyze the existing estimators. Section 4 presents our new
framework and provides detailed descriptions, including the change detection
technique and so on. In Section 5, we present a series of experiments comparing
our estimator with other estimators. Finally, in Section 6, we conclude our paper.

2 Preliminaries

2.1 Min-Entropy

“Entropy” is the unit representing the size of information in communication,
which can quantify the randomness of the output sequence [15]. Min-entropy is
a conservative way to ensure the quality of random numbers in the worst case.
The definition of min-entropy is as follows: we take the next output from an
entropy source as a random variable X, which is an independent discrete ran-
dom variable. If X takes value from the set A = {x1, x2, ..., xk} with probability
Pr{X = xi} = pi for i = 1, ..., k, the min-entropy of the output is

Hmin = min1≤i≤k[-log2(pi)] = -log2[max1≤i≤k(pi)] . (1)

If the min-entropy of X is H, then the probability of any value that X can
take doesn’t exceed 2−H . For a random variable with the possibility of k distinct
values, the maximum value that the min-entropy can reach is log2k, achieved
when the variable follows a uniform probability distribution, i.e., p1 = p2 = ... =
pk = 1/k.

2.2 NIST SP800-90B Standard

The 90B estimation suite is a widely-used standard for calculating statistical
entropy [15]. It calculates global predictability and local predictability with an
upper bound of 99% confidence, and chooses the maximum value between them
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to estimate min-entropy. The suite comprises ten distinct entropy estimators
that will be discussed in Section 3.

Global Predictability: Global predictability is the proportion of all pre-
dicted data to be correctly predicted. For a given prediction method, let p

′

global =
c/n, where c represents the number of correct predictions and n denotes the num-
ber of predictions made. Then, to give a conservative calculation method, 90B
calculates pglobal according to the following equation [7]:

pglobal =

{
1− 0.011/n, p′global = 0

min(1, p′global + 2.576

√
p′
global(1−p′

global)

n−1 ), otherwise
, (2)

which is the upper bound of the 99% confidence interval on p′global, and it
should meet the condition of De Moivre-Laplace Central Limit Theorem, that is:
let X1, X2, . . . , Xn be i.i.d Bernoulli random variables with success probability
p ∈ (0, 1) such that np → ∞, as n → ∞. Denote Sn : X1 +X2 + ...+Xn and

Y ∗
n = Sn−np√

np(1−p)
.

Then, ∀ y ∈ R, the theorem states that

limn→∞[P (Y ∗
n ≤ y)] = Φ(y) =

1√
2π

∫ y

−∞
e−t2/2 dt. (3)

Local Predictability: Local predictability is based on the longest run of
correct predictions, which is valuable mainly when the source falls into a state of
very predictable output for a short time [4]. Let l be the number one larger than
the longest run of correct predictions. Then local predictability is calculated as

0.99 =
1− plocalx

(l + 1− lx)q
· 1

xn+1
, (4)

where q = 1 − plocal , n represents the number of predictions, and x is the
real positive root of the equation 1−x+ qpllocalx

l+1 = 0. Then by iterations and
the binary search, we can solve the mentioned equation and calculate the local
predictability.
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3 Related Work

3.1 Statistical Entropy Evaluation

Statistical entropy evaluation is comprised of estimators based on statistic meth-
ods and deep learning algorithms. For the former, in 2018, the final NIST SP800-
90B test suite published, which is a typical representative of the statistical en-
tropy estimations, which is based on min-entropy and specifies how to design
and test entropy sources.It employs ten different estimators to calculate the min-
entropy [15]. While it performs well on stationary datasets, it falls short when
dealing with time-varying datasets. Before conducting entropy estimation, the
90B standard carries out an initial IID (independent and identically distributed)
test. If the dataset meets the IID requirement, the MostCommon Estimator is
utilized. Otherwise, the suite employs ten different estimators and selects the
minimum value among them. These ten estimators can be divided into two cat-
egories: statistic-based and prediction-based. On the one hand, statistic-based
estimators treat the test sequence as a whole and employ statistical methods
to analyze properties related to entropy sources. On the other hand, prediction-
based estimators use a training set comprised of previously observed samples
to predict the next sample. By comparing the predicted results with the actual
samples, the success rate of prediction is determined, and entropy estimation
is performed based on the probability of successful prediction. Prediction-based
estimators have a better performance than the other estimators in this standard.
A brief introduction of the 10 estimators is as follows.

−Most Common Value Estimator performs entropy estimation based on
the frequency of the most commonly occurring sample values in the sequence.

−Collision Estimator performs entropy estimation based on the collision
frequency of samples in the sequence.

−Markov Estimator assumes the sequence as a first-order Markov process
for entropy estimation.

−Compression Estimator is an entropy estimator based on the Maurer’s
algorithm.

−T-Tuple Estimator calculates entropy based on the occurrences of some
fixed length repeated tuples.

−LRS Estimator calculates entropy based on the occurrences of some
longer repeated tuples.

−MultiMCW Prediction Estimator utilizes four sliding windows of dif-
ferent sizes to determine the most frequently occurring value for prediction. A
scoreboard is employed to determine the appropriate sliding window to use.

−Lag Prediction Estimator selects a prediction period ranging from 1 to
128 and also employs a scoreboard to select the optimal period.

−MultiMMC Prediction Estimator begins by setting up a dictionary (a
two-dimensional array) and a scoreboard (a one-dimensional array). The dictio-
nary is responsible for counting the frequency of prefixes and suffixes, while the
scoreboard keeps a record of accurate predictions. After counting, it calculates
the min-entropy.
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−LZ78Y Prediction Estimator creates a dictionary based on patterns
observed in the sequences and uses it for prediction.

Table 1. 90B Estimators.

Statistic-based Prediction-based
MostCommon Value Estimator MultiMCW Prediction Estimator
Collision Estimator Lag Prediction Estimator
Markov Estimator MultiMMC Prediction Estimator
Compression Estimator LZ78Y Prediction Estimator
T-Tuple Estimator
LRS Estimator

For the latter, Yang et al. [20] were the first to apply neural networks to en-
tropy source evaluation in 2018. In 2020, Lv et al. [12] conducted a comprehensive
study on parameter settings for fully-connected neural networks (FNN) and re-
current neural networks (RNN), achieving accurate estimates of M-sequences
with up to 20 stages. In 2019, Zhu et al. [21] combined change detection tech-
niques with neural networks, partially resolving the issue of inaccurate prediction
for time-varying sequences, and their model is named CDNN. Furthermore, in
2023, Zhang et al. [10] utilized TPA-LSTM to quantify the unpredictability of
random numbers, and validated the effectiveness of pruning and quantized deep
learning models in the field of random number security analysis. The above
methods provide increasingly accurate estimation, but the speed needs to be
improved.

In summary, the prediction-based estimators of SP800-90B can provide the
same accurate estimation as the deep learning based estimators for stationary
datasets and some time-varing datasets, and the former can consume less time.

3.2 On-the-fly Test Technologies

In terms of the on-the-fly test applied in cryptography, Santoro et al. [14] con-
ducted the evaluation of the harmonic series on FPGA in the entropy test in
2009. Then, in 2012, Veljković et al. [16] proposed the online implementation for
NIST SP800-22 and Yang et al. [18] improved it in 2015.

At the same time, Yang et al. [19] completed hardware implementations of 4
statistic-based estimators of NIST SP800-90B on FPGA after some simplifica-
tions, but it is only aimed at the estimators of the first draft 90B and its accuracy
needs to be improved. In 2017, Grujić et al. [6] used the three prediction estima-
tor of NIST SP800-90B to implement the on-the-fly test, but the results is not
very accurate because there some mistakes in the second draft standard, and
besides, the latest draft is also not suitable because the dictionaries updates lag-
gardly. Then, in 2021, Kim et al. [9] proposed an online estimator that updates
the min-entropy estimate as a new sample is received, which is based on the idea
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of the compression estimate of NIST SP800-90B, and it is implement on soft-
ware. However, it doesn’t perform well in time-varying datasets, even in some
stationary datasets. Therefore, new framework should be designed to improve
it.

4 New Framework of the 90B’s Prediction Estimator for
On-the-fly Test

4.1 Design Goal and Principle

Our design goal and principle is to achieve on-the-fly test effectively, so we need
to improve speed while ensuring accuracy. We have tested that the minimum
of time consumption of estimators based on deep learning is 30 seconds for
processing 1Mbit of data which can’t meet the requirement of on-the-fly test.
By contrast, the raw 90B estimators only consume 0.15 seconds. Therefore, we
design the new framework according to the 90B estimators.

Besides, we know that on-the-fly test requires as few estimators as possible to
reduce the time consuming, and prediction estimators outperform the other ones
[7]. Therefore, while ensuring accuracy, we choose the four prediction estimators
included in 90B to modify for on-the-fly test. Last but not least, suitable change
detection technology and calculation method of global predictability should be
designed to improve the accuracy.

4.2 Framework of Our Estimator

We can observe that the predictors in SP800-90B all feature scoreboards or dic-
tionaries, which serve as key components in the prediction process. However,
the estimation accuracy of these predictors in handling time-varying sequences
is compromised. This can be attributed to the fact that, even as the datasets
change, the scoreboards and dictionaries retain information from the previous
datasets. As a result, there is a lag in the response of the dictionaries and score-
boards to data changes during accumulation, leading to prediction errors when
applied to new datasets. Therefore, it is imperative to make improvements in
this regard.

We have made the following modifications to the aforementioned estimators
for conducting on-the-fly test. The entire process is presented in Figure 1. In it,
point is the change position, and i is the serial number of the sample. For each
estimator, we perform the simultaneous operations of reading in data and out-
putting results in a serial manner. In step one, considering that the dictionaries
and scoreboards have not yet started accumulating data at startup, which may
result in erroneous estimation, we exclude the first 4999 samples from undergoing
entropy estimation. During this phase, only the dictionaries and scoreboards are
accumulated. Then, in the second step, at the point when there are 5000 samples,
we calculate the prediction probability as the initial value for the change detec-
tion process based on the accumulated dictionaries. Starting from the 5001st
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Fig. 1. The flowchart of the new framework.

sample, we calculate the prediction probability for each subsequently read-in
sample. This calculated probability serves as the basis for the change detection
technology.

In step three, if the prediction suddenly deviates and exceeds the threshold,
we output the calculated min-entropy, clear the dictionaries and scoreboards,
and initiate a new round of entropy estimation. Otherwise, as shown in the
fourth step, if there is no change appearing, for every I samples input, entropy
calculation is performed according to the formula in Section 4.4, and the results
are outputted without clearing the dictionaries and scoreboards. Throughout
this process, the minimum value among the four estimators is selected as the
final output result. Here, I refers to the interval between two outputs.
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4.3 Change Detection Module

In Figure 1, we employ a sequential approach for the four estimators to carry
out the accumulation of dictionaries and scoreboards. We then utilize change
detection technology to identify changes in the datasets and promptly clear the
dictionaries and scoreboards when such changes are detected. This is followed by
initiating a new round of dictionaries accumulation and scoreboards counting.

The current change detection technology can be categorized into three types:
error rate-based drift detection, data distribution-based drift detection, and mul-
tiple hypothesis test drift detection [11]. The latter two methods require more
time and resource consumption as they involve additional feature extraction and
comparison processing on the data. Consequently, they are not suitable for our
on-the-fly test scenario. Error rate-based drift detection, specifically the widely
used Drift Detection Method (DDM) [5], offers a viable approach. Its concept
is as follows: when the sample dataset exhibits stable distribution, the error
rate of the model gradually decreases with the input of data; when there is a
change in the probability distribution, the error rate of the model increases. We
can reference the DDM approach for our change detection modules, but some
adjustments will be necessary in terms of specific details.

For our estimator, when the probability distribution changes, the error rate
of our model has a possibility of both an increase and a decrease; when the
sample dataset is stable, the error rate is in an almost stable and unchanging
state. Besides, Gama et al. [5] set the confidence level for drift to 99%, and the
drift level is reached if pi + si ≥ pmin + 3 × smin , where pi is the probability
corresponding to the first i samples and si is the standard deviation of the first i
samples. pmin is the minimum probability of the previous samples and smin is the
corresponding standard deviation. However, the inequality can hold only when
the normal approximation of the binomial distribution holds. Therefore, we re-
place it with another formula for general which mentioned in Section 4.4, that is,

pi ≥
pmin +

z2
α/2

2(imin−1) + zα/2

√
pmin(1−pmin)

imin−1 +
z2
α/2

4(imin−1)2

1 +
z2
α/2

imin−1

, (5)

and for the lower bound of confidence interval, we use the formula

pi ≤
pmax +

z2
α/2

2(imax−1) − zα/2

√
pmax(1−pmax)

imax−1 +
z2
α/2

4(imax−1)2

1 +
z2
α/2

imax−1

, (6)

where pmax is the maximum probability of the previous samples and zα/2 is
2.576 when the confidence level is 99%. This can apply to all situations.
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Then, during the estimation, we use the prediction probabilities of four esti-
mators for simultaneous change detection. As long as a probability that exceeds
the confidence interval appears, it is determined that a change has occurred
and immediately clear the dictionaries and scoreboards. In theory, our method
is similar to the hyperparameter update of deep learning algorithms, but more
timely than it.

4.4 Optimization of Global Predictability for Small Sample
Datasets and Extreme Probability

According to Section 2.2, the calculation method of global predictability confi-
dence interval is divided into two situations. When p′global is zero, it uses Clopper-
Pearson Exact Method [3]. In other cases, use normal distribution to approximate
binomial distribution and calculate the confidence interval.

However, the above method only contains situation when np > 5 and n(1−
p) > 5, or p = 0 or p = 1, where n is the sample size and p is the probability.
Therefore, we should consider the case that np ≤ 5 or n(1− p) ≤ 5 to make the
perfect.

In our proposed online estimator, the dataset was truncated according to the
sample distribution and parameter changes due to the use of change detection
technology. Besides, in the process of entropy estimation, the probability may
approach to 0 or 1. The two factors may make us encounter the case mentioned
above, i.e., np ≤ 5 or n(1−p) ≤ 5. In this case, the confidence interval calculation
of the global prediction probability in 90B standard is no longer valid because it
does not meet the condition that the binomial distribution is approximated to
normal distribution, that is, the central limit theorem mentioned in Section 2.2.
Therefore, we need to use a new method to calculate it.

Poisson approximations can do for the above issue to some extent, but
it doesn’t provide the method of calculating the confidence interval [4]. T-
distribution can also handle some small sample issues, but still can’t solve the
above problem completely [2]. Therefore, we use “Plus Four Confidence Intervals”
to handle the small sample issue here. This is proposed by Edwin Bidwell Wilson
in 1927, which is an asymmetric interval [17]. It can be used for any probability
value between 0 and 1 in the case of the small sample securely. It is obtained

by solve the equation of p : p = p̂ ± zα/2

√
p(1−p)

n . p̂ is the correct prediction
proportion of the sample, and n is the sample size. zα/2 is the confidence co-
efficient, and it equals to 2.576 when the confidence interval is 99%. The result is

p =
p̂+

z2
α/2

2n ± zα/2

√
p̂(1−p̂)

n +
z2
α/2

4n2

1 +
z2
α/2

n

. (7)
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Then, the upper bound of confidence interval of global prediction under the
new method is

pglobal =
p′global +

z2
α/2

2(n−1) + zα/2

√
p′
global(1−p′

global)

n−1 +
z2
α/2

4(n−1)2

1 +
z2
α/2

n−1

. (8)

From the result, according to knowledge of the infinitesimal of higher order
of the limit theory, we can see that when n → ∞, the equation is approximate
to

pglobal = p′global + zα/2

√
p′global(1− p′global)

n− 1
. (9)

This means that the formula is also applicable to the case of large sample
datasets. Besides, when p′global = 0, the result is greater than 0, which indicates
that it can also handle the situation of endpoint values.

Last but not least, we retain the original local prediction during the pro-
cess of estimation because it is valid regardless of the sample size and extreme
probability. Then, we choose the maximum of the global and local prediction to
calculate the min-entropy as the final result.

4.5 Setting of Key Parameters

In this section, we discuss the setting of the parameters. We choose an initial
accumulation size of 5000 samples for dictionaries and scoreboards due to the fact
that the largest sliding window of the MultiMCW prediction estimator is 4095.
If the accumulation size is smaller than 4095, the largest sliding window cannot
accumulate dictionaries and scoreboards for the initial samples. This setting is a
conservative approach, and it is suitable for other prediction estimators in 90B.

When determining the size of the interval I in Figure 1, we take into account
it both from theoretical and experimental perspectives. On the one hand, as
mentioned earlier, the MultiMCW estimator’s largest sliding window has a size
of 4095. Thus, the interval I should be greater than this value, and we also prove
it through the experiment. On the other hand, we conducted an experiment to
determine the upper bound. We set the intervals as 2k, and k takes from 1 to 17,
and evaluated sequences that followed IID and non-IID distributions separately.
Because the dataset within each segment is stationary after segmentation under
change detection technology, we needn’t use the time-varying sequence here.
For the IID dataset, we select a typical dataset generated by the Oscillator-
based model [1]. For the non-IID dataset, we choose one that followed a Markov
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Fig. 2. Accuracy under Different Intervals.

Fig. 3. Throughput Rate under Different Intervals.

model. The accuracy and throughput rate under different intervals are depicted
in Figure 2 and Figure 3.

In the results, we use the line chart to depict the accuracy and throughput
rate. We see that the accuracy improves as the interval size increases, and when
the interval exceeds 212, the accuracy starts to fluctuate around 90%. Besides,
with larger intervals, the throughput rate grows faster, and when the interval
reaches 212, the throughput rate gradually becomes stable. However, processing
too much data at once may consume a significant amount of memory and lead to
latency. Therefore, to ensure accuracy and throughput rate, we set the interval
range from 212 to 217. For the sake of convenience in displaying the results
throughout the rest of this paper, we set a fixed interval of 50000.

5 Experiment Results and Analysis

5.1 Experiment Setup

Our estimator is implemented in C/C++ language, and we show the results of
the other estimators for comparison. In this section, all experiments are con-
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ducted on a Windows 11 system with an Intel 11th Gen Intel(R) Core(TM)
i7-1195G7 CPU and 16GB of memory.

During the experiment, we present the results in two ways. Firstly, for the
offline estimators such as the estimators in 90B and others based on deep learn-
ing algorithms [10, 12, 21], we only compare their final offline estimation results
with the endpoint result of our proposed estimator. We then display the error
rate in the figure. This is because their methods are exclusively used in offline
scenarios, and it would be unreasonable to choose intermediate output results
for the final comparison. The error rate is calculated by the following formula:

ErrorRate =
|Htest −Hcorrect|

Hcorrect
× 100%, (10)

where Hcorrect is the theoretical min-entropy, and Htest is the results of the
estimators.

Secondly, for the online estimators, including our proposed one and the on-
line estimator based on collision entropy proposed by Kim [9], we plot their
estimations in the figures. We do not present the values of the 90B estimators
implemented on FPGA because they utilize outdated estimators of the old ver-
sion of 90B standard, which have some mistakes [6, 19].

5.2 Simulated Datasets for Experiments

The datasets used in our experiment can be divided into two categories: sta-
tionary datasets and time-varying datasets. The stationary datasets comprise
various distribution families, including discrete uniform distribution, discrete
near-uniform distribution, and normal distribution rounded to integers. More
details are provided below.

− Discrete Uniform Distribution: The samples are subject to the discrete
uniform distribution and are equally-likely. They come from an IID source.

− Discrete Near-uniform Distribution: The samples are subject to the
discrete near-uniform distribution with one higher probability than the rest.
They come from an IID source.

− Normal Distribution Rounded To Integers: The samples are subject
to normal distribution and are rounded to integer values. They come from an
IID source.

The time-varying datasets consist of two common situations: mutation (i.e.,
sudden change) and gradient (i.e., gradual change). To represent mutation, we
utilize a dataset that undergoes near-uniform distribution with 9 mutations.
For the gradient scenario, we employ a Markov model that exhibits a gradient
following a linear function curve. The specific details are outlined below.

− Discrete Near-uniform Distribution with Mutation: The samples
are divided into ten parts and each subject to the discrete near-uniform distribu-
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tion with different parameter values, i.e., the higher probability. Table 2 shows
the changes.

− Markov Model with Gradient: The samples are subject to a first-

order Markov process of {0, 1}, and its transfer matrix is
(
1− p p
p 1− p

)
, where

p changes along a linear function curve:

p(i) =

{
0.1 + 0.0000004i , 0 ≤ i < 500000
0.3 , 500000 ≤ i < 1000000

, (11)

where i is the serial number of the sample.

Table 2. Discrete Near-uniform Distribution with Mutation.

Serial Number of the Sample Higher probability
[1, 80000] 0.5
[80001, 230000] 0.8
[230001, 330000] 0.6
[330001, 380000] 0.85
[380001, 400000] 0.7
[400001, 600000] 0.9
[600001, 900000] 0.55
[900001, 1200000] 0.75
[1200001, 1350000] 0.95
[1350001, 1500000] 0.65

In terms of the dataset size, our proposed online estimator only requires
a minimum of 212 samples. However, other offline estimators, as per the 90B
standard, necessitate no less than one million samples. To facilitate comparison,
we utilize a dataset that follows a discrete near-uniform distribution with 1.5
million samples for the mutation scenario, and other datasets with 1 million
samples for the remaining scenarios.

5.3 Experimental Results

In this subsection, we present the results and then analyze them.
1) Offline estimation results
In figure 4, we use a column chart to represent the comparison of the error rate

of ours and other estimators under different sequences. We find that our online
estimator can give better results than raw 90B estimators and other estimators
that use deep learning algorithms, especially in time-varying sequences.

2) On-the-fly test results
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Fig. 4. Comparison of error rate of estimators.

In the figures, we denote the correct values with red line, and use green “+”
dots representing the results of the online estimator based on collision entropy.
Ours is shown by blue “x” dots.

Figure 5(c) shows the estimated results of the simulation dataset from the
independent normal distribution entropy source. We observed that the results
provided by our estimator and the online estimator based on collision entropy
are both close to the correct entropy.

Figure 5(a) and Figure 5(b) shows that the online estimator based on collision
entropy always provide severely underestimation results on the datasets subject
to discrete uniform distribution and discrete near uniform distribution because
its algorithm is too simple to mine out the features of the datasets. By contrast,
ours provides almost accurate estimations.

For the time-varying datasets, the online estimator based on collision entropy
completely deviates from the theoretical min-entropy in Figure 6(a) and Figure
6(b). The estimations of ours can approach the theoretical correct values at
most points due to the timely clearing of the dictionaries, although there are
some deviations at the inflection points. This is caused by the delay in the
change detection technology, and the delay is quite small, which is less than
1000 samples. It proves the effectiveness of our change detection technology.

5.4 Performance Evaluation

In this section, we discuss the performance of our proposed estimator. Firstly,
in above results, our estimator can give more accurate estimation than other
estimators.

Secondly, in terms of time consumption, as is shown in Table 3, the through-
put rate of our estimators is stationary under different datasets, which is about
8.85 Mbit/s. Therefore, for on-the-fly test, our estimator is suitable for random
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(a) Comparison of min-entropy estima-
tors for uniform source.

(b) Comparison of min-entropy estima-
tors for near-uniform source.

(c) Comparison of min-entropy estima-
tors for normal distribution source.

Fig. 5. Comparison of min-entropy for stationary sequences.

number generators with throughput rates less than or equal to 8.7 Mbit/s in
terms of conservative estimation, whether software or hardware random number
generators.

Besides, in the real world, entropy is an issue on low-power devices. Our
estimator consumes 300 Mbit of memory for processing 1Mbit of data, which is
the same as the raw 90B standard.

6 Conclusion

In this paper, we design a new estimator based on the 90B prediction estimators
for on-the-fly test. This design enhances both speed and accuracy. By employing
change detection technology in our proposed new framework, we have achieved
excellent performance. Additionally, to address situations involving small sam-
ple datasets or extreme probability, we utilize the “Plus Four Confidence In-
tervals” method to calculate the global predictability. Our estimator achieves a
throughput rate exceeding 8.7 Mbit/s, meeting the on-the-fly test requirements
of many RNGs. It currently stands as the most accurate technology for eval-
uating min-entropy. Looking ahead, our future plans involve further improving
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(a) Comparison of min-entropy estima-
tors for near uniform mutation sources.

(b) Comparison of min-entropy estima-
tors for Markov model gradient source.

Fig. 6. Comparison of min-entropy for time-varying sequences.

Table 3. Throughput rate under different sequences.

Data type Throughput rate (Mbit/s)
Uniform 8.92
Near-uniform 8.90
Normal distribution 8.85
Mutation 8.76
Gradient 8.82

speed through hardware enhancements and parallel computing, aiming to ensure
compatibility with a broader range of entropy sources.
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Abstract. In this work, we present two generic frameworks for leakage-
resilient attribute-based encryption (ABE), which is an improved version
of ABE that can be proven secure even when part of the secret key is
leaked. Our frameworks rely on the standard assumption (k-Lin) over
prime-order groups. The first framework is designed for leakage-resilient
ABE with attribute-hiding in the bounded leakage model. Prior to this
work, no one had yet derived a generic leakage-resilient ABE framework
with attribute-hiding. The second framework provides a generic method
to construct leakage-resilient ABE in the continual leakage model. It
is compatible with Zhang et al.’s work [DCC 2018] but more generic.
Concretely, Zhang et al.’s framework cannot act on some specific ABE
schemes while ours manages to do that. Technically, our frameworks are
built on the predicate encoding of Chen et al.’s [EUROCRYPT 2015]
combined with a method of adding redundancy. At last, several instan-
tiations are derived from our frameworks, which cover the cases of zero
inner-product predicate and non-zero inner-product predicate.

Keywords: Leakage-resilient · Attribute-based encryption · Attribute-
hiding · Predicate encoding.

1 Introduction

Attribute-based encryption (ABE) [18] is a primitive that can provide the con-
fidentiality of data and fine-grained access control simultaneously. In ABE, a ci-
phertext ctx for a message m is associated with an attribute x ∈ X , and a secret
key sky is associated with a policy y ∈ Y. Given a predicate P : X ×Y → {0, 1},
ctx can be decrypted by sky if and only if P(x,y) = 1.

The basic security requirement for ABE is payload-hiding. Roughly speak-
ing, an adversary holding the secret key such that P(x,y) = 0 cannot deduce
any information about m from the given ciphertext, and besides, this should
be guaranteed even the adversary has more than one such secret key. In some
scenarios, the attribute x may contain user privacy. For example, in the cloud
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storage [11], the attribute x contains identity or address, which may be unsuit-
able to be exposed. Attribute-hiding [13] is an additional security requirement,
and it concerns the privacy of attribute x. Informally, attribute-hiding says that
no information about attribute x can be disclosed to the adversary.

Recently, due to the emergence of side-channel attacks [1,9,12] which, through
various physical methods, can recover part of the secret key, the leakage-resilient
cryptography [8] is hence proposed. It is required that a leakage-resilient scheme
should be provably secure in the leakage-resilient model. In this paper, we are
interested in two prominent leakage-resilient models, namely, bounded leakage
model (BLM) [2] and continual leakage model (CLM) [4]. Both of them as-
sume that an adversary obtains leaked information about the secret key sk via a
polynomial-time computable leakage function f : {0, 1}|sk| → {0, 1}L where |sk|
is the bit length of sk. In the BLM (resp. CLM), the adversary has access to at
most L < |sk| bits leakage on the secret key over the whole lifetime (resp. any
time period) of the system. It is necessary to update sk periodically in the CLM.
Typically, the security of CLM is stronger than BLM [10].

Up to now, various leakage-resilient frameworks have been proposed, while
very few of them concentrate on leakage-resilient ABE. There are several generic
leakage-resilient frameworks that can convert plain ABE schemes to leakage-
resilient ones in the BLM/CLM. The first one is introduced by Yu et al. [20].
Their generic leakage-resilient framework is able to convert the ABE schemes
based on pair encoding [3] to leakage-resilient ones. However, their generic leakage-
resilient framework cannot provide attribute-hiding feature. Besides, for several
concrete constructions, their security must rely on the non-standard computa-
tional assumptions, namely, q-type assumptions. Afterward, Zhang et al. [23]
proposed a generic leakage-resilient ABE framework from hash proof system,
while it also ignores attribute-hiding feature. Another independent work was
proposed by Zhang et al. [22]. Their generic leakage-resilient framework is able
to convert most ABE schemes based on predicate encoding [19] to leakage-
resilient ones. However, their generic leakage-resilient framework cannot guar-
antee attribute-hiding as well, and besides, cannot act on several specific ABE
schemes based on predicate encoding, for example the compact-key ABE for
inner-product predicate in [5], to leakage-resilient ones.

In this paper, we will follow the works of Chen et al. [5] and Zhang et al.
[22], aimed at presenting two generic leakage-resilient frameworks. The first one
can provide the attribute-hiding feature. The second one can convert more ABE
schemes to leakage-resilient ones.

1.1 Contributions

In this work, we present two generic frameworks for the design of leakage-resilient
ABE. Our contributions can be summarized as follows:

– Leakage-resilient ABE with attribute-hiding in the BLM.
We introduce a new encoding called attribute-hiding-leakage-resilient. Based
on the attribute-hiding techniques of CGW15[5] and this new encoding, we
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present a generic leakage-resilient ABE construction with attribute-hiding,
which is provably secure under the k-Lin assumption in the BLM.

– Leakage-resilient ABE in the CLM.
We introduce different redundancy into the secret key and the master key to
ensure the security against continual leakage and add a linear map to ensure
the generation and update of secret keys. Thus, we present a more generic
leakage-resilient ABE in the CLM compared with ZCG+18.

A comparison between our frameworks and previous works is shown in Table 1.
Note that, although our second framework in Section 4 has the same properties
as ZCG+18, it can act on some specific schemes while ZCG+18 cannot do that.

Table 1: Comparison between previous works and ours. “Prime” denotes prime-
order groups. “SD” means subgroup assumptions over composite-order groups.

Reference Leakage model Attribute-hiding Prime Generality Assumption

YAX+16[20] CLM ✗ ✗ ⊥ SD, q-type

ZZM17[23] BLM ✗ ✗ ⊥ SD

ZCG+18[22] CLM ✗ ✓ weak k-Lin

Ours(Section 3) BLM ✓ ✓ ⊥ k-Lin

Ours(Section 4) CLM ✗ ✓ strong k-Lin

1.2 Technical Overview

Let (p,G1, G2, GT , g1, g2, e) denote an asymmetric bilinear group of prime-order
p with pairing e : G1 ×G2 → GT . We use mpk,mk to denote the master public
key and the master key in ABE, respectively. Let L ∈ N be a leakage parameter.

Leakage-resilient ABE with attribute-hiding in the BLM. Based on the
ABE with attribute-hiding in CGW15, we propose a generic leakage-resilient
ABE construction that possesses attribute-hiding feature even when the secret
key can be leaked to the adversary. An overview of our construction is presented
as follows 5:

mpk : g1, g2, g
w
1 , e(g1, g2)

α, mk : α,w

sky : z, gr2, g
rkE(y,z,α)+r·rE(y,z,w)
2 , ctx : gs1, g

s·sE(x,w)
1 ,m · e(g1, g2)αs

(1)

5 Strictly speaking, the Equation (1) is built on composite-order groups. A general ap-
proach to transforming schemes over composite-order groups into ones over prime-
order groups has been proposed in [5]. Thus, in this section, we decide to abuse
constructions over composite-order groups as ones over prime-order groups for sim-
plicity.
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where w ∈ W is a set of secret values; α, r, s ← Zp; x ∈ X ,y ∈ Y; rkE, rE, sE
are linear encoding algorithms; z ∈ Z and u are “redundant” information. To
achieve attribute-hiding security in the BLM, we require that

– (attribute-hiding.) For all (x,y) ∈ X × Y such that P(x,y) = 0 and all
z ∈ Z, the distributions {x,y, z, sE(x,w), rE(y, z,w)} and {x,y, z, r} are
statistically indistinguishable where the randomness is taken over w ← W
and r ← Z|sE(·)|+|rE(·)|

p .

The above requirement, namely attribute-hiding encoding, ensures the attribute-
hiding feature. It manages to randomize x in sE(x,w) even after the adversary
has got rE(y, z,w) on sky. However, this property only holds when P(x,y) = 0
and would be broken by the adversary with leak ability, since he can use the
leakage function f to acquire the leakage (i.e., f(z, rE(y, z,w))) on sky such
that P(x,y) = 1. The “redundant” information in sky is designed to avoid this
problem. Inspired by ZCG+18[22] and LRW11[14], we additionally require that

– (attribute-hiding-leakage-resilient.) For all (x,y) ∈ X × Y such that
P(x,y) = 1 and z ∈ Z, the distributions {x,y, sE(x,w), f(z, rE(y, z,w))}
and {x,y, r} are identical, where w ← W and r ← Z|sE(·)|+|f(·)|

p .

This encoding guarantees that with the leakage of sky such that P(x,y) = 1, the
adversary still cannot reveal the attribute x under sE(x,w) since it seems to be
sampled uniformly. Thus, the Equation (1) achieves attribute-hiding in the BLM.

Leakage-resilient ABE in the CLM. For the second leakage-resilient ABE
framework, we consider the CLM which is stronger than BLM. Although ZCG+18
has proposed a leakage-resilient ABE framework in the CLM, it is not general
enough to act on some specific schemes, e.g., compact-key ABE schemes for
zero inner-product and non-zero inner-product in CGW15. For these specific
schemes, their master keys contain multiple secret values (e.g., α and w), and
the adversary can break the security trivially if one of these secret values is
leaked. Our solution is to differentiate the redundant information of mk and
the redundant information of sky, which provides more possibilities to avoid the
leakage on secret values. Thus, we present a new leakage-resilient ABE generic
construction:

mpk : g1, g2, g
w
1 , gw2 , e(g1, g2)

α, mk : v, gr2, g
mkE(v,α)+r·mE(v,w)
2 ,

sky : z, gr2, g
rkE(y,z,α)+r·rE(y,z,w)
2 , ctx : gs1, g

s·sE(x,w)
1 ,m · e(g1, g2)αs

(2)

where mkE,mE are encoding algorithms; v ∈ V and z ∈ Z serve as redundant
information for mk and sky, respectively. Note that this construction is similar
to the Equation (1), while it considers CLM (rather than BLM) and allows the
leakage on sky and mk. Here, we require that

1) (α-privacy.) For all (x,y) ∈ X × Y such that P(x,y) = 0, the distribu-
tions {x,y, z, α, sE(x,w), rkE(y, z, α)+ rE(y, z,w)} and {x,y, z, α, sE(x,w),
rE(y, z,w)} are identical where the randomness is taken over w ← W.
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2) (α-leakage-resilient.) For all (x,y) ∈ X × Y such that P(x,y) = 1 and
all α ∈ Zp, z ∈ Z, the distributions {x,y, α, sE(x,w), f(z, rkE(y, z, α) +
rE(y, z,w))} and {x,y, α, sE(x,w), f(z, rE(y, z,w))} are identical wherew ←
W and f is a leakage function.
In addition, the distributions {x, α, sE(x,w), f(z,mkE(v, α) + mE(v,w))}
and {x, α, sE(x,w), f(v,mE(v,w))} are identical.

3) (re-randomizable.) There exists a update algorithm for sky and mk.
4) (delegable.) There exists an algorithm that takes as input mk and y and

outputs a fresh secret key sky.

α-privacy and α-leakage-resilient are aimed at resisting continual leakage on
sky and mk. Since the total leakage bound of the adversary is unlimited in the
CLM, re-randomizable and delegable are proposed to ensure the periodical up-
date for sky and mk. As a specific case, we let w := (w1, . . . , wn,u) ∈ Zn+L

p ,v :=

(v0,v1, . . . ,vn) ∈ (ZL
p )

n,

mkE(v, α)
def
= (α, 0, . . . , 0), mE(v,w)

def
= (v⊤

0 u, w1 + v⊤
1 u, . . . , wn + v⊤

n u,u)

In the above equality, it is best for the adversary to get the leakage on (α +
v⊤
0 u0,v0,u) or (wi+v⊤

i ui,vi,u) if the adversary tries to leak α or wi. Note that
for any i ̸= j, v⊤

i u is statistically independent from v⊤
j u due to the randomness

of v. Then based on the subspace lemma in LRW11, α or wi is hidden as long
as the adversary gets a limited amount of leakage on mk during a time period.
Thus, the randomness of w is preserved, then α-privacy and α-leakage-resilient
are satisfied. Besides, re-randomizable holds since we have published gw2 in mpk.
As for delegable, we additionally require a linear map S : Y × V → Z, which
enables the redundant information z in sky to be computed from v and y. Thus,
sky can be generated from mk and y correctly. At last, we apply our second
framework (in Section 4) to compact-key ABE schemes for zero inner-product
and non-zero inner-product in CGW15, and hence obtain several leakage-resilient
instantiations in Section 5.

1.3 Related Work

Other leakage-resilient models. Dziembowski et al. [6] defined the bounded
retrieval model (BRM), placing rigorous performance requirements on the leakage-
resilient scheme. Dodis et al. [7] proposed the auxiliary input leakage model
(ALM). It only requires that the leakage function f is hard to invert. Besides,
Yuen at al. [21] defined the continual auxiliary leakage model (CAL) that cap-
tures the benefits of both CLM and ALM.
Leakage-resilient ABE. Lewko et al. [14] proposed the first identity-based
encryption (IBE) and ABE which are proved in the CLM. Zhang and Mu
[24] constructed a leakage-resilient anonymous inner-product encryption (IPE)
scheme over composite-order groups in the BLM. Nishimaki and Yamakawa
[17] proposed several constructions of leakage-resilient public-key encryption and
leakage-resilient IBE in the BRM, which reach nearly optimal leakage rates under
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standard assumptions in the standard model. To deal with potential side-channel
attacks in the distributed environment, Li et al. [16,15] designed a key-policy
ABE in the CAL and a hierarchical ABE in the CLM.

Organization. We recall the related definition and security models in §2. The
first leakage-resilient ABE framework is presented in §3. The Second leakage-
resilient ABE framework is shown in §4. We present some instantiations in §5.

2 Preliminaries

Notations. For n ∈ N, [n] denote the set {1, 2, . . . , n}. We use s ← S to de-
note that s is picked randomly from set S. By PPT, we denote a probabilistic

polynomial-time algorithm. We use
c
≈ and

s
≈ to denote two distributions being

computationally and statistically indistinguishable, respectively.

2.1 The Definition of ABE

Given attribute universe X , predicate universe Y and predicate P : X × Y →
{0, 1}, an ABE scheme consists of four algorithms (Setup,KeyGen, Enc,Dec):

- Setup(1λ) → (mpk,mk). Take as input a security parameter λ. Then return
the public parameters mpk and the master key mk.

- KeyGen(mk,y) → sky. Take as input mk, y ∈ Y, and return a secret key sky.
- Enc(mpk,x,m) → ctx. Take as input mpk, an attribute x ∈ X , and a message
m. Return a ciphertext ctx.

- Dec(mpk, sky, ctx) → m or ⊥. Take as input sky and ctx. If P(x,y) = 1,
return message m; otherwise, return ⊥.

Correctness. For all (x,y) ∈ X × Y such that P(x,y) = 1 and all m ∈ M,
it holds that Pr

[
Dec(mpk, sky,Enc(mpk,x,m)) = m

]
= 1 where (mpk,mk) ←

Setup(1λ, 1n), sky ← KeyGen(mk,y).
Additional algorithm. If we take the presence of continual leakage into ac-
count, an extra algorithm should be provided:

- Update(mpk, sky) : Take as input a secret key sky, and outputs a re-randomized
key sk′y.

It is equivalent to generating a fresh secret key sk′y ← KeyGen(mk,y). We stress
that mk can be seen as a secret key sky (where y is an empty string ϵ) and
algorithm Update also acts on mk.

2.2 Security Models

Here, we would define two leakage-resilient models, both of which are parame-
terized by security parameter λ and leakage bounds Lmk = Lmk(λ), Lsk = Lsk(λ).
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Definition 1. We say that an ABE scheme is (Lmk, Lsk)-bounded-leakage secure
and attribute-hiding if for all PPT adversaries A, the advantage function

AdvBLR-AH
A (λ) :=


Pr


b′ = b



(mpk,mk) ← Setup(1λ)
(x(0),x(1),m(0),m(1)) ← AO1,O2,O3(mpk)
b ← {0, 1}; ct∗ ← Enc(mpk,x(b),m(b))
b′ ← AO1,O2,O3(mpk, ct∗)


− 1

2


.

is negligible.

In the above definition,A has access to oracles O1,O2,O3. These oracles maintain
sets H and R which store some tuples.

– O1(h,y): h is a handle to a tuple of H that must refer to a master key and y
must be a vector in Y. After receiving the input, this oracle finds the tuple
t with handle h in H and answers A as follows:

1) If the vector part of t is ϵ, then let t := (h, ϵ,mk, l). It runs KeyGen
algorithm to obtain a key sky and adds the tuple (H +1,y, sky, 0) to H.
Then it updates H ← H + 1;

2) Otherwise, it returns ⊥ to A.

– O2(h, f): f is a polynomial-time computable function of constant output
size. After receiving the input, it finds the tuple t with handle h in H and
answers A as follows:

1) If t is of the form (h, ϵ,mk, l), it checks whether l + |f(mk)| ≤ Lmk. If
l+ |f(mk)| ≤ Lmk holds, the challenger returns f(mk) to A and updates
l ← l + |f(mk)|. Otherwise, it returns ⊥ to A;

2) Else, t is of the form (h,y, sky, l) and then it checks whether l+|f(sky)| ≤
Lsk. If l + |f(sky)| ≤ Lsk holds, the challenger returns f(sky) to A and
updates l ← l + |f(sky)|. Otherwise, it returns ⊥.

– O3(h): It finds the tuple with handle h in H. If the vector part of the tuple
is ϵ, then it returns ⊥ to A. Otherwise, the tuple is of the form (h,y, sky, l).
It returns sky and then add y to R.

Note that after A receives the challenge ciphertext ct∗, only queries on sky such
that P(x(0),y) = 0 and P(x(1),y) = 0 are allowed when A access to O2,O3.

Definition 2. We say that an ABE scheme is (Lmk, Lsk)-continual-leakage se-
cure if for all PPT adversaries A, the advantage function

AdvCLR-PH
A (λ) :=


Pr


b′ = b



(mpk,mk) ← Setup(1λ)

(x,m(0),m(1)) ← AO′
1,O

′
2,O

′
3(mpk)

b ← {0, 1}; ct∗ ← Enc(mpk,x,m(b))

b′ ← AO′
1,O

′
2,O

′
3(mpk, ct∗)


− 1

2


.

is negligible.

Here, A has access to oracles O′
1,O

′
2,O

′
3. These oracles maintain sets H′ and R′.
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– O′
1(h,y): This oracle is similar to O1 except that the input y can also be an

empty string ϵ. If A makes a query for y = ϵ, it will run Update algorithm
to get a fresh master key mk′ and add the tuple (H + 1, ϵ,mk′, 0) to the set
H.

– O′
2(h, f): This oracle is the same as O2.

– O′
3(h): This oracle is the same as O3.

Note that after A receives the challenge ciphertext ct∗, only queries on sky such
that P(x,y) = 0 are allowed when A access to O′

2,O
′
3.

2.3 Assumption

Let G be a probabilistic polynomial-time algorithm that takes as input a security
parameter 1λ and outputs a group description G := (p,G1, G2, GT , g1, g2, e),
where p is a Θ(λ)-bit prime and G1, G2, GT are cyclic groups of order p. g1
and g2 are generators of G1 and G2 respectively and e : G1 × G2 → GT is a
computationally efficient and non-degenerate bilinear map. We let gT = e(g1, g2)
be the generator of GT .

For s ∈ {1, 2, T} and a ∈ Zp, we define [a]s = gas as the implicit representation
of a in Gs. Similarly, for a matrix A over Zp, we define [A]s = gAs , where
exponentiations are carried out component-wise. Given [A]1 and [B]2, we define
e([A]1, [B]2) := [A⊤B]T . Now we review the definition of k-Lin assumption.

Definition 3 (k-Lin Assumption). Let s ∈ {1, 2, T}. We say that the k-Lin
assumption holds with respect to G on Gs if for all PPT adversaries A, the
following advantage function is negligible in λ.

Advk-LinA (λ) := |Pr[A(G, [A]s, [At]s) = 1]− Pr[A(G, [A]s, [u]s) = 1]|

where G ← G(1λ), t ← Zk
p,u ← Zk+1

p , (a1, . . . , ak) ← Zk
p, then

A :=




a1
. . .

ak
1 · · · 1


 ∈ Z(k+1)×k

p (3)

Note that we can trivially set (a⊥)⊤ := (a−1
1 , . . . , a−1

k ,−1) such that A⊤a⊥ = 0.

3 Leakage-resilient ABE with Attribute-hiding in the
BLM

In this section, we will present the first leakage-resilient ABE framework along
with the predicate encoding, generic construction and corresponding security
analysis.
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3.1 Leakage-resilient Predicate Encoding

A Zp-linear leakage-resilient predicate encoding with attribute-hiding for pred-
icate P : X × Y → {0, 1}, which contains a set of deterministic algorithms
(rkE, rE, sE, sD, rD), satisfies the following properties:

– (linearity.) For all (x,y, z) ∈ X × Y × Z, rkE(y, z, ·), rE(y, z, ·), sE(x, ·),
sD(x,y, z, ·), rD(x,y, z, ·) are Zp-linear functions. A Zp-linear function F can
be encoded as a matrix T = (ti,j) ∈ Zn×m

p such that F : (w1, . . . , wn) −→
(
∑n

i=1 ti,1wi, . . . ,
∑n

i=1 ti,mwi).
– (restricted α-reconstruction.) For all (x,y) ∈ X ×Y such that P(x,y) =

1, allw ∈ W, z ∈ Z, it holds that sD(x,y, z, sE(x,w)) = rD(x,y, z, rE(y, z,w))
and rD(x,y, z, rkE(y, z, α)) = α.

– (x-oblivious α-reconstruction.) sD(x,y, z, ·), rD(x,y, z, ·) are indepen-
dent of x. It is a basic requirement for achieving attribute-hiding.

– (attribute-hiding.) For all (x,y) ∈ X × Y such that P(x,y) = 0 and all
z ∈ Z, the distributions {x,y, z, sE(x,w), rE(y, z,w)} and {x,y, z, r} are

identical, where w ← W and r ← Z|sE(·)|+|rE(·)|
p .

– (attribute-hiding-leakage-resilient.) In order to achieve leakage-resilience
on sky, we require that for all (x,y) ∈ X × Y such that P(x,y) = 1 and
z ∈ Z, the distributions {x,y, sE(x,w), f(z, rE(y, z,w))} and {x,y, r} are

identical, where w ← W and r ← Z|sE(·)|+|f(·)|
p .

3.2 Generic Construction

An overview of our generic construction has been present in Section (1). As
mentioned in Section 1.2, a general approach [5] to transform schemes over
composite-order groups into ones over prime-order groups can be applied to
Equation (1). Concretely, we replace g1, g2 with [A]1, [B]2, where (A, a⊥), (B,b⊥)
← Dk+1,k and other variables are transformed as follows:

α → k ∈ Zk+1
p , u, wi → U, Wi ∈ Z(k+1)×(k+1)

p , s → s ∈ Zk
p, r → r ∈ Zk

p,

gs1 → [As]1, gwis
1 → [W⊤

i As]1, gr2 → [Br]2, gwir
2 → [WiBr]2

The above transformation is also suitable to our second framework in Section 4.
Now, we provide the details of our generic construction. Given a Zp-linear

leakage-resilient predicate encoding with attribute-hiding for predicate P : X ×
Y → {0, 1},

- Setup(1λ): Let N ∈ N be the parameter of the Zp-linear leakage-resilient
predicate encoding with attribute-hiding for predicate P and N is related
to 1λ. Run G ← G(1λ), sample (A, a⊥), (B,b⊥) as in Equation (3), pick

k ← Zk+1
p ,W1, . . ., WN ← Z(k+1)×(k+1)

p . Then pick r ← Zk
p,v ← V, output

mpk :=
(
G; [A]1, [W

⊤
1 A]1, . . . , [W

⊤
NA]1, [A

⊤k]T
)
, mk :=

(
B,k,W1, . . . ,WN

)
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- KeyGen(mk,y): Pick r ← Zk
p, z ← Z and output sky :=

(
z,K0,K

)
, where

K0 := [Br]2, K := rkE(y, z, [k]2) · rE(y, z, [W1Br]2, . . . , [WNBr]2)

- Enc(mpk,x,m): Pick s ← Zk
p and output ctx := (C0,C, CT ), where

C0 := [As]1,C := sE(x, [W⊤
1 As]1, . . . , [W

⊤
NAs]1), CT = [k⊤As]T ·m

- Dec(mpk, sky, ctx): outputm
′ = CT ·e(C0, rD(x,y, z,K))−1·e(sD(x,y, z,C),K0).

Correctness. For any (x,y) ∈ X × Y such that P(x,y) = 1, we have

CT · e(C0, rD(x,y, z,K))−1

= m · [k⊤As]T · e([As]1, rD(x,y, z, rkE(y, z, [k]2) · rE(y, z, [W1Br]2, . . . , [WNBr]2)))
−1

= m · [k⊤As]T · e([As]1, rD(x,y, z, rkE(y, z, [k]2))
−1

· e([As]1, rD(x,y, z, rE(y, z, [W1Br]2, . . . , [WNBr]2)))
−1

= m · [k⊤As]T · e([As]1, [k]2)
−1 · e([As]1, rD(x,y, z, rE(y, z, [W1Br]2, . . . , [WNBr]2)))

−1

= m · e([As]1, rD(x,y, z, rE(y, z, [W1Br]2, . . . , [WNBr]2)))
−1

= m · rD(x,y, z, rE(y, z, e([As]1, [W1Br]2), . . . , e([As]1, [WNBr]2)))
−1

= m · rD(x,y, z, rE(y, z, e([W⊤
1 As]1, [Br]2), . . . , e([W

⊤
NAs]1, [Br]2)))

−1

= m · sD(x,y, z, sE(x, e([W⊤
1 As]1, [Br]2), . . . , e([W

⊤
NAs]1, [Br]2)))

−1

= m · e(sD(x,y, z, sE(x, [W⊤
1 As]1, . . . , [W

⊤
NAs]1)), [Br]2)

−1

= m · e(sD(x,y, z,C),K0)
−1

In the above equality, we exploit linearity (for lines 3, 6, 9) and restricted α-
reconstruction (for lines 4, 8) mentioned in Section 3.1. Thus, CT ·e(C0, rD(x,y, z,
K))−1 · e(sD(x,y, z,C),K0) = m and the correctness follows readily.

3.3 Security

We start by giving some lemmas of [5,14] which will be used throughout the
security proof of our framework.

Lemma 1 ([14]). Let an integer m ≥ 3 and let p be a prime. Let δ ← Zm
p , τ ←

Zm
p , and let τ ′ be chosen uniformly from the set of vectors in Zm

p which are or-
thogonal to δ under the dot product modulo p. Let f : Zm

p → W be some function.

Then there exists any positive constant c, such that dist
(
(δ, f(τ ′)), (δ, f(τ))

)
≤

p−c, as long as |W| ≤ 4 ·
(
1− 1

p

)
· pm−2c−2.

Suppose that A and B have the same form as Equation (3), then we set

PP :=

(
G;

[A]1, [W
⊤
1 A]1, . . . , [W

⊤
NA]1,

[B]2, [W1B]2, . . . , [WNB]2

)
,

PP− :=
(
G; [A]1, [W

⊤
1 A]1, . . . , [W

⊤
NA]1, [B]2

) (4)

where W1, . . . ,WN ← Z(k+1)×(k+1)
p .
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Lemma 2 (Parameter-Hiding[5]). The following distributions are statisti-
cally indistinguishable:

{
PP, [a⊥]2,

[b⊥ŝ]1, [W
⊤
1 b

⊥ŝ]1, . . . , [W
⊤
Nb⊥ŝ]1

[a⊥r̂]2, [W1a
⊥r̂]2, . . . , [WNa⊥r̂]2

}
and

{
PP, [a⊥]2,

[b⊥ŝ]1, [(W
⊤
1 b

⊥ + u1b
⊥)ŝ]1, . . . , [(W

⊤
Nb⊥ + uNb⊥)ŝ]1

[a⊥r̂]2, [(W1a
⊥ + u1a

⊥)r̂]2, . . . , [(WNa⊥ + uNa⊥)r̂]2

}

where ŝ, r̂ ← Z∗
p,u := (u1, . . . , uN ) ← ZN

p .

Lemma 3 (H-hiding[5]). The following distributions are statistically indis-
tinguishable:

{PP−, [a⊥]2, [Br]2, [W1Br+ v̂1a
⊥]2, . . . , [WNBr+ v̂Na⊥]2} and

{PP−, [a⊥]2, [Br]2, [û1]2, . . . , [ûN ]2}

where r ← Zk
p, v̂ := (v̂1, . . . , v̂N ) ← ZN

p and for i = 1, . . . , N , ûi ← Zk+1
p subject

to the constraint A⊤ûi = (W⊤
i A)⊤Br.

Lemma 4 (G-uniformity[5]). The following distributions are statistically in-
distinguishable:

{PP−, [a⊥]1, [As+ b⊥ŝ]2, [W
⊤
1 (As+ b⊥ŝ)]1, . . . , [WN (As+ b⊥ŝ)]1} and

{PP−, [a⊥]2, [As+ b⊥ŝ]1, [ŵ1]1, . . . , [ŵN ]1}

where s ← Zk
p, ŝ ← Z∗

p; ŵ1, . . . , ŵN ← Zk+1
p .

Theorem 1. If k-Lin assumption holds, the construction described in Section
3.2 is (0, Lsk)-bounded-leakage secure and attribute-hiding. More precisely, for
all PPT adversaries A subject to the restrictions: (1) A queries O2 and O3 at
most q times; (2) The leakage on mk is not allowed and the leakage amount of
sk are at most Lsk bits. There exists an algorithm B such that AdvBLR-AH

A (λ) ≤
(2q + 1)Advk-LinB (λ) + negl(λ).

Proof. Our proof sketch for the game sequence is shown in Table 2. In Table 2,
we use a box to highlight the difference between two adjacent games and the cell
marked by ”—” means that the corresponding part of sky or ct∗ is the same as the
last game. For the transition from Game2,i,1 to Game2,i,2, we employ Parameter-
Hiding lemma, attribute-hiding encoding and attribute-hiding-leakage-resilient
encoding mentioned in Section 3.1. In Game3 and Game4, m

′ denotes a random
message and x′ denotes a random attribute. Game0 is the same as GameBLM-AH.
In Game4, the advantage of A is 0.
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Table 2: Our proof sketch for the game sequence.

game
i-th queried secret key sky ct∗

justification

K0 rkE(y, z, ·) rE(y, z, ·) C0 sE(·, ·) CT

Game0 [Br]2 [k]2 [WkBr]2 [As]1 x(b), [W⊤
j As]1 e([As]1, [k]2) ·m real game

Game1 — — — [ As+ b⊥ŝ ]1 x(b), [ W⊤
j (As+ b⊥ŝ) ]1 e([ As+ b⊥ŝ ]1, [k]2) ·m k-Lin

Game2,i,1 [ Br+ a⊥r̂ ]2 — [ Wk(Br+ a⊥r̂) ]2 — — — k-Lin

Game2,i,2 — [ k̂ ]2 [Wk(Br+ a⊥r̂) + v̂ika
⊥ ]2 — — —

attribute-hiding, Parameter-Hiding,
attribute-hiding-leakage-resilient

Game2,i,3 [Br]2 — [ WkBr+ v̂jka
⊥ ]2 — — — k-Lin

Game3 — — — — — e([As+ b⊥ŝ]1, [k]2) · m′ statistically identical

Game4 — — — — x′ , [W⊤
j (As+ b⊥ŝ)]1 —

H-hiding, G-uniformity,
attribute-hiding,

attribute-hiding-leakage-resilient

We denote the advantage of A in Gamei by Advi(λ). Then we will show The-
orem 1 by proving the indistinguishability among these games with the following
lemmas.

Lemma 5 (Game0
c≈ Game1). For all PPT adversary A, there exists an algo-

rithm B1 such that |Adv0(λ)− Adv1(λ)| ≤ Advk-LinB1
(λ) + 2/p.

Proof. The proof is a simpler case of the proof of Lemma 6, we omit it here. ⊓⊔

Lemma 6 (Game2,i−1,3
c≈ Game2,i,1). For all PPT adversary A and i =

1, . . . , q, there exists an algorithm B2 such that |Adv2,i−1,3(λ) − Adv2,i,1(λ)| ≤
Advk-LinB2

(λ) + 2/p.

Proof. B2 samples (A, a⊥) ← Dk+1,k along with W1, . . . ,WN ← Z(k+1)×(k+1)
p .

We know that {Br+ a⊥r̂ : r ← Zk
p, r̂ ← Zp} is statistically close to the uniform

distribution. Then B2 gets as input (G, [B]2, [t]2) = (G, [B]2, [Br+a⊥r̂]2) where
either r̂ = 0 or r̂ ← Z∗

p and proceeds as follows:

Setup. Pick k ← Zk+1
p , α ← Zp and set k̂ := k+αa⊥. With G,A,W1, . . . ,Wn,

B2 can simulate mpk :=
(
G; [A]1, [W

⊤
1 A]1, . . . , [W

⊤
nA]1, [A

⊤k]T
)
.

Key Queries. When A makes the j’th Leak or Reveal key query,

- When j < i, since a⊥, k̂,W1, . . . ,Wn and [B]2 has been known, semi-
functional sky can be generated properly;

- When j = i, B2 generates

sky :=
(
z, [t]2, rkE(y, z, [k]2) · rE(y, z, [W1t]2, . . . , [WNt]2)

)

- When j > i, it is not hard to know that normal sky can also be generated
properly;

Challenge. Since b⊥ is unknown, As+b⊥ŝ is statistically close to the uniform
distribution. Thus, B2 would sample s̃ ← Zk+1

p to replace As + b⊥ŝ. After

receiving challenge messages (m(0),m(1)) and challenge vectors (x(0),x(1)), B2

chooses a random bit b ∈ {0, 1} and returns

ct∗ :=
(
[s̃]1, sE(x

(b), [W⊤
1 s̃]1, . . . , [W

⊤
N s̃]1), e([s̃]1, [k]2) ·m(b)

)
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Leakage-Resilient Attribute-based Encryption with Attribute-hiding 13

Observe that if t = Br, B2 has properly simulated Game2,i−1,3 and if t =
Br + a⊥r̂, B2 has properly simulated Game2,i,1. Since ŝ, r̂ ← Z∗

p yields a 2/p
negligible difference in the advantage, Lemma 6 hence holds. ⊓⊔

Lemma 7 (Game2,i,1
s≈ Game2,i,2). For i = 1, . . . , q, it holds that |Adv2,i,1(λ)−

Adv2,i,2(λ)| ≈ 0 as long as the leakage amount of sk are at most Lsk bits.

Proof. Given PP as in Equation (4), we state that Game2,i,1 and Game2,i,2 are sta-
tistically indistinguishable if the following distributions {PP, [k]2, [αa⊥]2, ct∗, sky}
and {PP, [k]2, [αa⊥]2, ct∗, sk′y} are identical where

ct∗ =
�
[As]1, sE(x

(b),

[W⊤

k As]1

k∈[N ]

), [k⊤As]T ·m(b)

·

�
[b⊥ŝ]1, sE(x

(b),

[W⊤

k b
⊥ŝ]1


k∈[N ]

), [k⊤b⊥ŝ]T


and sky, sk
′
y are the i’th queried key in Game2,i,1 and Game2,i,2, respectively.

Now we consider the following cases:

(1) If y ∈ Y such that < x(0),y >= 0 and < x(1),y >= 0, we have

sky =
�
1, [Br]2, rkE(y, z, [k]2) · rE(y, z,


[WkBr]2


k∈[N ]

)

·

�
z, [a⊥r̂]2, rE(y, z,


[Wka

⊥r̂]2

k∈[N ]

)


sk′y =
�
1, [Br]2, rkE(y, z, [k]2) · rE(y, z,


[WkBr]2


k∈[N ]

)

·

�
z, [a⊥r̂]2, rkE(y, z, [αa

⊥]2) · rE(y, z,

[Wka

⊥r̂ + v̂ka
⊥]2


k∈[N ]

)


where v̂ := (v̂1, . . . , v̂N ) ← ZN
p and the length of vector 1 := (1, . . . , 1) is

equal to the length of z. We observe that it suffices to show that



aux : PP, [k]2, [B]2, [αa⊥]2
ctx : [b⊥ŝ]1, sE(x(b),


[W⊤

k b
⊥ŝ]1


k∈[N ]

), [k⊤b⊥ŝ]T

sky : z, [a⊥r̂]2, rE(y, z,

[Wka

⊥r̂]2

k∈[N ]

)




and




aux : PP, [k]2, [B]2, [αa⊥]2
ctx : [b⊥ŝ]1, sE(x(b),


[W⊤

k b
⊥ŝ]1


k∈[N ]

), [k⊤b⊥ŝ]T

sky : z, [a⊥r̂]2, rkE(y, z, [αa⊥]2) · rE(y, z,

[Wka

⊥r̂ + v̂ka
⊥]2


k∈[N ]

)




are indistinguishable. By parameter-hiding in Lemma 2, it suffices to show
that:


aux : PP, [k]2, [B]2, [αa⊥]2
ctx : [b⊥ŝ]1, sE(x(b),


[(W⊤

k b
⊥ + ukb

⊥)ŝ]1

k∈[N ]

), [k⊤b⊥ŝ]T

sky : z, [a⊥r̂]2, rE(y, z,

[(Wka

⊥ + uka
⊥)r̂]2


k∈[N ]

)




and




aux : PP, [k]2, [B]2, [αa⊥]2
ctx : [b⊥ŝ]1, sE(x(b),


[(W⊤

k b
⊥ + ukb

⊥)ŝ]1

k∈[N ]

), [k⊤b⊥ŝ]T

sky : z, [a⊥r̂]2, rkE(y, z, [αa⊥]2) · rE(y, z,

[(Wka

⊥ + uka
⊥)r̂ + v̂ka

⊥]2

k∈[N ]

)
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are indistinguishable. Let ĝ0 = [b⊥ŝ]1, ĥ0 = [a⊥r̂]2 and set [a⊥] = (ĥ0)
β , we

note that

sE(x(b),
{
[(W⊤

k b
⊥ + ukb

⊥)ŝ]1
}
k∈[N ]

) = sE(x(b),
{
[W⊤

k b
⊥ŝ]1

}
k∈[N ]

) · ĝ
sE(x(b),u)
0 ,

rE(y, z,
{
[(Wka

⊥ + uka
⊥)r̂]2

}
k∈[N ]

) = rE(y, z,
{
[Wka

⊥r̂]2
}
k∈[N ]

) · ĥ
rE(y,z,u)
0 ,

rkE(y, z, [αa⊥]2) · rE(y, z,
{
[(Wka

⊥ + uka
⊥)r̂ + v̂ka

⊥]2
}
k∈[N ]

)

= rE(y, z,
{
[Wka

⊥r̂]2
}
k∈[N ]

) · ĥ
rkE(y,z,βα)+rE(y,z,u)+rE(y,z,βv̂)
0 .

Since A can only make Leak query on sky, according to attribute-hiding-
leakage-resilient encoding, it holds that {x,y, sE(x,u), f(z, rE(y, z,u))} and
{x,y, r} are indistinguishable. In other words, the adversary A cannot get
any useful information to distinguish between sky and sk′y.

(2) If y ∈ Y such that < x(0),y > ̸= 0 and < x(1),y > ̸= 0, the proof is also
analogous to the proof of last case. Except that we should use attribute-hiding
encoding, which claims that {x,y, z, sE(x,u), rE(y, z,u)} and {x,y, z, r} are
indistinguishable.

Finally, Lemma 7 holds. ⊓⊔

Lemma 8 (Game2,i,2
c≈ Game2,i,3). For all PPT adversary A and i = 1, . . . , q,

there exists an algorithm B3 such that |Adv2,i,2(λ)−Adv2,i,3(λ)| ≤ Advk-LinB3
(λ)+

2/p

Proof. The proof is completely analogous to Lemma 6. ⊓⊔

Lemma 9 (Game2,q,3
s
≈ Game3). For i = 1, . . . , q, it holds that |Adv2,q,3(λ) −

Adv3(λ)| ≈ 0

Proof. First, pick k̂ ← Zk+1
p , α ← Zp and set k := k̂ − αa⊥. Given just

(PP, [a⊥]2, [k̂]2), we can simulate the setup phase and answer key queries as
follows:
Setup. Since e([A]1, [k̂]2) := [A⊤k−αA⊤a⊥]T = [A⊤k]T , then we can simulate
mpk :=

(
G; [A]1, [W

⊤
1 A]1, . . . , [W

⊤
NA]1, [A

⊤k]T
)
.

Key Queries. For the j’th key query for y, we can generate a semi-functional
secret key properly:

sky :=
(
z, [Br]2, rkE(y, z, [k̂]2) · rE(y, z,

{
[WkBr+ v̂jka

⊥]2
}
k∈[N ]

)
)

Challenge. Now, observe that the challenge ciphertext in Game2,q,3 is given by:

ct∗ :=
(
C0 = [As+ b⊥ŝ]1,C := sE(x(b),

{
[W⊤

k (As+ b⊥ŝ
}
k∈[N ]

)]1),

C ′ = e([As+ b⊥ŝ]1, [k]2) ·m(b)
)

where we can rewrite C ′ = e([As+ b⊥ŝ]1, [k̂]2) · e([b⊥ŝ]1, [a
⊥]2)

−α ·m(b) .
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Leakage-Resilient Attribute-based Encryption with Attribute-hiding 15

Recall that (mpk, [B]2, k̂) and (C0,C) are statistically independent of α ←
Zp, then we can say that e([b⊥ŝ]1, [a

⊥]2)
−α is uniformly distributed over GT .

This implies ct∗ is identically distributed to semi-functional encryption of a
random message in GT , as in Game3. Thus, Lemma 9 holds. ⊓⊔

Lemma 10 (Game3
s
≈ Game4). For i = 1, . . . , q, it holds that |Adv3(λ) −

Adv4(λ)| ≈ 0

Proof. Pick k̂ ← Zk+1
p , α ← Zp and set k := k̂−αa⊥. Given just (PP−, [a⊥]2, [k̂]2),

we note that [WiB]2 will not be simulated to ensure G-uniformity holds. But
we can still simulate the setup phase and answer key queries as follows:
Setup. We can simulate mpk :=

(
G; [A]1, [W

⊤
1 A]1, . . . , [W

⊤
NA]1, [A

⊤k]T
)
.

Key Queries. For the j’th key query for y, by H-hiding in Lemma 3, we can
simulate a semi-functional secret key:

sky :=
(
z, [Br]2, rkE(y, z, [k̂]2) · rE(y, z, [ûj

1]2, . . . , [û
j
N ]2)

)

where for i = 1, . . . , N , ûj
i ← Zk+1

p subject to the constraintA⊤ûj
i = (W⊤

i A)⊤Br.
Challenge. Now, observe that the challenge ciphertext in Game2,q,3 is given by:

C0 = [As+ b⊥ŝ]1,C := sE(x(b),
{
[W⊤

k (As+ b⊥ŝ)]1
}
k∈[N ]

), C ′ = e([As+ b⊥ŝ]1, [k̂]2) ·m′

where C ′ is is uniformly distributed over GT . By G-uniformity in Lemma 4, then

{[As+ b⊥ŝ]1, [W
⊤
1 (As+ b⊥ŝ)]1, . . . , [W

⊤
N (As+ b⊥ŝ)]1}

s
≈{[As+ b⊥ŝ]1, [ŵ1]1, . . . , [ŵN ]1}

where ŵ1, . . . , ŵN ← Zk+1
p . Note that A has no idea any information about

WiB from sky and mpk and hence G-uniformity holds. So we can rewrite C :=
sE(x(b), [ŵ1]1, . . . , [ŵN ]1). From attribute-hiding and attribute-hiding-leakage-resilient

encoding, we can say that C is uniformly distributed over G
sE(·)
1 . Thus, Lemma

10 holds. ⊓⊔
Finally, we complete the proof of Theorem 1 by showing the above lemmas

which imply the indistinguishability between Game0 and Game4.

4 Leakage-resilient ABE in the CLM

In this section, we present our second leakage-resilient ABE framework, which
is compatible with ZCG+18 but more versatile. Note that an overview of this
generic construction has been present in Equation (2).

4.1 Leakage-resilient Predicate Encoding

We define a Zp-linear leakage-resilient predicate encoding for predicate P : X ×
Y → {0, 1}. It consists of a set of deterministic algorithms (mkE,mE, rkE, rE, sE,
sD, rD) and satisfies the following properties:
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– (linearity.) For all (x,y,v, z) ∈ X×Y×V×Z,mkE(v, ·),mE(v, ·), rkE(y, z, ·),
rE(y, z, ·), sE(x, ·), sD(x,y, z, ·), rD(x,y, z, ·) are Zp-linear.

– (restricted α-reconstruction.) This property is the same as restricted
α-reconstruction in Section 3.1.

– (α-privacy.) For all (x,y) ∈ X ×Y such that P(x,y) = 0, the distributions
{x,y, z, α, sE(x,w), rkE(y, z, α)+rE(y, z,w)} and {x,y, z, α, sE(x,w), rE(y, z,
w)} are identical, where the randomness is taken over w ← W.

– (α-leakage-resilient.) For all (x,y) ∈ X ×Y such that P(x,y) = 1 and all
α ∈ Zp, z ∈ Z,v ∈ V, the distributions {x,y, α, sE(x,w), f(z, rkE(y, z, α) +
rE(y, z,w))} and {x,y, α, sE(x,w), f(z, rE(y, z,w))} are identical, wherew ←
W. In addition, the distributions {x, α, sE(x,w), f(v,mkE(v, α)+mE(v,w))}
and {x, α, sE(x,w), f(v,mE(v,w))} are also identical.

– (delegable.) There exits a linear algorithm dE such that for all α ∈ Zp,v ∈
V, z ∈ Z,w ∈ W,y ∈ Y, it holds that dE(y,mkE(v, α) + mE(v,w)) =
rkE(y, z, α) + rE(y, z,w). Note that the algorithm dE implies a linear map
S : Y × V → Z.

– (re-randomizable.) For all α ∈ Zp,v,v
′ ∈ V,w ∈ W, there exists a linear

algorithm mR such that mR(v,v′,mkE(v, α) + mE(v,w)) = mkE(v′, α) +
mE(v′,w). Similarly, for all α ∈ Zp, z, z

′ ∈ Z,w ∈ W,y ∈ Y, there ex-
ists a linear algorithm kR such that kR(z, z′, rkE(y, z, α) + rE(y, z,w)) =
rkE(y, z′, α) + rE(y, z′,w)

4.2 Generic Construction

Given a Zp-linear leakage-resilient predicate encoding for predicate P : X ×Y →
{0, 1},

- Setup(1λ): This algorithm is similar to the setup algorithm in Section 3.2.
Run G ← G(1λ), sample (A, a⊥), (B,b⊥) as in Equation (3), pick k ←
Zk+1
p ,W1, . . ., WN ← Z(k+1)×(k+1)

p , r ← Zk
p,v ← V, output

mpk :=

(
G;

[A]1, [W
⊤
1 A]1, . . . , [W

⊤
NA]1, [A

⊤k]T ,
[B]2, [W1B]2, . . . , [WNB]2

)
,

mk :=
(
v, [Br]2,mkE(v, [k]2) ·mE(v, [W1Br]2, . . . , [WNBr]2)

)

where we set K0 = [Br]2,K = mkE(v, [k]2)·mE(v, [W1Br]2, . . . , [WNBr]2).
- Update(mpk, sky): If y = ϵ, then sky is a master key and we rewrite it as
mk := (v, [Br]2,K). Pick r̃ ← Zk

p,v
′ ← V, we set r′ = r+ r̃ and output

mk′ :=
(
v′, [Br′]2,mR(v,v′,K) ·mE(v′, [W1Br̃]2, . . . , [WNBr̃]2)

)

⇓
mk′ :=

(
v′, [Br′]2,mkE(v′, [k]2) ·mE(v′, [W1Br′]2, . . . , [WNBr′]2)

)

Thus, we can generate a new master key mk′ with the same distribution as
mk. If y ∈ Y, sky is a user secret key. Similarly, we can generate a new secret
key sk′y using the algorithm kR.
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- KeyGen(mk,y): Parse mk := (v, [Br]2,K). we compute z ← S(y,v) and

dE(y,K) = rkE(y, z, [k]2) · rE(y, z, [W1Br]2, . . . , [WNBr]2)

Then pick r̃ ← Zk
p, z

′ ← Z and set r′ = r+ r̃. Output

sky :=
(
z′, [Br′]2, kR(z, z

′, dE(y,K)) · rE(y, z′, [W1Br̃]2, . . . , [WNBr̃]2)
)

⇓
sky :=

(
z′, [Br′]2, rkE(y, z

′, [k]2) · rE(y, z′, [W1Br′]2, . . . , [WNBr′]2)
)

Similar to mk, here we also set K0 = [Br′]2 and

K = rkE(y, z′, [k]2) · rE(y, z′, [W1Br′]2, . . . , [WNBr′]2)

- Enc(mpk,x,m): Pick s ← Zk
p and output ctx := (C0,C, CT ), where

C0 := [As]1,C := sE(x, [W⊤
1 As]1, . . . , [W

⊤
NAs]1), CT = [k⊤As]T ·m

- Dec(mpk, sky, ctx): Parse sky := (z,K0,K), ctx := (C0,C, CT ) and output
m′ = CT · e(C0, rD(x,y, z,K))−1 · e(sD(x,y, z,C),K0).

Correctness. Since linearity and restricted α-reconstruction (for rkE(y, z, ·),
rE(y, z, ·), sE(x, ·), sD(x,y, z, ·), rD(x,y, z, ·)) are similar to ones in Section 3.1,
the correctness also follows Section 3.2.

4.3 Security

Theorem 2. If k-Lin assumption holds, the scheme described in Section 4.2 is
(Lmk, Lsk)-continual-leakage secure. More precisely, for all PPT adversaries A
subject to the restrictions: (1) A makes at most q O′

2 and O′
3 queries; (2) The

leakage amount of mk and sk are at most Lmk, Lsk bits, respectively. There exists
an algorithm B such that AdvCLR-PH

A (λ) ≤ (2q + 1)Advk-LinB (λ) + negl(λ).

Proof. The proof sketch of Theorem 2 is similar to the proof of our first frame-
work. It still designs a sequence of games which are the same as Table 2 except
that Game4 is canceled and there is no need to add v̂ka

⊥ in Game2,i,2, Game2,i,3
and Game3. Besides, we replace attribute-hiding and attribute-hiding-leakage-
resilient with α-privacy and α-privacy-leakage-resilient. We omit details due to
the page limitation.

5 Instantiations

In this section, we apply our frameworks to the compact-key ABE schemes for
zero inner-product and non-zero inner-product in CGW15 and hence obtain
several leakage-resilient instantiations.
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5.1 Instantiation for the First Framework

Zero Inner-product Predicate. Let X = Y := Zn
p ,Z := ZL

p ,W := Zp ×Zn
p ×

ZL
p , where n is the dimension of vector space. Let Lsk = (L− 2c− 1) log p where

c is a fixed positive constant. Pick (u,w,u) ← W, z ← Z, then we have

• rkE(y, z, α) := (α,0) ∈ ZL+1
p , • rE(y, z, (u,w,u)) := (y⊤w + z⊤u,u),

• sE(x, (u,w,u)) := ux+w ∈ Zn
p , • sD(x,y, z, c) := c⊤y,

• rD(x,y, z, (d′,d) := d′ − z⊤d

5.2 Instantiations for the Second Framework

Zero Inner-product Predicate. Let X = Y := Zn
p ,V := Z(n+1)×L

p ,Z :=

ZL
p ,W := Zp×Zn

p×ZL
p , where n is the dimension of vector space. Let Lmk = Lsk =

(L− 2c− 1) log p where c is a fixed positive constant. Pick (u,w,u) ← W,v ←
V, z ← Z. We denote the i’s row vector by v⊤

i−1 ∈ Z1×L
p for i = 1, 2, . . . , n + 1

and the last n rows by v⃗ ∈ Zn×L
p , respectively. Define

• mkE(v, α) := (α,0) ∈ Zn+L+1
p , • mE(v, (u,w,u)) := (v⊤

0 u,w + v⃗u,u),

• rkE(y, z, α) := (α,0) ∈ ZL+1
p , • rE(y, z, (u,w,u)) := (y⊤w + z⊤u,u),

• sE(x, (u,w,u)) := ux+w ∈ Zn
p , • sD(x,y, z, c) := c⊤y,

• rD(x,y, z, (d′,d) := d′ − z⊤d

Non-zore Inner-product Predicate. Let X = Y := Zn
p ,V := Zn×L

p ,Z :=

ZL
p ,W := Zp × Zn

p × ZL
p . Pick (u,w,u) ← W,v ← V, z ← Z. Define

• mkE(v, α) := (α,0) ∈ Zn+L+1
p , • mE(v, (u,w,u)) := (u,w + vu,u),

• rkE(y, z, α) := (α,0) ∈ ZL+2
p , • rE(y, z, (u,w,u)) := (u,y⊤w + z⊤u,u),

• sD(x,y, z, c) := c⊤y · (x⊤y)−1, • rD(x,y, z, (d′, d,d)) := d′ + d · (x⊤y)−1 − z⊤d,

• sE(x, (u,w,u)) := ux+w ∈ Zn
p
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Abstract. Secure lottery is a cryptographic protocol that allows mul-
tiple players to determine a winner from them uniformly at random,
without any trusted third party. Bitcoin enables us to construct a se-
cure lottery to guarantee further that the winner receives reward money
from the other losers. Many existing works for Bitcoin-based lottery use
deposits to ensure that honest players never be disadvantaged in the
presence of adversaries. Bartoletti and Zunino (FC 2017) proposed a
Bitcoin-based lottery protocol with a constant deposit, i.e., the deposit
amount is independent of the number of players. However, their scheme
is limited to work only when the number of participants is a power of
two. We tackle this problem and propose a lottery protocol applicable
to an arbitrary number of players based on their work. Furthermore, we
generalize the number of winners; namely, we propose a secure (k, n)-
lottery protocol. To the best of our knowledge, this is the first work
to address Bitcoin-based (k, n)-lottery protocol. Notably, our protocols
maintain the constant deposit property.

Keywords: Secure lottery · Bitcoin · Fairness · Elimination tournament.

1 Introduction

1.1 Backgrounds

Consider a bet in which each of the n players gambles one dollar. The champion
is randomly chosen from them and he/she receives the sum of the bets, n dollars,
as a reward. Secure lottery is a cryptographic protocol that allows us to play such
games fairly [12–14,18]. That is, it ensures that no honest player is disadvantaged
in the presence of adversarial players who do not follow procedures.

One of the crucial issues in constructing a secure lottery is how to deal with
the abort attack, which terminates in the middle of a protocol to avoid losing.
To counter the attack, we must enforce an adversary to tell the lottery result to
all honest parties. Such a property is typically defined as fairness, which ensures
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that at the end of a protocol, either all parties learn the output or none of them
learn it. Unfortunately, it is known that fairness cannot be achieved without any
additional assumption such as the honest majority or trusted third parties [11].

Another fundamental challenge is how to force losers to pay winners. Since
a typical cryptographic protocol treats no monetary entity, we cannot require a
protocol to guarantee such a property. To enforce the payoff, we need to introduce
a setup for handling monetary operations, e.g., a trusted bank [19, 22], e-cash
[6, 9, 17], or decentralized cryptocurrency.

Secure lottery based on cryptocurrency. Using cryptocurrency, e.g., Bit-
coin [23] and Ethereum [24], we can construct a secure lottery protocol that
forces losers to pay winners without relying upon any trusted third party even
in the dishonest majority. Informally, in cryptocurrency-based protocols, parties
cooperate to create some transactions at the beginning of the protocol and de-
posit or bet money. One of the transactions is corresponding to n dollars, the
prize money. If a protocol guarantees that only the winner can learn the witness
to redeem it, it implies that only the winner can receive the prize.

There is a line of work on achieving a variant of fairness using monetary
penalties. The monetary penalty enforces adversaries to follow procedures to
avoid losing money, and it allows us to achieve fairness. In secure multi-party
computation, many works adopt such a definition, e.g., [5, 7, 8, 15, 16,21].

Similarly, it is known that monetary penalties enable us to construct a secure
lottery protocol even in the dishonest majority. Back and Bentov [2] showed a
secure lottery based on Bitcoin in the two-party setting. Their protocol can en-
force a payment from the loser to the winner. Moreover, it guarantees that an
aborting party loses money and then another party obtains money as compensa-
tion. Afterward, Andrychowicz, Dziembowski, Malinowski, and Mazurek [1] and
Bentov and Kumaresan [2], respectively, proposed Bitcoins-based secure lottery
protocols that can be applied to an arbitrary number of parties.

In many works of Bitcoin-based secure lotteries, parties must input deposit
to achieve fairness in addition to the bet. Indeed, the existing protocol made of
Marcin [1] requires parties to input O(n2) deposits, where n is the number of
parties. The deposit is guaranteed to be returned to every honest party at the
end of the protocol. On the other hand, for adversarial parties, the deposit is not
returned to them but is instead distributed to honest parties as compensation.
Even though the protocol promises to refund deposits to honest parties, it is
undesirable to require money other than bets. That is to say, too expensive
deposits make it difficult for parties to participate in the protocol. Based on
the backgrounds, Bartoletti and Zunino [4] proposed a secure lottery protocol
with a constant deposit. Independently, Miller and Bentov [20] proposed a secure
lottery without any deposit money. However, as pointed out by Bartoletti and
Zunino [4], their scheme has an issue of depending on a Bitcoin specific opcode,
MULTIINPUT. To be a generic scheme, it should not rely on a custom scripting
language supported by a particular blockchain.
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In this paper, we focus on Bartoletti-Zunino work [4]. Informally they realize
a constant-deposit protocol based on a single-eliminate tournament, i.e., they use
multiple matches between two players to determine one winner of the lottery.
However, their protocol assumes that the tournament has a complete binary tree
structure. In other words, it has an issue to be applicable only if the number of
participants can be expressed in 2L, where L is a positive integer that refers to
the tree depth.

1.2 Our Contribution

This paper presents two contributions. The first one is to solve the issue of the
restriction of the number of participants in the Bartolotti and Zunino scheme.
That is, we propose (1, n)-lottery protocol for an arbitrary positive integer n.
Our construction idea is we bias the winning percentage for each match to ensure
that all participants are equal even if the tournament is not a complete binary
tree.

The second contribution is to generalize the number of winners, namely, we
propose a (k, n)-lottery protocol for arbitrary k and n. To realize the protocol,
we first construct (k, k+1)-lottery protocol. Our (k, n)-lottery protocol is derived
from a composition of (k, k+1)-lottery protocols. More precisely, in our protocol
parties first run (n− 1, n)-lottery protocol and determine one loser. Afterward,
n − 1 winners run (n − 2, n − 1)-lottery protocol and further determine one
loser. Players repeat such a process until deciding n − k losers. To the best of
our knowledge, this is the first work to realize (k, n)-lottery protocol based on
Bitcoin with a constant deposit.

1.3 Basic Notations

For any positive integer i, let [i] := {0, 1, . . . , i − 1}. We denote by η a secu-
rity parameter. We suppose that all players are probabilistic polynomial-time
algorithms (PPTA) in a security parameter η.

We construct lottery protocols based on a tournament structure represented
as a binary tree, as in [4]. Hereafter, we call a champion to distinguish it from
the winners of matches in the tournament. In a binary tree, its leaf nodes refer
to players, and the other nodes represent a match (or the winner) of two child
nodes. Each node at level l in the tree is identified as a (l + 1)-bit string. For a
node π, we denote its child nodes as πleft = π ∥ 0 and πright = π ∥ 1. Namely, π is
the prefix of its child nodes. We write π ⊏ π′ if π is a prefix of π′. We note that,
since we handle an arbitrary number of players, the tournaments may not be the
complete binary tree. Hence, the binary tree in our protocol is represented by
Π ⊆ {{0, 1}l | 1 ≤ l ≤ L}, where the tree has L levels. We denote by P the set
of players. Note that, since the players correspond to leaf nodes, it holds P ⊂ Π.
For a bit string π, |π| means the bit length of π. We denote by πr the root node
of a binary tree.

Organization. As a preparation for the introduction of our protocol, we first
describe a bitcoin overview in Section 2. Section 3 presents several notations and
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useful lemmas regarding tournament structures. In Section 4, we define secure
lottery protocol. We show our constructions for (1, n)-lottery and (k, n)-lottery
in Sections 5 and 6, respectively. In these sections, we prove security of the
protocols according to the security definitions, shown in Section 4.

2 A Brief Introduction to Bitcoin

In a blockchain protocol, parties maintain a global ledger that holds ordered
sets of records, i.e., blocks. To append a new block to the blockchain, parties
must race and win to solve a cryptographic puzzle, as known as the mining
process. The puzzle hardness is parameterized so that the intervals between the
growth of blocks are approximately constant at a particular time (about 10
minutes in Bitcoin). Since each block contains a cryptographic hash function of
the previous block, the state of each block is preserved by subsequent blocks.
Furthermore, when the blockchain diverges into multiple states, proper parties
accept the longest chain. Hence, if an adversary tries to rewrite data contained
in a block, it needs to reconstruct the subsequent blocks in addition to the
block. The adversary must further make the rewritten chain the longest to get
other parties to accept it. However, it is infeasible unless the adversary possesses
more than half the computing power of the entire network. That is, a blockchain
realizes a tamper-resistant public bulletin board based on the assumption about
the computing power of adversaries [3, 10].

Bitcoin is a decentralized cryptocurrency based on a blockchain. The Bit-
coin ledger manages transactions on its blocks. Roughly speaking, a transaction
Tx1 refers to a sender, the amount transferred coins, and the recipient, i.e., it
expresses information about “a sender S sends Q coins to a recipient R.” The
party R can send Q coins to the other party by making a new transaction Tx2
that refers to Tx1. Then, Tx1 becomes a spent transaction and thereafter R can-
not re-use it. We can check the balance of a party by referring to all unspent
transactions corresponding to the party on the blockchain.

Precisely, a transaction form has inputs and outputs. An input specifies a
transaction to be used for this remittance. In the above example, the input of
Tx2 is Tx1(’s output). An output (script) specifies the recipient by describing a
condition to use the transaction. Typically, the output script contains a signature
verification with a public key of the recipient. When a party uses a transaction,
he/she needs to write a witness on the transaction as an input script that satisfies
the output script of the input transaction. See Fig. 1 that shows the transaction
flow in the simplest case. Transaction Tx2 redeems the previous transaction Tx1
to use $v. Then, witness w1 written in the input script of Tx2 must satisfy the
condition ϕ1, which is the output script of Tx1. Similarly, to use $v with reference
to Tx2, it is necessary to create a transaction that holds w in its input script
such that ϕ2(w) = 1. Hereafter, in the graphical description, an arrow connects
the corresponding input and output.

In Bitcoin, by specifying some transactions as inputs, a party can create
a transaction to transfer the sum of the coins. Similarly, a single transaction
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Tx1
in: Tx0
inscript ∶ 𝑤𝑤0
outscript(𝑥𝑥): 𝜙𝜙1(𝑥𝑥)
value: $𝑣𝑣

Tx2
in: Tx1
inscript ∶ 𝑤𝑤1 𝜙𝜙1 𝑤𝑤1 = 1
outscript(𝑥𝑥): 𝜙𝜙2(𝑥𝑥)
value: $𝑣𝑣

$𝑣𝑣

Fig. 1. Graphical description of a transaction flow.

can specify multiple recipients by holding multiple output scripts. Formally, we
denote a m-input and l-output transaction in Bitcoin by

(in[m], inscript[m], value[l], outscript[l], lockTime),

where in[i] is an identifier of the input transaction (i.e., the previous one),
inscript[i] is the corresponding input script (i.e., a witness), value[i] is the num-
ber of coins, outscript[i] refers to the corresponding output script, and lockTime
specifies the earliest time when the transaction appears on the ledger. Namely,
the miners do not approve the transaction until the time specified by lockTime.
Note that the sum of the input coins must match the sum of the output coins.

A transaction excluding the input script (in[m], value[l], outscript[l], lockTime)
is called the simplified form. Typically, as described above, the output script
contains a signature verification algorithm to specify the recipient. The input
script of the next transaction states a signature in its simplified form in order
to prove the creator is the specified recipient.

3 Tournaments with Uniform Winning Probability

3.1 Tournaments with a Single Champion

First, we discuss the case where the champion is only one. In cases of tournaments
based on complete binary trees, it is obvious that every party has an equivalent
chance to be champion by equating win probabilities of all matches by 1/2. On
the other hand, if it is not a complete binary tree, i.e., the number of matches
differs from player to player, then it is necessary to bias the winning probabilities
to make the tournament equal for all players. We here present several useful
lemmas to make fair tournaments even in such cases. (We show the proofs in
Appendix A.)

Let us consider a tournament that may not be a complete binary tree and
consider the biased probabilities of each match to make it fair. Suppose a match
π of which child nodes are πleft and πright. We consider two subtrees such that
its root nodes are πleft and πright, and let vπleft and vπright be the number of leaf
nodes in these subtrees, respectively. (Note that, if the entire tournament form
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is the complete binary tree, then vπleft = vπright always holds.) Based on the above
notations, for a node π, we define BiasedPr(π) := vπleft/(v

π
left + vπright). We can

construct a fair tournament based on any binary tree using this function from
the following lemma.

Lemma 1 For any tournament consisting of a binary tree, if the winning prob-
abilities of each match π is set with (BiasedPr(π), 1 − BiasedPr(π)), then the
tournament is equal for every player.

3.2 Tournaments with Multiple Champions

Next, we discuss the case of multiple champions. In this case, we must pay
attention to the joint winning probabilities of each set of players not only to
the winning probability of individual players. For instance, in order to choose
two champions, consider the case of dividing the players half into two groups
and running a single champion tournament in each group. In this case, although
each player has the same probability of being champion, the problem arises that
players in the same group can never win simultaneously. To tackle this issue
and deal with an arbitrary number of winners, we construct (k, k + 1)-lottery
protocol. Thus, we first discuss a single eliminate tournament that determines k
champions from k + 1 players, (k, k + 1)-tournament. Afterward, we show that
tournaments applicable to an arbitrary number of champions can be constructed
by combining multiple (k, k + 1)-tournaments.

To construct a (k, k + 1)-tournament, we adopt the single-elimination tour-
nament proceeding as follows: First two players p1 and p2 play a match πb. The
winning player is determined to be a champion, and the loser l1 ∈ {p1, p2} plays
the next match π2 with p2. In a similar way, for i = 1 . . . k − 1, player pi+1 and
the previous match loser li−1 plays a match πi. The loser of (k − 1)-th match
πk−1 becomes the only loser of the tournament.

Lemma 2 If the winning probabilities of match πi between li−1 and pi+1 is set
with (i/(i+1), 1− i/(i+1)) for i = 1 . . . k− 1, then the tournament is equal for
every player. Moreover, for any subset S ⊂ P such that |S| = k, the probability
of winning the parties in S simultaneously is also equivalent.

We can construct a (k, n)-tournaments for arbitrary k and n by running
(n − j, n − j + 1)-tournament for j = 1 . . . n − k. Concretely, the winners of
(n− j′, n− j′ +1)-tournament continue the next (n− j′ − 1, n− j′)-tournament
to further determine one loser, and the players continue such process until the
remaining winners are k players.

Lemma 3 For any positive integers k and n with k < n, if a (k, n)-tournament
is composed of sequential executions of (n − j, n − j + 1)-tournament for j =
1 . . . n − k, then the probability of being the winner of a tournament is equiva-
lent for every player. Moreover, for any subset S ⊂ P such that |S| = k, the
probability of winning the parties in S simultaneously is also equivalent.
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4 Definition of Secure Lottery Protocol

Suppose a game in which each of n player bets $α. A secure (k, n)-lottery protocol
is a cryptographic protocol to k champions who obtain $(nα/k) from them fairly.
This section presents the security model of this protocol.

Hereafter, we say that player p can freely redeem transaction Tx if p holds a
witness that satisfies the output script of Tx. Let wealth of player p at round t
mean the total amount of coins in transactions such that p can freely redeem at
round t. Note that we ignore coins not involved in the protocol. Also, payoff of
player p refers to the difference between wealth at the beginning of the protocol
and at the end.

Before presenting formal descriptions, we discuss an intuitive understanding
of security requirements. First, we focus on the case of k = 1, i.e., the cham-
pion is only one. As a premise, if all players behave honestly, it is necessary to
determine the champion uniformly at random. Of course, it is ideal to achieve
this property even in the presence of an adversary. However, such a requirement
is somewhat too strong to achieve. For instance, an adversary may abort early
after the start of a protocol. In this case, since the protocol terminates without
determining the champion, it does not fulfill the condition of determining the
champion uniformly at random. Thus, in the case where corrupted players ex-
ist, we relax the requirement. More concretely, a secure protocol ensures that
the expected value of honest parties’ payoffs is never negative for the arbitrary
strategy of the adversary.

In the case of k ≥ 2, the requirements are almost similar to the above, how-
ever, there is one additional condition that comes from having multiple champi-
ons. We require that, if all players are honest, for any set of players W ⊂ P such
that |W | = k, the probability that W becomes champions is the same. In other
words, it ensures that not only the tournament is fair for individual players, but
also is equal for each set of players. It is also necessary that, if an adversary
violates this property, its expected payoff becomes negative. This requirement
means that adversaries cannot prevent a certain set of players from becoming
champions simultaneously without loss.

To capture the above requirements formally, we introduce several notations.
Let σA denote a strategy set of a PPTA adversary A, and let st0 denote the
ledger state at the beginning of the protocol. We denote by Ω(p, st0, t, σA) a
random variable of wealth of player p at round t. In the case where there is no
corrupted party, we describe σA = ⊥. Let β and ϵ denote the round number at
the beginning and at the end of the protocol, respectively. We define a random
variable with respect to payoff as follows.

Φ(p, st0, σA) = Ω(p, st0, ϵ, σA)−Ω(p, st0, β, σA) (1)

We denote by E(Φ(p, st0, σA)) the expected value of the payoff.

Definition 1 We say a (1, n)-lottery protocol Π is secure if Π fulfills the fol-
lowings except a negligible probability in η:
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– If all players are honest, E(Φ(p, st0,⊥)) = 0 and Ω(p, st0, ϵ,⊥) ∈ {−α, α(n−
1)} for all p ∈ P .

– For all PPTA adversaries A, i.e., if there exist corrupted players, E(Φ(p, st0, σA)) ≥
0 holds for all p ∈ H.

Definition 2 We say a (k, n)-lottery protocol Π is secure if Π fulfills the fol-
lowings except a negligible probability in η:

– If all players are honest, E(Φ(p, st0,⊥)) = 0 and Ω(p, st0, ϵ,⊥) ∈ {−α, (α/k)(n−
k)} for all p ∈ P . Furthermore, Pr(

∑
s∈S Ω(s, st0, β,⊥) = k(n−k)) =

(
n
k

)−1

for all S = {s1, . . . , sk} ⊂ P .
– For any PPTA adversary A, E(Φ(p, st0, σA)) ≥ 0 holds for all p ∈ H.
– For any PPTA adversary A, if there exists S ⊆ H such that |S| ≤ k and

Pr(
∑

s∈S Φ(s, st0, σA) = |S|(n − k)) ̸=
(
n−|S|
k−|S|

)−1
, the protocol guarantees

that
∑

p∈C E(Φ(p, st0, σA)) < 0.

To achieve a secure protocol, we require players to input deposit in addition
to the bets. The deposits play a roll of compensation for honest players when an
adversary behaves maliciously. We say that a protocol is constant-deposit if the
deposit amount of every player is a constant value independent from the number
of players.

5 (1, n)-Lottery Protocol with Constant Deposits

This section presents a (1, n)-lottery protocol for an arbitrary positive integer
n. We suppose that a bet amount of each party is α = 1. Our protocol is based
on single-elimination tournaments with binary tree structure. The tournament
consists of n− 1 two-player matches: the winners of the matches at level l ∈ [L]
play at the next level l−1, where L is the tree depth. The winner of the match at
level 0 obtains $n as a reward. Bartoletti and Zunino’s protocol set the winning
probability to 1/2 in each match. To construct a protocol for an arbitrary number
of players, it is necessary to modify it so that all players are fair to win even if
the tournament is not the complete binary tree. The main idea of our protocol
is to bias the probability of winning in each match.

5.1 Building Block: Biased Coin-Tossing Protocol

We denote with τLedger the sufficient time to write a transaction on the ledger
and confirm it. (It is about 60 minutes in Bitcoin.) We denote by Kp(Tx, π,P)
a key pair of player p for transaction Tx, which corresponds to a match π. P
refers to players’ identifiers corresponding to the match. We suppose that the
private part of key pairs is kept secret by p. (Note that we write signing and ver-
ification keys without distinguishing between them.) We define K(Tx, π,P) :=
{Kp(Tx, π,P) | p ∈ P}.

Let (ver, sig) be a signature scheme. Following Bartoletti and Zunino’s work,
we allow the partial signature that enables to exclude of the input field from
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the signature subjects. It allows to generate a signature on a transaction before
determining the input field of the transaction. Namely, we use the malleability of
input fields. Hereafter, a signature written in the input field of transaction Tx =
(in[m], inscript[m], value[l], outscript[l], lockTime) is for (value[l], outscript[l], lockTime).
Below, we omit the inputs of signatures and refer to it as sigKp(Tx,π,P). Also,
sigK(Tx,π,P) means the multi-signature with K(Tx, π,P).

As described the previous section, we construct a protocol based on a tourna-
ment structure. Thus, before presenting our lottery protocol, we show a protocol
to realize a match between two parties. Since we deal with tournaments not the
complete binary tree, it is necessary to bias some matches to ensure all players
to have the same probability of winning the tournament. Hence, we construct a
match protocol, called a biased coin tossing protocol, that can parameterize the
winning probability.

To handle biased probabilities, we introduce a winner function to determine
the winner in a match. Let a and b be players that hold secrets sa and sb,
respectively. We consider a match such that the winner depends on sa and sb,
and define the function to determine the winner as follows.

Winner(sa, sb, va, vb) =

{
a if sa + sb (mod va + vb) < va,
b otherwise.

(2)

where va and vb are positive integers. Hereafter, we suppose that sa and sb are
sampled from [va + vb] uniformly at random.4 The output x ∈ {a, b} means the
winner of the match.

See Protocol 1 and Fig. 2 that shows a protocol of realizing a match πi in
a tournament. (Suppose πa and πb be the child nodes of πi.) A match consists
of three types of transactions, Win, Turn1, and Turn2. At the beginning of the
protocol, suppose Win(πa, a) and Win(πb, b) being on the ledger, which implies
that player a and b won the previous matches πa and πb, respectively. Now,
they play a match πi. Turn1 is used to aggregate the coins of Win(πa, a) for
the preparation of the match. Turn2 is a transaction of which input is Turn1.
See the output script of Turn1. To redeem Turn1, a player must write sa on the
input script of Turn2. Thus, putting Turn2 on the ledger implies to reveal a’s
secret sπi

a . Win(πi, a) and Win(πi, b) are transactions of which input is Turn2.
See the output script of Turn2. To redeem Turn2, a player must write sπi

a and
sπi

b on the input script of the next transaction. Thus, to redeem Turn2, player
b must reveal his/her secret sπi

b . Furthermore, since sπi
a and sπi

b satisfy either
a = Winner(sπi

a , sπi

b , va, vb) or b = Winner(sπi
a , sπi

b , va, vb), players can put only
one of Win(πi, a) and Win(πi, b) on the ledger. The transaction put on the ledger
refers to the winner of this match and is used as the input of Turn1 in the next
match.

4 In our protocol, players commit the secrets at the beginning of the protocol by
using a cryptographic hash function. Thus, more precisely, we need to extend the
bit lengths of secrets to an appropriate length by adding multiples of va + vb.
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Win(𝜋𝜋𝑎𝑎, 𝑎𝑎)
in ∶ Turn2
inscript ∶ 𝑠𝑠𝑎𝑎

𝜋𝜋𝑎𝑎, 𝑠𝑠𝑐𝑐
𝜋𝜋𝑎𝑎, sig𝐊𝐊(Turn2,𝜋𝜋𝑎𝑎,𝑎𝑎)

outscript T, 𝜎𝜎 : ver𝐊𝐊 Win,𝜋𝜋𝑎𝑎,𝑎𝑎 T, 𝜎𝜎
∨ ver𝐊𝐊 WinTO,𝜋𝜋𝑎𝑎,𝑎𝑎 T, 𝜎𝜎

value: $ 1 + 𝑑𝑑 𝑣𝑣𝑎𝑎
𝜋𝜋𝑎𝑎

Win(𝜋𝜋𝑏𝑏, 𝑏𝑏)
in: Turn2
inscript ∶ 𝑠𝑠𝑏𝑏

𝜋𝜋𝑏𝑏, 𝑠𝑠𝑑𝑑
𝜋𝜋𝑏𝑏, sig𝐊𝐊(Turn2,𝜋𝜋𝑏𝑏,𝑏𝑏)

outscript T, 𝜎𝜎 : ver𝐊𝐊 Win,𝜋𝜋𝑏𝑏,𝑏𝑏 T, 𝜎𝜎
∨ ver𝐊𝐊 WinTO,𝜋𝜋𝑏𝑏,𝑏𝑏 T, 𝜎𝜎

value: $ 1 + 𝑑𝑑 𝑣𝑣𝑏𝑏
𝜋𝜋𝑏𝑏

Turn1(𝜋𝜋𝑖𝑖, 𝑎𝑎, 𝑏𝑏)
in:Win(𝑎𝑎)
inscript ∶ sig𝐊𝐊(Win,𝜋𝜋𝑎𝑎,𝑎𝑎)
in:Win(𝑏𝑏)
inscript ∶ sig𝐊𝐊(Win,𝜋𝜋𝑏𝑏,𝑏𝑏)

outscript T, 𝑠𝑠𝑎𝑎, 𝜎𝜎 ∶
( 𝐻𝐻 𝑠𝑠𝑎𝑎 = ℎ𝑎𝑎

𝜋𝜋𝑖𝑖 ∧ ver𝐊𝐊 Turn1,𝜋𝜋𝑖𝑖,𝑎𝑎,𝑏𝑏 T, 𝜎𝜎 )
∨ ver𝐊𝐊 Turn1TO, 𝜋𝜋𝑖𝑖,𝑎𝑎,𝑏𝑏 T, 𝜎𝜎
value: $ 1 + 𝑑𝑑 (𝑣𝑣𝑎𝑎

𝜋𝜋𝑎𝑎+𝑣𝑣𝑏𝑏
𝜋𝜋𝑏𝑏)

Turn2(𝜋𝜋𝑖𝑖, 𝑎𝑎, 𝑏𝑏)
in: Turn1
inscript: 𝑠𝑠𝑎𝑎

𝜋𝜋𝑖𝑖 , sig𝐊𝐊(Turn1,𝜋𝜋𝑖𝑖,𝑎𝑎, 𝑏𝑏)
outscript T, 𝑠𝑠𝑎𝑎, 𝑠𝑠𝑏𝑏, 𝜎𝜎 ∶

( 𝐻𝐻 𝑠𝑠𝑎𝑎 = ℎ𝑎𝑎
𝜋𝜋𝑖𝑖 ∧ 𝐻𝐻 𝑠𝑠𝑏𝑏 = ℎ𝑏𝑏

𝜋𝜋𝑖𝑖

∧ ver𝐊𝐊 Turn2,𝜋𝜋, winner(𝑠𝑠𝑎𝑎,𝑠𝑠𝑏𝑏,𝑣𝑣𝑎𝑎,𝑣𝑣𝑏𝑏 ) T, 𝜎𝜎 )
∨ ver𝐊𝐊 Turn2TO,𝜋𝜋𝑖𝑖,𝑎𝑎,𝑏𝑏 T, 𝜎𝜎
value: $ 1 + 𝑑𝑑 (𝑣𝑣𝑎𝑎

𝜋𝜋𝑎𝑎+𝑣𝑣𝑏𝑏
𝜋𝜋𝑏𝑏)

Win(𝜋𝜋𝑖𝑖, 𝑎𝑎)
in ∶ Turn2
inscript ∶ 𝑠𝑠𝑎𝑎

𝜋𝜋𝑖𝑖 , 𝑠𝑠𝑏𝑏
𝜋𝜋𝑖𝑖, sig𝐊𝐊(Turn2,𝜋𝜋𝑖𝑖,𝑎𝑎)

outscript T, 𝜎𝜎 : ver𝐊𝐊 Win,𝜋𝜋𝑖𝑖,𝑎𝑎 T, 𝜎𝜎
∨ ver𝐊𝐊 WinTO,𝜋𝜋𝑖𝑖,𝑎𝑎 T, 𝜎𝜎

value: $ 1 + 𝑑𝑑 𝑣𝑣𝑎𝑎
𝜋𝜋𝑖𝑖

Win(𝜋𝜋𝑖𝑖, 𝑏𝑏)
in: Turn2
inscript ∶ 𝑠𝑠𝑎𝑎

𝜋𝜋𝑖𝑖 , 𝑠𝑠𝑏𝑏
𝜋𝜋𝑖𝑖, sig𝐊𝐊(Turn2,𝜋𝜋𝑖𝑖,𝑎𝑎)

outscript T, 𝜎𝜎 : ver𝐊𝐊 Win,𝜋𝜋𝑖𝑖,𝑏𝑏 T, 𝜎𝜎
∨ ver𝐊𝐊 WinTO,𝜋𝜋𝑖𝑖,𝑏𝑏 T, 𝜎𝜎

value: $ 1 + 𝑑𝑑 𝑣𝑣𝑏𝑏
𝜋𝜋𝑖𝑖

$ 1 + 𝑑𝑑 𝑣𝑣𝑎𝑎
𝜋𝜋𝑎𝑎

$ 1 + 𝑑𝑑 𝑣𝑣𝑏𝑏
𝜋𝜋𝑏𝑏

$ 1 + 𝑑𝑑 (𝑣𝑣𝑎𝑎
𝜋𝜋𝑎𝑎 + 𝑣𝑣𝑏𝑏

𝜋𝜋𝑏𝑏)

$ 1 + 𝑑𝑑 (𝑣𝑣𝑎𝑎
𝜋𝜋𝑎𝑎 + 𝑣𝑣𝑏𝑏

𝜋𝜋𝑏𝑏)

Fig. 2. Graphical description of biased coin-tossing (for match πi).

5.2 Our Construction of (1, n)-lottery

The biased probability of each match in (1, n)-Lottery. First, we present
the biased probability of each match. Let us consider a match π of which child
nodes πa and πb. As in Section 3.1, we consider two subtrees such that its root
nodes are πa and πb, and let vπa and vπb be the number of leaf nodes in these
subtrees, respectively. From Lemma 1, we set the winner function in each match
π of our (1, n)-lottery protocol as Winner(sπa , s

π
b , v

π
a , v

π
b ).

Our protocol is applicable to an arbitrary binary tree. Let Π ⊆ {{0, 1}n | 1 ≤
n ≤ L} be a binary tree applied to our protocol, and it has L levels. Based on
the binary tree and the biased probability, our protocol proceeds as follows.

Precondition: For all p ∈ P , the ledger contains a transaction Betp with value
$(1 + d), and redeemable with key Kp(Betp).

Initialization phase:
1. For all player p ∈ P , p generates the following secret keys locally. Each

player p generates all the following key pairs.
– For all π such that π is leaf and every p ∈ P :

Kp(Betp),Kp(CollectW),Kp(Init, a)
– For all π and every p ∈ P :

Kp(Win, π, a),Kp(WinTo, π, a)
– For all π such that π is neither leaf nor root and every a, b ∈ P such

that a, b ⊏ π:
Kp(Turn1To, π, a, b),Kp(Turn1, π, a),Kp(Turn2To, π, a, b),Kp(Turn2, π, a),
Kp(Timeout1, π, a, b),Kp(Timeout2, π, a, b)
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Protocol 1 Biased Coin-Tossing ΠW
a,b(sa, sb, va, vb)

Setup:
1: The initialization phase was completed, and Win(π, a) and Win(π, b) have been put

already on the ledger. Players a and b hold secrets sa and sb, respectively. Let τ
be the round of the beginning of the protocol.

Procedure:
2: One of the players puts Turn1(π, a, b) on the ledger.
3: a writes sa on the input script of Turn2(π, a, b), and put the transaction on the

ledger.
4: if Turn2(π, a, b) does not appear within τ + 2τLedger then
5: One of the players puts Timeout1(π, a, b) on the ledger.
6: One of the players puts Win(π, b) on the ledger.
7: b computes w = Winner(sa, sb, va, vb)
8: if w = a then
9: b puts Win(π, a) on the ledger.
10: if w = b then
11: b puts Win(π, b) on the ledger.
12: if Win(π, x ∈ {a, b}) does not appear within τ + 4τLedger then
13: One of the players puts Timeout2(π, a, b) into the ledger.
14: One of the players puts Win(π, a) on the ledger.

2. For all player p ∈ P , p generates secrets s
πp
p for each πp, such that

(|πp| < L), and broadcasts to the other players his/her public keys and
hashes h

πp
p = H(s

πp
p ).

3. If h
πp
p = h

πp
′

p′ for some (p, πp) ̸= (p′, πp
′), the players abort.

4. Parties agree the time τInit large enough to fall after the initialization
phase.

5. Each player signs all transaction templates in Fig. 3 except for Init, and
broadcasts the signatures.

6. Each player verifies the signatures received by the others. some signature
is not valid or missing, the player aborts the protocol.

7. Each player signs Init, and sends the signature to the first player.
8. The first player puts the (signed) transaction Init on the ledger.
9. If Init does not appear within one τLedger , then each p redeems Betp and

aborts.
10. The players put the signed transactions Win(p, p) on the ledger, for all

p ∈ P .
Tournament execution phase: For all levels l = L . . . 1, players proceed as

follows: Run ΠW
a,b(s

πa
a , sπb

b , vπa
a , vπb

b ) for each π, such that |π| = l− 1, in par-
allel. Then, vπa

a , vπb

b denote the biased probability determined in the manner
shown in the above.5

Garbage collection phase: If there is some unredeemed Win(π, p) such that
π is not the root on the ledger, players put CollectOrphanWin(π, p) on the

5 Only the Win transaction corresponding to the winner of the final match uses the
template for the root node. See Fig. 3, and Win(πr, a) is the corresponding template.
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ledger. (If all players behave honestly, this step is not carried out. It is a
countermeasure for the transaction insertion attack, shown in Section 5.3.)

At step 2, players prepare all transactions that may be used in the protocol.
Note that they then signs the transactions using signing keys of all players.
Thus, after this step, it is not possible for some players to collude and forge
transactions, except for input and input script fields. The number of transactions
created in this step is O(n2), which is derived from the number of possible match
combinations. See Win(πr, a) in Fig. 3 that is a transaction for the champion.
At the end of the tournament execution phase, only the champion is freely
redeemable a Win(πr, a) and can obtain $(n+d), which is the reward and deposit
for the champion. Furthermore, Win(πr, a) holds outputs to return deposits for
each player.

5.3 Transaction Insertion Attack

In our scheme, as in the Bartoletti-Zunino scheme, an adversary can turn an
honest player who should be the winner into the loser in a match. The details
of the attack are described below.

Settings. Consider a match π with honest player a and malicious player b, where
they are winners of the previous matches π0 and π1, respectively. Let player c
be the loser of π0, and let π′ be the parent node of π. Player b has a freely
redeemable transaction Tb with $(vπa +vπb )(1+d) in the external to the protocol.

Procedures. Suppose when honest player a puts Turn2(π, a, b) on the ledger in the
biased coin tossing protocol for π, player b realizes that he has lost the match.
Then, b redeems Tb through a transaction Win(π, b) by malleating its input and
input script fields. (Note that in our scheme, we assume the input malleabil-
ity.) Player b can now redeem both his transaction and Win(π′, c) by putting
Turn1(π1, b, c) on the ledger. Player a can redeem the pending Turn2(π, a, b) (af-
ter its timeout has expired) using Timeout2(π, a, b), and then redeem that with
Win(π, a). This transaction is now orphan, i.e. it can no longer be used in the next
rounds because its Win(π′, c) was already redeemed by b. However, the orphan
transaction can be redeemed in the garbage collection phase by CollectW(π, a).
Thus, player a can collect $(vπa + vπb )(1 + d) at the garbage collection phase.

As shown above, in order to realize this attack in match π, an adversary
needs to invest additional coins $(vπa + vπb )(1+d) into the protocol. The affected
honest player can collect $d by the root Win(πr, a) and $(vπa + vπb )(1 + d) by
the garbage collection. Informally, this adversarial scenario does not affect the
security since the honest player who is applied this attack would rather gain due
to the deposit. We present security proof of our protocol in the next subsection.

5.4 Security Proof

This section shows security proof of our (1, n)-lottery protocol. Our proof is
based on the fact that the possible attack strategies for adversaries is only the
transaction insertion attack or the rejection of revealing their secrets.
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Win 𝜋𝜋, 𝑎𝑎 (𝜋𝜋 ∈ Π′, 𝜋𝜋 ⊏ 𝑎𝑎)
in: Timeout1(𝜋𝜋, 𝑏𝑏, 𝑎𝑎)
inscript ∶ sig𝐊𝐊 Timeout1, 𝜋𝜋,𝑏𝑏,𝑎𝑎

outscript T, 𝜎𝜎 ∶ ver𝐊𝐊(Win,𝜋𝜋,𝑎𝑎) T, 𝜎𝜎
∨ ver𝐊𝐊 WinTO,𝜋𝜋,𝑎𝑎 T, 𝜎𝜎

value: $ 1 + 𝑑𝑑 (𝑣𝑣𝑎𝑎 + 𝑣𝑣𝑏𝑏)

in: Timeout2(𝜋𝜋, 𝑎𝑎, 𝑏𝑏)
inscript ∶ sig𝐊𝐊(Timeout2,𝜋𝜋,𝑎𝑎,𝑏𝑏)

in: Turn2(𝜋𝜋, 𝑎𝑎, 𝑏𝑏)
inscript ∶ 𝑠𝑠𝑎𝑎𝜋𝜋, 𝑠𝑠𝑏𝑏, sig𝐊𝐊(Turn2,𝜋𝜋,𝑎𝑎)
in: Turn2(𝜋𝜋, 𝑏𝑏, 𝑎𝑎)
inscript ∶ 𝑠𝑠𝑎𝑎𝜋𝜋, 𝑠𝑠𝑏𝑏, sig𝐊𝐊(Turn2,𝜋𝜋,𝑎𝑎)

Win(𝑎𝑎, 𝑎𝑎) (𝑎𝑎 ∈ 𝑃𝑃)
in: Init(𝑎𝑎)
inscript ∶ sig𝐊𝐊(Init,𝑎𝑎)
outscript(T, 𝜎𝜎): ver𝐊𝐊 Win,𝑎𝑎,𝑎𝑎 (T, 𝜎𝜎)
value 𝑝𝑝 : $ 1 + 𝑑𝑑

Turn1 𝜋𝜋, 𝑎𝑎, 𝑏𝑏 (𝜋𝜋 ∈ Π′, 𝜋𝜋 ⊏ 𝑎𝑎, 𝑏𝑏)
in:Win(𝑎𝑎)
inscript ∶ sig𝐊𝐊(Win,𝜋𝜋0,𝑎𝑎) 𝜋𝜋0 𝜋𝜋
in:Win(𝑏𝑏)
inscript ∶ sig𝐊𝐊(Win,𝜋𝜋1,𝑏𝑏) 𝜋𝜋1 𝜋𝜋

outscript T, 𝑠𝑠𝑎𝑎, 𝜎𝜎 ∶
( 𝐻𝐻 𝑠𝑠𝑎𝑎 = ℎ𝑎𝑎𝜋𝜋 ∧ ver𝐊𝐊 Turn1,𝜋𝜋,𝑎𝑎,𝑏𝑏 T, 𝜎𝜎 )
∨ verK Turn1TO,,𝜋𝜋,𝑎𝑎,𝑏𝑏 T, 𝜎𝜎
value: $ 1 + 𝑑𝑑 (𝑣𝑣𝑎𝑎+𝑣𝑣𝑏𝑏)

Turn2(𝜋𝜋, 𝑎𝑎, 𝑏𝑏) (𝜋𝜋 ∈ Π′, 𝜋𝜋 ⊏ 𝑎𝑎, 𝑏𝑏)
in: Turn1
inscript: 𝑠𝑠𝑎𝑎𝜋𝜋, sig𝐊𝐊(Turn1,𝜋𝜋,𝑎𝑎,𝑏𝑏)
outscript T, 𝑠𝑠𝑎𝑎, 𝑠𝑠𝑏𝑏, 𝜎𝜎 ∶

( 𝐻𝐻 𝑠𝑠𝑎𝑎 = ℎ𝑎𝑎𝜋𝜋 ∧ 𝐻𝐻 𝑠𝑠𝑏𝑏 = ℎ𝑏𝑏𝜋𝜋
∧ ver𝐊𝐊 Turn2,𝜋𝜋, winner(𝑠𝑠𝑎𝑎,𝑠𝑠𝑏𝑏,𝑣𝑣𝑎𝑎,𝑣𝑣𝑏𝑏 ) T, 𝜎𝜎 )
∨ ver𝐊𝐊 Turn2TO,𝜋𝜋,𝑎𝑎,𝑏𝑏 T, 𝜎𝜎
value: $ 1 + 𝑑𝑑 (𝑣𝑣𝑎𝑎+𝑣𝑣𝑏𝑏)

Init
in[𝑝𝑝]: Bet𝑝𝑝
inscript[𝑝𝑝] ∶ sigK𝑝𝑝(Bet𝑝𝑝)
outscript[𝑝𝑝](T, 𝜎𝜎): verK Init,𝑝𝑝 (T, 𝜎𝜎)
value 𝑝𝑝 : $ 1 + 𝑑𝑑

Win 𝜋𝜋𝑟𝑟, 𝑎𝑎 (𝑎𝑎 ∈ 𝑃𝑃)
Win(𝜋𝜋, 𝑎𝑎)

outscript[𝑎𝑎](T, 𝜎𝜎): ver𝐊𝐊 Collect (T, 𝜎𝜎)
value 𝑎𝑎 : $ 𝑛𝑛 + 𝑑𝑑
outscript[∀𝑝𝑝 ≠ 𝑎𝑎](T, 𝜎𝜎): ver𝐊𝐊 Collect (T, 𝜎𝜎)
value 𝑝𝑝 : $𝑑𝑑

Timeout1 𝜋𝜋, 𝑎𝑎, 𝑏𝑏 (𝜋𝜋 ∈ Π′, 𝜋𝜋 ⊏ 𝑎𝑎, 𝑏𝑏)
in: Turn1(𝜋𝜋, 𝑎𝑎, 𝑏𝑏)
inscript ∶⊥, sig𝐊𝐊(Turn1TO,𝜋𝜋,𝑎𝑎,𝑏𝑏)
outscript T, 𝜎𝜎 : ver𝐊𝐊(Timeout1,𝜋𝜋,𝑎𝑎,𝑏𝑏) T, 𝜎𝜎
value: $ 1 + 𝑑𝑑 (𝑣𝑣𝑎𝑎+𝑣𝑣𝑏𝑏)

𝜏𝜏𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛 + 𝐿𝐿 − 𝜋𝜋 − 1 𝜏𝜏𝑅𝑅𝑅𝑅𝑅𝑅𝑛𝑛𝑅𝑅 + 2𝜏𝜏𝐿𝐿𝐿𝐿𝑅𝑅𝐿𝐿𝐿𝐿𝑟𝑟

Timeout2 𝜋𝜋, 𝑎𝑎, 𝑏𝑏 (𝜋𝜋 ∈ Π′, 𝜋𝜋 ⊏ 𝑎𝑎, 𝑏𝑏)
in: Turn2(𝜋𝜋, 𝑎𝑎, 𝑏𝑏)
inscript ∶⊥, ⊥, sig𝐊𝐊(Turn2TO,𝜋𝜋,𝑎𝑎,𝑏𝑏)
outscript T, 𝜎𝜎 : ver𝐊𝐊(Timeout2,𝜋𝜋,𝑎𝑎,𝑏𝑏) T, 𝜎𝜎
value: $ 1 + 𝑑𝑑 (𝑣𝑣𝑎𝑎+𝑣𝑣𝑏𝑏)

𝜏𝜏𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛 + 𝐿𝐿 − 𝜋𝜋 − 1 𝜏𝜏𝑅𝑅𝑅𝑅𝑅𝑅𝑛𝑛𝑅𝑅 + 4𝜏𝜏𝐿𝐿𝐿𝐿𝑅𝑅𝐿𝐿𝐿𝐿𝑟𝑟

CollectOrphanWin 𝜋𝜋, 𝑎𝑎 (𝜋𝜋 ∈ Π′, 𝜋𝜋 ⊏ 𝑎𝑎)
n:Win(𝜋𝜋, 𝑎𝑎)

sig𝐊𝐊(WinTO,𝜋𝜋,𝑎𝑎)

outscript[𝑎𝑎](T, 𝜎𝜎): ver𝐾𝐾𝑝𝑝 Collect (T, 𝜎𝜎)
value 𝑎𝑎 : $(𝑣𝑣𝑎𝑎 + 𝑑𝑑)

𝜏𝜏𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛 + 𝐿𝐿 − 𝜋𝜋 𝜏𝜏𝑅𝑅𝑅𝑅𝑅𝑅𝑛𝑛𝑅𝑅 + 𝜏𝜏𝐿𝐿𝐿𝐿𝑅𝑅𝐿𝐿𝐿𝐿𝑟𝑟
outscript[∀𝑝𝑝 ≠ 𝑎𝑎](T, 𝜎𝜎): ver𝐾𝐾𝑝𝑝 Collect (T, 𝜎𝜎)
value 𝑝𝑝 : $𝑑𝑑

𝜏𝜏𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛 + 𝐿𝐿 − 𝜋𝜋 𝜏𝜏𝑅𝑅𝑅𝑅𝑅𝑅𝑛𝑛𝑅𝑅 + 𝜏𝜏𝐿𝐿𝐿𝐿𝑅𝑅𝐿𝐿𝐿𝐿𝑟𝑟

Fig. 3. Transaction templates used in our protocols. Let Π′ be the set of nodes exclud-
ing leafs and the root. (Part I) Transaction templates for our (1, n)-lottery protocol.
The dashed line in the inscript field indicates that both inscripts are redeemed at the
same time. On the other hand, a solid line indicates that only one of the inscriptions
is redeemed.
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Lose 𝜋𝜋, 𝑎𝑎 = 𝑙𝑙𝑖𝑖−1 (𝜋𝜋 ∈ Π′, 𝜋𝜋 ⊏ 𝑎𝑎)
in: Timeout1(𝜋𝜋, 𝑏𝑏, 𝑎𝑎)
inscript ∶ sig𝐊𝐊 Timeout1Lose,𝜋𝜋,𝑏𝑏,𝑎𝑎

outscript T, 𝜎𝜎 ∶ ver𝐊𝐊(Lose,𝜋𝜋,𝑎𝑎) T, 𝜎𝜎
∨ ver𝐊𝐊 LoseTO,𝜋𝜋,𝑎𝑎 T, 𝜎𝜎

value: $(𝑘𝑘 + 1 − 𝑖𝑖 + 𝑑𝑑(1 + 𝑖𝑖))

in: Timeout2Lose(𝜋𝜋, 𝑎𝑎, 𝑏𝑏)
inscript ∶ sig𝐊𝐊(Timeout2Lose,𝜋𝜋,𝑎𝑎,𝑏𝑏)

in: Turn2(𝜋𝜋, 𝑎𝑎, 𝑏𝑏)
inscript ∶ 𝑠𝑠𝑎𝑎, 𝑠𝑠𝑏𝑏, sig𝐊𝐊(Turn2,𝜋𝜋,𝑎𝑎)
in: Turn2(𝜋𝜋, 𝑏𝑏, 𝑎𝑎)
inscript ∶ 𝑠𝑠𝑎𝑎, 𝑠𝑠𝑏𝑏, sig𝐊𝐊(Turn2,𝜋𝜋,𝑎𝑎)

Turn1 𝜋𝜋, 𝑎𝑎, 𝑏𝑏 (𝜋𝜋 ∈ Π′, 𝜋𝜋 ⊏ 𝑎𝑎, 𝑏𝑏)
in: Lose(𝑎𝑎)
inscript ∶ sig𝐊𝐊(Lose,𝜋𝜋0,𝑎𝑎)
in:Win(𝑏𝑏)
inscript ∶ sig𝐊𝐊(Win,𝜋𝜋1,𝑏𝑏)
outscript T, 𝑠𝑠𝑎𝑎, 𝜎𝜎 ∶
( 𝐻𝐻 𝑠𝑠𝑎𝑎 = ℎ𝑎𝑎𝜋𝜋 ∧ ver𝐊𝐊 Turn1,𝜋𝜋,𝑎𝑎 T, 𝜎𝜎 )
∨ ver𝐊𝐊 Turn1TO,𝜋𝜋,𝑎𝑎 T, 𝜎𝜎
value: $(2𝑘𝑘 − 𝑖𝑖 + 𝑑𝑑 2 + 𝑖𝑖 )

Turn2(𝜋𝜋, 𝑎𝑎, 𝑏𝑏) (𝜋𝜋𝑟𝑟 ≠ 𝜋𝜋 ∈ Π′, 𝜋𝜋 ⊏ 𝑎𝑎, 𝑏𝑏)
in: Turn1
inscript: 𝑠𝑠𝑎𝑎, sig𝐊𝐊(Turn1,𝜋𝜋,𝑎𝑎,𝑏𝑏)
outscript T, 𝑠𝑠𝑎𝑎, 𝑠𝑠𝑏𝑏, 𝜎𝜎 ∶

( 𝐻𝐻 𝑠𝑠𝑎𝑎 = ℎ𝑎𝑎𝜋𝜋 ∧ 𝐻𝐻 𝑠𝑠𝑏𝑏 = ℎ𝑏𝑏𝜋𝜋
∧ ver𝐊𝐊 Turn2,𝜋𝜋, winner(𝑠𝑠𝑎𝑎,𝑠𝑠𝑏𝑏,𝑣𝑣𝑎𝑎,𝑣𝑣𝑏𝑏 ) T, 𝜎𝜎 )
∨ ver𝐊𝐊 Turn2TOWin,𝜋𝜋, 𝑎𝑎, 𝑏𝑏 T, 𝜎𝜎
value: $(𝑘𝑘 + 1)

Win(𝜋𝜋, 𝑎𝑎)(𝜋𝜋 ∈ Π′, 𝜋𝜋 ⊏ 𝑎𝑎)
𝑘𝑘, 𝑘𝑘 + 1

outscript[𝑎𝑎](T, 𝜎𝜎): ver𝐊𝐊 CollectW (T, 𝜎𝜎)
value 𝑎𝑎 : $ 𝑘𝑘 + 1

outscript T, 𝑠𝑠𝑎𝑎, 𝑠𝑠𝑏𝑏, 𝜎𝜎 ∶
( 𝐻𝐻 𝑠𝑠𝑎𝑎 = ℎ𝑎𝑎𝜋𝜋 ∧ 𝐻𝐻 𝑠𝑠𝑏𝑏 = ℎ𝑏𝑏𝜋𝜋

∧ ver𝐊𝐊 Turn2,𝜋𝜋, Loser(𝑠𝑠𝑎𝑎,𝑠𝑠𝑏𝑏,𝑣𝑣𝑎𝑎,𝑣𝑣𝑏𝑏 ) T, 𝜎𝜎 )
∨ ver𝐊𝐊 Turn2TOLose,𝜋𝜋,𝑎𝑎,𝑏𝑏 T, 𝜎𝜎
value: $(𝑘𝑘 − 1 − 𝑖𝑖 + 𝑑𝑑 2 + 𝑖𝑖 )

CollectOrphanLose 𝜋𝜋, 𝑎𝑎 (𝜋𝜋 ∈ Π′, 𝜋𝜋 ⊏ 𝑎𝑎)
n: Lose(𝜋𝜋, 𝑎𝑎)

sig𝐊𝐊(LoseTO,𝜋𝜋,𝑎𝑎)
outscript[𝑎𝑎](T, 𝜎𝜎): ver𝐾𝐾𝑝𝑝 CollectL (T, 𝜎𝜎)
value 𝑎𝑎 : $ (𝑘𝑘 + 1 − 𝑖𝑖 + 𝑑𝑑)

𝜏𝜏𝐼𝐼𝐼𝐼𝑖𝑖𝐼𝐼 + 𝐿𝐿 − 𝜋𝜋 𝜏𝜏𝑅𝑅𝑅𝑅𝑅𝑅𝐼𝐼𝑅𝑅 + 𝜏𝜏𝐿𝐿𝐿𝐿𝑅𝑅𝐿𝐿𝐿𝐿𝑟𝑟

Timeout1 𝜋𝜋𝑟𝑟, 𝑎𝑎, 𝑏𝑏 (𝜋𝜋𝑟𝑟 ⊏ 𝑎𝑎, 𝑏𝑏)
in: Turn1(𝜋𝜋, 𝑎𝑎, 𝑏𝑏)
inscript ∶⊥, sig𝐊𝐊(Turn1TO,𝜋𝜋,𝑎𝑎,𝑏𝑏)
outscript T, 𝜎𝜎 : ver𝐊𝐊(Timeout1Win,𝜋𝜋,𝑎𝑎,𝑏𝑏) T, 𝜎𝜎
value: $(𝑘𝑘 + 1)(𝑑𝑑 + 1)

𝜏𝜏𝐼𝐼𝐼𝐼𝑖𝑖𝐼𝐼 + 𝐿𝐿 − 𝜋𝜋 − 1 𝜏𝜏𝑅𝑅𝑅𝑅𝑅𝑅𝐼𝐼𝑅𝑅 + 2𝜏𝜏𝐿𝐿𝐿𝐿𝑅𝑅𝐿𝐿𝐿𝐿𝑟𝑟

Timeout2Win 𝜋𝜋, 𝑎𝑎, 𝑏𝑏 (𝜋𝜋 ∈ Π′, 𝜋𝜋 ⊏ 𝑎𝑎, 𝑏𝑏)
in: Turn2(𝜋𝜋, 𝑎𝑎, 𝑏𝑏)
inscript ∶⊥, ⊥, sig𝐊𝐊(Turn2TOWin,𝜋𝜋,𝑎𝑎,𝑏𝑏)

outscript T, 𝜎𝜎 : ver𝐊𝐊(Timeout2Win,𝜋𝜋,𝑎𝑎,𝑏𝑏) T, 𝜎𝜎
value: $(𝑘𝑘 + 1)

𝜏𝜏𝐼𝐼𝐼𝐼𝑖𝑖𝐼𝐼 + 𝐿𝐿 − 𝜋𝜋 − 1 𝜏𝜏𝑅𝑅𝑅𝑅𝑅𝑅𝐼𝐼𝑅𝑅 + 4𝜏𝜏𝐿𝐿𝐿𝐿𝑅𝑅𝐿𝐿𝐿𝐿𝑟𝑟

Timeout2Lose 𝜋𝜋, 𝑎𝑎, 𝑏𝑏 (𝜋𝜋𝑟𝑟 ≠ 𝜋𝜋 ∈ Π′, 𝜋𝜋 ⊏ 𝑎𝑎, 𝑏𝑏)
in: Turn2(𝜋𝜋, 𝑎𝑎, 𝑏𝑏)
inscript ∶⊥, ⊥, sig𝐊𝐊(Turn2TOLose,𝜋𝜋,𝑎𝑎,𝑏𝑏)
outscript T, 𝜎𝜎 : ver𝐊𝐊(Timeout2Lose,𝜋𝜋,𝑎𝑎,𝑏𝑏) T, 𝜎𝜎
value: $(𝑘𝑘 − 1 − 𝑖𝑖 + 𝑑𝑑 2 + 𝑖𝑖 )

𝜏𝜏𝐼𝐼𝐼𝐼𝑖𝑖𝐼𝐼 + 𝐿𝐿 − 𝜋𝜋 − 1 𝜏𝜏𝑅𝑅𝑅𝑅𝑅𝑅𝐼𝐼𝑅𝑅 + 4𝜏𝜏𝐿𝐿𝐿𝐿𝑅𝑅𝐿𝐿𝐿𝐿𝑟𝑟

in: Timeout1(𝜋𝜋, 𝑏𝑏, 𝑎𝑎)
inscript ∶ sig𝐊𝐊 Timeout1Win,𝜋𝜋,𝑏𝑏,𝑎𝑎

in: Timeout2Win(𝜋𝜋, 𝑎𝑎, 𝑏𝑏)
inscript ∶ sig𝐊𝐊(Timeout2Win,𝜋𝜋,𝑎𝑎,𝑏𝑏)

in: Turn2(𝜋𝜋, 𝑎𝑎, 𝑏𝑏)
inscript ∶ 𝑠𝑠𝑎𝑎, 𝑠𝑠𝑏𝑏, sig𝐊𝐊(Turn2,𝜋𝜋,𝑎𝑎)
in: Turn2(𝜋𝜋, 𝑏𝑏, 𝑎𝑎)
inscript ∶ 𝑠𝑠𝑎𝑎, 𝑠𝑠𝑏𝑏, sig𝐊𝐊(Turn2,𝜋𝜋,𝑎𝑎)

Turn2(𝜋𝜋𝑟𝑟, 𝑎𝑎, 𝑏𝑏) (𝜋𝜋𝑟𝑟 ⊏ 𝑎𝑎, 𝑏𝑏)
in: Turn1
inscript: 𝑠𝑠𝑎𝑎, sig𝐊𝐊(Turn1,𝜋𝜋,𝑎𝑎,𝑏𝑏)
outscript T, 𝑠𝑠𝑎𝑎, 𝑠𝑠𝑏𝑏, 𝜎𝜎 ∶

( 𝐻𝐻 𝑠𝑠𝑎𝑎 = ℎ𝑎𝑎𝜋𝜋 ∧ 𝐻𝐻 𝑠𝑠𝑏𝑏 = ℎ𝑏𝑏𝜋𝜋
∧ ver𝐊𝐊 Turn2,𝜋𝜋, winner(𝑠𝑠𝑎𝑎,𝑠𝑠𝑏𝑏,𝑣𝑣𝑎𝑎,𝑣𝑣𝑏𝑏 ) T, 𝜎𝜎 )
∨ ver𝐊𝐊 Turn2TOWin,𝜋𝜋,𝑎𝑎,𝑏𝑏 T, 𝜎𝜎
value: $(𝑘𝑘 + 1)(𝑑𝑑 + 1)

Win 𝜋𝜋𝑟𝑟, 𝑎𝑎 (𝑎𝑎 ∈ 𝑃𝑃)
𝑘𝑘 𝑘𝑘, 𝑘𝑘 + 1

Win(𝜋𝜋, 𝑎𝑎)
outscript[𝑎𝑎](T, 𝜎𝜎): ver𝐊𝐊 CollectW (T, 𝜎𝜎)
value 𝑎𝑎 : $ 𝑘𝑘 + 1 + 𝑑𝑑
outscript[∀𝑝𝑝 ≠ 𝑎𝑎](T, 𝜎𝜎): verKb CollectW (T, 𝜎𝜎)
value 𝑝𝑝 : $𝑑𝑑

Timeout1 𝜋𝜋, 𝑎𝑎, 𝑏𝑏 (𝜋𝜋𝑟𝑟 ≠ 𝜋𝜋 ∈ Π′, 𝜋𝜋 ⊏ 𝑎𝑎, 𝑏𝑏)
in: Turn1(𝜋𝜋, 𝑎𝑎, 𝑏𝑏)
inscript ∶⊥, sig𝐊𝐊(Turn1TO,𝜋𝜋,𝑎𝑎,𝑏𝑏)
outscript T, 𝜎𝜎 : ver𝐊𝐊(Timeout1Win,𝜋𝜋,𝑎𝑎,𝑏𝑏) T, 𝜎𝜎
value: $(𝑘𝑘 + 1)

𝜏𝜏𝐼𝐼𝐼𝐼𝑖𝑖𝐼𝐼 + 𝐿𝐿 − 𝜋𝜋 − 1 𝜏𝜏𝑅𝑅𝑅𝑅𝑅𝑅𝐼𝐼𝑅𝑅 + 2𝜏𝜏𝐿𝐿𝐿𝐿𝑅𝑅𝐿𝐿𝐿𝐿𝑟𝑟
outscript T, 𝜎𝜎 : ver𝐊𝐊(Timeout1Lose,𝜋𝜋,𝑎𝑎,𝑏𝑏) T, 𝜎𝜎
value: $(𝑘𝑘 − 1 − 𝑖𝑖 + 𝑑𝑑 2 + 𝑖𝑖 )

𝜏𝜏𝐼𝐼𝐼𝐼𝑖𝑖𝐼𝐼 + 𝐿𝐿 − 𝜋𝜋 − 1 𝜏𝜏𝑅𝑅𝑅𝑅𝑅𝑅𝐼𝐼𝑅𝑅 + 2𝜏𝜏𝐿𝐿𝐿𝐿𝑅𝑅𝐿𝐿𝐿𝐿𝑟𝑟

outscript[∀𝑝𝑝 ≠ 𝑎𝑎](T, 𝜎𝜎): ver𝐾𝐾𝑝𝑝 CollectL (T, 𝜎𝜎)
value 𝑝𝑝 : $𝑑𝑑

𝜏𝜏𝐼𝐼𝐼𝐼𝑖𝑖𝐼𝐼 + 𝐿𝐿 − 𝜋𝜋 𝜏𝜏𝑅𝑅𝑅𝑅𝑅𝑅𝐼𝐼𝑅𝑅 + 𝜏𝜏𝐿𝐿𝐿𝐿𝑅𝑅𝐿𝐿𝐿𝐿𝑟𝑟

Fig. 4. Transaction templates for our (k, k + 1)-lottery protocol. Let πi denote i-th
match of the protocol. We omit Win and Init descriptions since they are almost the
same in Fig. 3. The differences from Fig. 3 are just changes of the values $(1 + d) to
$(k + d).
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Theorem 1 Our (1, n)-lottery protocol is secure and constant deposit.

Proof (Sketch). We prove that our protocol fulfills the definition 1. In the case of
C = ∅, it is obvious from Lemma 1. If an adversary deviates from the procedure
or aborts at some step in the initialization phase, players terminate the protocol.
In this case, all honest players do not lose money since no money transfers occur.
Thus, we suppose that the initialization phase completes correctly. Below, we
discuss two cases in the tournament execution phase, (i) an adversary rejects to
reveal its secrets and (ii) an adversary applies the transaction insertion attack,
described in Section 5.3.

In the case of (i), the biased coin-tossing protocol guarantees that the player
who did not reveal the secret is treated as a loser. Thus, no honest player is lost
nevertheless an adversary refuses to disclose its secret in any matches.

In the case of (ii), let us consider the case where an adversary applies the
transaction insertion attack to a player p at match π. The player p obtains
payoff $(vπp +d−1) by CollectOrphanWin at the end of the protocol, as described
Section 5.3. Note that, in this case, the player p does not reveal his/her secret
corresponding to match π. Furthermore, at the beginning of the match, we can
express the expected payoff of p as follows

vπp
vπr
p

× $(n− 1) + (1−
vπp
vπr
p

)× $(−1) = $(vπp − 1) (3)

The inequality vπp + d − 1 > vπp − 1 implies that E(Φ(p, st0, σA)) > 0 if d > 0.
Also, this property holds for an arbitrary positive integer d, our protocol satisfies
constant-deposit. From the above, (1, n)-lottery protocol is secure. ⊓⊔

6 (k, n)-Lottery Protocol with Constant Deposits

This section shows our (k, n)-lottery protocol for arbitrary k and n and (k, k+1)-
lottery protocol for arbitrary k and k + 1. We compose a (k, n)-lottery protocol
from a composition of (k, k + 1)-lottery protocols as follows:

First n parties run (n − 1, n)-lottery and determine one loser. Thereafter,
the remaining n − 1 winners run (n − 2, n − 1)-lottery and further determine
one loser. Parties repeat the similar process until removing n − k players, i.e.,
resulting in k winners.

6.1 Building Block: Modified Biased Coin-Tossing Protocol

We adopt the single-elimination tournament as described in Lemma 2 to con-
struct a (k, k+1)-lottery protocol. That is, it is a tournament where the winner
of each match becomes the champion of (k, k + 1)-lottery, and the loser moves
on to the next match. Protocol 1 is insufficient to implement such a tournament
since it does not enable the loser to proceed to the next match. Hence, we here
modify the protocol to resolve this problem.

Session 5 - 3 The 26th Annual International Conference on Information Security and Cryptology

ICISC 2023 309



16 S. Uchizono et al.

Protocol 2 Modified Biased Coin-Tossing ΠWL
a,b (sa, sb, va, vb)

Setup:
1: The initialization phase was successfully completed, and Lose(π, a) and Win(π, b)

have been put already on the ledger. Players a and b hold secrets sπa and sπb ,
respectively. Let τ be the round of the beginning of the protocol.

Procedure:
2: One of the players puts Turn1(π, a, b) on the ledger.
3: a writes sπa on the input script of Turn2(π, a, b), and put the transaction on the

ledger.
4: if Turn2(π, a, b) does not appear within τ + 2τLedger then
5: One of the players puts Timeout1(π, a, b) on the ledger.
6: One of the players puts Win(π, b) and Lose(π, a) on the ledger.
7: b computes w = Winner(sa, sb, va, vb)
8: if w = a then
9: b puts Win(π, a) and Lose(π, b) on the ledger.
10: if w = b then
11: b puts Win(π, b) and Lose(π, a) on the ledger.
12: if Win(π, x ∈ {a, b}) does not appear within τ + 4τLedger then
13: One of the players puts Timeout2Win(π, a, b) into the ledger.
14: One of the players puts Win(π, a) on the ledger.
15: if Lose(π, x ∈ {a, b}) does not appear within τ + 4τLedger then
16: One of the players puts Timeout2Lose(π, a, b) into the ledger.
17: One of the players puts Lose(π, a) on the ledger.

Turn2(𝜋𝜋𝑖𝑖, 𝑎𝑎, 𝑏𝑏)
in: Turn1
inscript: 𝑠𝑠𝑎𝑎

𝜋𝜋𝑖𝑖 , sig𝐊𝐊(Turn1,𝜋𝜋𝑖𝑖,𝑎𝑎, 𝑏𝑏)
outscript T, 𝑠𝑠𝑎𝑎, 𝑠𝑠𝑏𝑏, 𝜎𝜎 ∶

{𝐻𝐻 𝑠𝑠𝑎𝑎 = ℎ𝑎𝑎
𝜋𝜋𝑖𝑖 ∧ 𝐻𝐻 𝑠𝑠𝑏𝑏 = ℎ𝑏𝑏

𝜋𝜋𝑖𝑖

∧ (𝑎𝑎 = Winner 𝑠𝑠𝑎𝑎, 𝑠𝑠𝑏𝑏, 𝑣𝑣𝑎𝑎, 𝑣𝑣𝑏𝑏 ∧ ver𝐊𝐊 Turn2,𝜋𝜋𝑖𝑖,𝑎𝑎 T, 𝜎𝜎 )
∨ (𝑏𝑏 = Winner 𝑠𝑠𝑎𝑎, 𝑠𝑠𝑏𝑏, 𝑣𝑣𝑎𝑎, 𝑣𝑣𝑏𝑏 ∧ ver𝐊𝐊 Turn2,𝜋𝜋𝑖𝑖,𝑏𝑏 T, 𝜎𝜎 )

} ∨ ver𝐊𝐊 Turn2TOWin,𝜋𝜋𝑖𝑖,𝑎𝑎,𝑏𝑏 T, 𝜎𝜎
value: $(𝑘𝑘 + 1)

outscript T, 𝑠𝑠𝑎𝑎, 𝑠𝑠𝑏𝑏, 𝜎𝜎 ∶
{𝐻𝐻 𝑠𝑠𝑎𝑎 = ℎ𝑎𝑎

𝜋𝜋𝑖𝑖 ∧ 𝐻𝐻 𝑠𝑠𝑏𝑏 = ℎ𝑏𝑏
𝜋𝜋𝑖𝑖

∧ (𝑎𝑎 = Loser 𝑠𝑠𝑎𝑎, 𝑠𝑠𝑏𝑏, 𝑣𝑣𝑎𝑎, 𝑣𝑣𝑏𝑏 ∧ ver𝐊𝐊 Turn2,𝜋𝜋𝑖𝑖,𝑎𝑎 T, 𝜎𝜎 )
∨ (𝑏𝑏 = Loser 𝑠𝑠𝑎𝑎, 𝑠𝑠𝑏𝑏, 𝑣𝑣𝑎𝑎, 𝑣𝑣𝑏𝑏 ∧ ver𝐊𝐊 Turn2,𝜋𝜋𝑖𝑖,𝑏𝑏 T, 𝜎𝜎 )

} ∨ ver𝐊𝐊 Turn2TOLose,𝜋𝜋𝑖𝑖,𝑎𝑎,𝑏𝑏 T, 𝜎𝜎
value: $(𝑘𝑘 − 1 − 𝑖𝑖 + 𝑑𝑑 2 + 𝑖𝑖 )

Turn1(𝜋𝜋𝑖𝑖, 𝑎𝑎 = 𝑙𝑙𝑖𝑖−1, 𝑏𝑏 = 𝑝𝑝𝑖𝑖+1)
in: Lose(𝑎𝑎)
inscript ∶ sig𝐊𝐊(Lose,𝜋𝜋𝑎𝑎,𝑎𝑎)
in:Win(𝑏𝑏)
inscript ∶ sig𝐊𝐊(Win,𝜋𝜋𝑏𝑏,𝑏𝑏)

outscript T, 𝑠𝑠𝑎𝑎, 𝜎𝜎 ∶
( 𝐻𝐻 𝑠𝑠𝑎𝑎 = ℎ𝑎𝑎

𝜋𝜋𝑖𝑖 ∧ ver𝐊𝐊 Turn1,𝜋𝜋𝑖𝑖,𝑎𝑎 T, 𝜎𝜎 )
∨ ver𝐊𝐊 Turn1TO,𝜋𝜋𝑖𝑖,𝑎𝑎 T, 𝜎𝜎
value: $(2𝑘𝑘 − 𝑖𝑖 + 𝑑𝑑(2 + 𝑖𝑖))

Lose(𝜋𝜋𝑖𝑖, 𝑎𝑎)
in ∶ Turn2
inscript ∶ 𝑠𝑠𝑎𝑎

𝜋𝜋𝑖𝑖 , 𝑠𝑠𝑏𝑏
𝜋𝜋𝑖𝑖, sig𝐊𝐊(Turn2,𝜋𝜋𝑖𝑖,𝑎𝑎)

outscript T, 𝜎𝜎 : ver𝐊𝐊 Lose,𝜋𝜋𝑖𝑖,𝑎𝑎 T, 𝜎𝜎
∨ ver𝐊𝐊 LoseTO,𝜋𝜋𝑖𝑖,𝑎𝑎 T, 𝜎𝜎

value: $(𝑘𝑘 − 1 − 𝑖𝑖 + 𝑑𝑑(2 + 𝑖𝑖))

Win(𝜋𝜋𝑖𝑖, 𝑎𝑎)
in: Turn2
inscript ∶ 𝑠𝑠𝑎𝑎

𝜋𝜋𝑖𝑖 , 𝑠𝑠𝑏𝑏
𝜋𝜋𝑖𝑖, sig𝐊𝐊(Turn2,𝜋𝜋𝑖𝑖,𝑎𝑎)

outscript T, 𝜎𝜎 : verK𝑎𝑎 CollectW T, 𝜎𝜎
value: $(𝑘𝑘 + 1)

Lose(𝜋𝜋𝑖𝑖, 𝑏𝑏)
in ∶ Turn2
inscript ∶ 𝑠𝑠𝑎𝑎

𝜋𝜋𝑖𝑖 , 𝑠𝑠𝑏𝑏
𝜋𝜋𝑖𝑖, sig𝐊𝐊(Turn2,𝜋𝜋𝑖𝑖,𝑏𝑏)

outscript T, 𝜎𝜎 : ver𝐊𝐊 Lose,𝜋𝜋𝑖𝑖,𝑏𝑏 T, 𝜎𝜎
∨ ver𝐊𝐊 LoseTO,𝜋𝜋𝑖𝑖,𝑏𝑏 T, 𝜎𝜎

value: $(𝑘𝑘 − 1 − 𝑖𝑖 + 𝑑𝑑(2 + 𝑖𝑖)

Win(𝜋𝜋𝑖𝑖, 𝑏𝑏)
in: Turn2
inscript ∶ 𝑠𝑠𝑎𝑎

𝜋𝜋𝑖𝑖 , 𝑠𝑠𝑏𝑏
𝜋𝜋𝑖𝑖 , sig𝐊𝐊(Turn2,𝜋𝜋𝑖𝑖,𝑏𝑏)

outscript T, 𝜎𝜎 : verK𝑎𝑎 CollectW T, 𝜎𝜎
value: $(𝑘𝑘 + 1)

$(𝑘𝑘 − 1 − 𝑖𝑖 + 𝑑𝑑(2 + 𝑖𝑖))

$(2𝑘𝑘 − 𝑖𝑖 + 𝑑𝑑(2 + 𝑖𝑖))

$(𝑘𝑘 + 1)

Fig. 5. Graphical description of modified biased coin-tossing (for match πi). We denote
with πa and πb child nodes of πi. Note that Win and Lose redeemed by Turn1 are
omitted.
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Lose(𝜋𝜋𝑎𝑎, 𝑎𝑎 = 𝑙𝑙𝑘𝑘−2)
in ∶ Turn2
inscript ∶ 𝑠𝑠𝑎𝑎

𝜋𝜋𝑎𝑎, 𝑠𝑠𝑐𝑐
𝜋𝜋𝑎𝑎, sig𝐊𝐊(Turn2,𝜋𝜋𝑎𝑎,𝑎𝑎)

outscript T, 𝜎𝜎 : verK Lose,𝜋𝜋𝑎𝑎,𝑎𝑎 T, 𝜎𝜎
∨ ver𝐊𝐊 LoseTO,𝜋𝜋𝑎𝑎,𝑎𝑎 T, 𝜎𝜎

value: $(1 + 𝑘𝑘𝑘𝑘)

Win(𝜋𝜋𝑏𝑏, 𝑏𝑏 = 𝑝𝑝𝑘𝑘)
in: Init(𝑏𝑏)
inscript ∶ sig𝐊𝐊(Init,𝑏𝑏)
outscript T, 𝜎𝜎 : ver𝐊𝐊 Win,𝜋𝜋𝑏𝑏,𝑏𝑏 T, 𝜎𝜎
value: $(𝑘𝑘 + 𝑘𝑘)

Turn1(𝜋𝜋𝑟𝑟, 𝑎𝑎, 𝑏𝑏)
in: Lose(𝑎𝑎)
inscript ∶ sig𝐊𝐊(Lose,𝜋𝜋𝑎𝑎,𝑎𝑎)
in:Win(𝑏𝑏)
inscript ∶ sig𝐊𝐊(Win,𝜋𝜋𝑏𝑏,𝑏𝑏)

outscript T, 𝑠𝑠𝑎𝑎, 𝜎𝜎 ∶
( 𝐻𝐻 𝑠𝑠𝑎𝑎 = ℎ𝑎𝑎𝜋𝜋 ∧ ver𝐊𝐊 Turn1,𝜋𝜋𝑟𝑟,𝑎𝑎 T, 𝜎𝜎 )
∨ verK Turn1TO,𝜋𝜋𝑟𝑟,𝑎𝑎 T, 𝜎𝜎
value: $(𝑘𝑘 + 1)(𝑘𝑘 + 1)

Turn2(𝜋𝜋𝑟𝑟, 𝑎𝑎, 𝑏𝑏)
in: Turn1
inscript: 𝑠𝑠𝑎𝑎𝜋𝜋𝑟𝑟, sig𝐊𝐊(Turn1,𝜋𝜋𝑟𝑟,𝑎𝑎,𝑏𝑏)
outscript T, 𝑠𝑠𝑎𝑎, 𝑠𝑠𝑏𝑏, 𝜎𝜎 ∶

( 𝐻𝐻 𝑠𝑠𝑎𝑎 = ℎ𝑎𝑎𝜋𝜋𝑟𝑟 ∧ 𝐻𝐻 𝑠𝑠𝑏𝑏 = ℎ𝑏𝑏
𝜋𝜋𝑟𝑟

∧ ver𝐊𝐊 Turn2,𝜋𝜋𝑟𝑟,winner(𝑠𝑠𝑎𝑎,𝑠𝑠𝑏𝑏,𝑣𝑣𝑎𝑎,𝑣𝑣𝑏𝑏 ) T, 𝜎𝜎 )
∨ ver𝐊𝐊 Turn2TO,𝜋𝜋𝑟𝑟,𝑎𝑎,𝑏𝑏 T, 𝜎𝜎
value: $(𝑘𝑘 + 1)(𝑘𝑘 + 1)

Win(𝜋𝜋𝑟𝑟, 𝑎𝑎)
in ∶ Turn2
inscript ∶ 𝑠𝑠𝑎𝑎𝜋𝜋𝑟𝑟, 𝑠𝑠𝑏𝑏

𝜋𝜋𝑟𝑟, sig𝐊𝐊(Turn2,𝜋𝜋𝑟𝑟,𝑎𝑎)
outscript T, 𝜎𝜎 : verK𝑎𝑎 CollectW T, 𝜎𝜎
value: $(𝑘𝑘 + 1 + 𝑘𝑘)

$(1 + 𝑘𝑘𝑘𝑘)

$ (𝑘𝑘 + 𝑘𝑘)

$ (𝑘𝑘 + 1)(𝑘𝑘 + 1)

$(𝑘𝑘 + 1)(𝑘𝑘 + 1)

Win(𝜋𝜋𝑟𝑟, 𝑏𝑏)
in ∶ Turn2
inscript ∶ 𝑠𝑠𝑎𝑎𝜋𝜋𝑟𝑟, 𝑠𝑠𝑏𝑏

𝜋𝜋𝑟𝑟, sig𝐊𝐊(Turn2,𝜋𝜋𝑟𝑟, 𝑏𝑏)
outscript T, 𝜎𝜎 : verK𝑏𝑏 CollectW T, 𝜎𝜎
value: $(𝑘𝑘 + 1 + 𝑘𝑘)

outscript[∀𝑝𝑝 ≠ 𝑎𝑎](T, 𝜎𝜎): verK𝑏𝑏 CollectW (T, 𝜎𝜎)
value: $𝑘𝑘

outscript[∀𝑝𝑝 ≠ 𝑎𝑎](T, 𝜎𝜎): verK𝑎𝑎 CollectW (T, 𝜎𝜎)
value: $𝑘𝑘

Fig. 6. Graphical description of biased coin-tossing (for match πr) for the final match
of (k, k + 1)-lottery.

See Protocol 2 and Fig. 5 that show the modified protocol. The Loser func-
tion described in the Lose transaction returns the inverse of Winner function,
i.e., it specifies the loser. That is, unlike Protocol 5.1, the loser also puts Lose
transaction of which input is Turn2, and receives coins used in the next match.
Moreover, since Turn2 has two output scripts, we set the timeouts for each of
Win and Lose by preparing Timeout2Win and Timeout2Lose transactions. If Win
or Lose is not published within the time limit, it is dealt with by publishing
Timeout2Win or Timeout2Lose respectively. Fig. 7 shows flows of procedures
when a timeout occurs.

6.2 Our Construction of (k, k + 1)-Lottery Protocol

Let the bet mount be $k for each player in this section.

The biased probability of each match in (k, k + 1)-Lottery. Suppose a
match between pi+1 and li−1 in i-th match πi, where li−1 is the loser of (i− 1)-
th match. From Lemma 2, for i = 1 . . . k − 1, the winning probability of pi+1 in
πi is set as i/(i+ 1).

Based on the biased probability, our protocol proceeds as follows.

Precondition: for all players, the ledger contains a transaction Betp with value
$(1 + d), and redeemable with key Kp(Betp).

Initialization phase:
1. For all player p ∈ P , p generates the following secret keys locally.
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– For all π such that |π| = L:
Kp(Betp),Kp(CollectW),Kp(CollectL),Kp(Init, a)

– For all π such that 1 ≤ |π| ≤ L:
Kp(Win, π, a),Kp(WinTo, π, a),Kp(Lose, π, a),Kp(LoseTo, π, a)

– For all π such that 1 ≤ |π| < L:
Kp(Turn1To, π, a, b),Kp(Turn1, π, a, b),
Kp(Turn2ToWin, π, a, b),Kp(Turn2ToLose, π, a, b),Kp(Turn2, π, a),
Kp(Timeout1Win, π, a, b),Kp(Timeout1Lose, π, a, b),
Kp(Timeout2Win, π, a, b),Kp(Timeout2Lose, π, a, b)

2. For all player p ∈ P , p generates secrets s
πp
p for each πp, such that

(|πp| < L), and broadcasts to the other players his/her public keys and
hashes h

πp
p = H(s

πp
p ).

3. If h
πp
p = h

πp
′

p′ for some (p, πp) ̸= (p′, πp
′), the players abort.

4. Parties agree the time τInit large enough to fall after the initialization
phase. (This step is necessary to determine lockTime values built in the
subsequent steps.)

5. Each player signs all the transaction templates in Fig. 3 and 4 except
for Init and broadcasts the signatures.

6. Each player verifies the signatures received by the others. some signature
is not valid or missing, the player aborts the protocol.

7. Each player signs Init, and sends the signature to the first player.
8. The first player puts the (signed) transaction Init on the ledger.
9. If Init does not appear within one τLedger , then each p redeems Betp and

aborts.
10. The players put the signed transactions Win(p, p) on the ledger, for all

p ∈ P .
Tournament execution phase: For levels i = k − 1 . . . 2, players proceed as

follows: Run ΠWL
a,b (s

πi
a , sπi

b , vπi
a , vπi

b ) for each π, such that |π| = i− 1.

For level i = 1, players proceed as follows: Run ΠW
a,b(s

πi
a , sπi

b , vπi
a , vπi

b ). Then,
vπa , v

π
b denote the biased probability determined in the manner shown in the

previous subsection.
Garbage collection phase: If there is some unredeemed Win(π, p) such that

π is a leaf on the ledger, players put CollectOrphanWin(π, p) on the ledger.
Similarly, if there is some unredeemed Lose(π, p) on the ledger, players put
CollectOrphanLose(π, p) on the ledger.

At the end of the tournament execution phases, all champions can freely redeem
Win(π, a) orWin(πr, a) as rewards. Also,Win(πr, a) guarantees that every honest
party can collect their deposits. As in Protocol 5.1, the number of transactions
prepared at step 5 is O(n2).

Theorem 2 Our (k, k + 1)-lottery protocol is secure and constant deposit.

Proof (Sketch). We prove that our protocol fulfills Definition 2. In the case of
C = ∅, it is obvious from Theorem 2. As in the proof of Theorem 1, we suppose
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0 1𝜏𝜏𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 2𝜏𝜏𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 3𝜏𝜏𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 4𝜏𝜏𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 5𝜏𝜏𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 6𝜏𝜏𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

Lose(𝜋𝜋𝑖𝑖−1, 𝑙𝑙𝑖𝑖−1)

Win(𝜋𝜋𝑖𝑖−1, 𝑝𝑝𝑖𝑖+1)
Turn1(𝜋𝜋𝑖𝑖,

𝑙𝑙𝑖𝑖−1, 𝑝𝑝𝑖𝑖+1)
Turn2(𝜋𝜋𝑖𝑖,

𝑙𝑙𝑖𝑖−1, 𝑝𝑝𝑖𝑖+1)
Win 𝜋𝜋𝑖𝑖, 𝑝𝑝𝑖𝑖−1

Win 𝜋𝜋𝑖𝑖, 𝑝𝑝𝑖𝑖+1
Lose 𝜋𝜋𝑖𝑖, 𝑙𝑙𝑖𝑖−1

Timeout1(
)

𝜋𝜋𝑖𝑖,
𝑝𝑝𝑖𝑖+1, 𝑙𝑙𝑖𝑖−1

Win 𝜋𝜋𝑖𝑖, 𝑙𝑙𝑖𝑖−1
Timeout2Win(

)
𝜋𝜋𝑖𝑖,

𝑝𝑝𝑖𝑖+1, 𝑙𝑙𝑖𝑖−1

Timeout2Lose(
)
𝜋𝜋𝑖𝑖,

𝑝𝑝𝑖𝑖+1, 𝑙𝑙𝑖𝑖−1
Lose 𝜋𝜋𝑖𝑖, 𝑝𝑝𝑖𝑖+1

Lose 𝜋𝜋𝑖𝑖, 𝑙𝑙𝑖𝑖−1

Fig. 7. Graph of the transactions in a tournament round. An arrow from transaction
T to T ′ means that T redeems T ′. Thick arrows mean any player can redeem; dashed
edges mean any player can redeem, but only after a timeout. Thin arrows mean that
only the player who knows the secret on the label can redeem it. τRound := 6τLedger

refers to the number of rounds in each match.

that the initialization phase completes correctly and focuses on the tournament
execution phase.

Below, we discuss two cases in the tournament execution phase: (i) an ad-
versary rejects to reveal its secrets, and (ii) an adversary applies the transaction
insertion attack, described in Section 5.3. The proof of case (i) is omitted since
the same argument holds for Theorem 1. For case (ii), we consider further di-
viding it into the following two cases: (a) an adversary applies the transaction
insertion attack to player pi+1 at match πi, where πi is the first match for pi+1,
(b) an adversary applies the attack to player li+1 at match πi, where li+1 is the
loser of the previous match.

Then, the player pi+1 obtains payoff $(k+d) at the end of the protocol. Also,
player li−1 at match πi obtains payoff $(1 − i + d) by CollectOrphanWin at the
end of the protocol. Thus, to confirm that the honest party does not lose by the
attack, it requires that the obtained payoff is more than the expected payoff at
match πi. In the case of (a), for any πi, the expected payoff of player pi is 0
because pi because it is fair to the players from Theorem 2.

In the case of (b), The expected payoff of honest li−1 is as follows.

k + 1− i

k + 1
× $1 + (

i

k + 1
)× $(−k) = $(1− i) (4)

From this Eq.(4), we can see E(Φ(p, st0, σA))−E(Φ(p, st0,⊥)) > 0 since 1− i+
d > 1− i for i ∈ [k] if d > 0. It implies that the li−1’s expected payoff when the
adversary applies the transaction insertion attack is larger than their expected
payoff when all parties behave honestly.

Next, we confirm that every subset has the same winning probability for
all S = {s1, . . . , sk} ⊂ P . It is obvious if all honest parties behave honestly
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since one loser is determined uniformly at random. To change the probability,
adversaries can make two attacks: rejections of their secret or the transaction
insertion attack. In both cases, since the expected payoff of the adversary is
negative, the protocol fulfills the requirement. This (k, k+ 1)-lottery protocol is
secure from the above. ⊓⊔

6.3 Construction of (k, n)-Lottery from (k, k + 1)-Lottery

Let a bet amount of each party be α = n!/k!. There are two technical challenges
to realizing a secure (k, n)-lottery based on this strategy. The first one is to con-
nect each (k′, k′ + 1)-lottery protocol such that malicious parties cannot escape
the protocol in the middle. This issue is derived from the fact that if parties
run several lottery protocols sequentially, corrupted players can abort without
losing at the initialization process of the next lottery. To circumvent this issue,
we aggregate the initialization processes of all protocols in the first (n − 1, n)-
lottery protocol. That is, players prepare all of the secrets, signing (verification)
keys, and transactions used in the entire (k, n)-lottery in the initialization of
(n − 1, n)-lottery protocol. By this modification, parties can skip all initializa-
tion phases after the completion of (n − 1, n)-lottery protocol. Note that the
number of transactions created in the initialization phase is O(n3), which can
be derived from the number of possible match combinations.

Further, we also slightly change the tournament execution phase, except for
the last (k, k+ 1) lottery protocol. More concretely, we modify each match pro-
tocol, i.e., Fig. 5 and 6, such that Win transactions connect two tournament
execution phases. See Appendix B for the modification details.

As the second challenge, it is necessary to ensure that (k, n)-lottery composed
of sequential executions of (n− j, n− j +1)-lottery for j ∈ [n− k] is indeed fair.
We present the security proof of our (k, n)-lottery protocol below.

Theorem 3 Our (k, n)-lottery protocol is secure and constant deposit.

Proof (Sketch). We prove that our (k, n)-lottery protocol fulfills Definition 2.

As in the proof of our (k, k + 1)-lottery protocol, we focus on the payoff
obtained by a player who is affected by the transaction insertion attack at πj

i ,

where πj
i is i-th match of j-th (n − j, n − j + 1)-lottery protocol. We denote

by wj
i and lji the winner and loser of match πj

i , respectively. As in the proof of
Theorem 2, we consider further dividing case (ii) into the following two cases:
(a) an adversary applies the transaction insertion attack to player lji−1 at match

πi, (b) the attack to player wj−1
i+1 at match πj

i . In the case of (b), the player lji−1

obtains payoff $((n− 1)!/{(k− 1)!(n− j+1)(n− j)}× (nj−ni− j2 + j)+ d) at
the end of the protocol. Thus, to confirm that the honest party does not lose by
the attack, it requires that the obtained payoff is more than the expected payoff
at match πj

i . The expected payoff of honest lji−1 is as follows.
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(n− j + 1− i)k

(n− j + 1)(n− j)
× $

(n− 1)!(n− k)

k!
+ (1− (n− j + 1− i)k

(n− j + 1)(n− j)
)× $(− (n− 1)!

k!
)

= $
(n− 1)!

(k − 1)!(n− j + 1)(n− j)
(nj − ni− j2 + j).

Note that ((n− j+1− i)k)/((n− j+1)(n− j)) is the winning probability of
lji−1. From then on, we could prove similar to the proof of our (k, k + 1)-lottery
protocol. A similar calculation in the case of (a) shows no loss. Hence, our (k, n)-
lottery is secure. ⊓⊔
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A Proofs of Lemmas

Proof of Lemma 1: Let πl∈[L] such that |πl| = l be the l-th match for player

p. Suppose vlp/v
l−1
p be the probability that p wins at πl. Then, the probability

that p wins the tournament holds:

1

vlp
×

vlp

vl−1
p

× · · · ×
v1p
v0p

=
1

n0
p

=
1

N
.
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This is also true for any player. ⊓⊔

Proof of Lemma 2: Let πi such that |πi| = i ∈ [k] be the i-th match for player
pi+1 and li−1, where li−1 is the loser of (i− 1)-th match The probability that p
wins the tournament holds:

1− i

i+ 1
× i+ 1

i+ 2
× · · · × k

k + 1
=

k

k + 1
.

This is also true for any player. Moreover, the probability of winning the parties
in S simultaneously equals the probability of losing p /∈ S. Thus, the probability
of winning the parties in S simultaneously is equivalent for any S ⊂ P such that
|S| = k. ⊓⊔

Proof of Lemma 3: For any j ∈ [k], the winning probability in (n−j, n−j+1)-
lottery can be expressed by (n − j − 1)/(n − j), as shown in Lemma 2. Since
the probability of each (k′, k′ + 1)-lottery is independent, the probability that a
player wins the entire (k, n)-lottery can be written as:

n− 1

n
× n− 2

n− 1
× · · · × k

k + 1
=

k

n
.

Moreover, since the losers are chosen uniformly at random in each (k′, k′ + 1)-
lottery, it is obvious that the winning probability of any set of k players is
equivalent.

B Transaction Templates for Constructing (k, n)-Lottery

To combine multiple (k, k + 1)-lottery protocols, we modify Win transactions.
See Fig. 8 that shows the point of connection between j-th lottery and (j + 1)-
th lottery protocols. The output scripts of Win(πj , a) in j-th lottery are used
as input of Win(πj+1, a) in (j + 1)-th lottery protocol. Furthermore, Win(πj

r , a)
redistributes $d to Win(π, a) for deposits of the next lottery. With this modifica-
tion, Kp(WinInit, π, a) and Kp(Return, π, a) are added to the key pairs prepared
in the initialization phase.

Session 5 - 3 The 26th Annual International Conference on Information Security and Cryptology

ICISC 2023 317



24 S. Uchizono et al.

Win(𝜋𝜋𝑗𝑗, 𝑎𝑎)
𝑗𝑗 𝑘𝑘, 𝑘𝑘 + 1

outscript[𝑎𝑎](T, 𝜎𝜎): ver𝐊𝐊 WinInit (T, 𝜎𝜎)
value 𝑎𝑎 : $ 𝑘𝑘 − 𝑗𝑗 + 1

in: Timeout1(𝜋𝜋𝑗𝑗, 𝑏𝑏, 𝑎𝑎)
inscript ∶ sig𝐊𝐊 Timeout1Win,𝜋𝜋,𝑏𝑏,𝑎𝑎

in: Timeout2Win(𝜋𝜋𝑗𝑗, 𝑎𝑎, 𝑏𝑏)
inscript ∶ sig𝐊𝐊(Timeout2Win,𝜋𝜋,𝑎𝑎,𝑏𝑏)

in: Turn2(𝜋𝜋𝑗𝑗, 𝑎𝑎, 𝑏𝑏)
inscript ∶ 𝑠𝑠𝑎𝑎, 𝑠𝑠𝑏𝑏, sig𝐊𝐊(Turn2,𝜋𝜋,𝑎𝑎)
in: Turn2(𝜋𝜋𝑗𝑗, 𝑏𝑏, 𝑎𝑎)
inscript ∶ 𝑠𝑠𝑎𝑎, 𝑠𝑠𝑏𝑏, sig𝐊𝐊(Turn2,𝜋𝜋,𝑎𝑎)

Win 𝜋𝜋𝑟𝑟𝑗𝑗, 𝑐𝑐
𝑘𝑘 𝑗𝑗 𝑘𝑘, 𝑘𝑘 + 1

(𝑗𝑗 + 1) 𝑘𝑘, 𝑘𝑘 + 1
Win(𝜋𝜋𝑟𝑟𝑗𝑗, 𝑐𝑐)

outscript T, 𝜎𝜎 ∶ ver𝐊𝐊(Win,𝜋𝜋𝑟𝑟
𝑗𝑗 ,𝑐𝑐) T, 𝜎𝜎

∨ ver𝐊𝐊 WinTO,𝜋𝜋𝑟𝑟
𝑗𝑗,𝑐𝑐 T, 𝜎𝜎

value: $(𝑘𝑘 − 𝑗𝑗 + 1 + 𝑑𝑑)
outscript[∀𝑝𝑝 ≠ 𝑐𝑐](T, 𝜎𝜎): ver𝐊𝐊 Return (T, 𝜎𝜎)
value 𝑝𝑝 : $𝑑𝑑

Win(𝜋𝜋𝑗𝑗+1, 𝑎𝑎)
(𝑗𝑗 + 1) 𝑘𝑘, 𝑘𝑘 + 1

outscript T, 𝜎𝜎 ∶ ver𝐊𝐊(Win,𝜋𝜋𝑗𝑗+1,𝑎𝑎) T, 𝜎𝜎
∨ ver𝐊𝐊 WinTO,𝜋𝜋𝑗𝑗+1,𝑎𝑎 T, 𝜎𝜎

value: $(𝑘𝑘 − 𝑗𝑗 + 1 + 𝑑𝑑)

in:Win 𝜋𝜋, 𝑎𝑎
inscript ∶ sig𝐊𝐊(WinInit,𝜋𝜋𝑗𝑗+1,𝑎𝑎)
in:Win 𝜋𝜋𝑟𝑟, 𝑐𝑐
inscript ∶ sig𝐊𝐊(Return,𝜋𝜋𝑗𝑗+1,𝑐𝑐)

$(𝑘𝑘 − 𝑗𝑗 + 1)

$𝑑𝑑

Fig. 8. Graphical description of the connection between j-th lottery and (j + 1)-th
lottery protocols
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Abstract. Card-based cryptography refers to a secure computation with
physical cards, and the number of cards and shuffles measures the ef-
ficiency of card-based protocols. This paper proposes new card-based
protocols for any Boolean circuits with only a single shuffle. Although
our protocols rely on Yao’s garbled circuit as in previous single-shuffle
card-based protocols, our core construction idea is to encode truth tables
of each Boolean gate with fewer cards than previous works while being
compatible with Yao’s garbled circuit. As a result, we show single-shuffle
card-based protocols with six cards per gate, which are more efficient
than previous single-shuffle card-based protocols.

Keywords: Card-based cryptography · Secure computation · Garbled
circuit.

1 Introduction

1.1 Background and Motivation

Secure computation protocols allow parties to collaboratively compute a func-
tion while keeping each party’s input hidden from the other party. Although
secure computation protocols are usually implemented on computers, card-based
cryptography [3, 4], which is an area focusing on secure computation using phys-
ical cards (without computers), has also been eagerly investigated. Let us give
an example of a secure card-based AND protocol called the five-card trick [3].

Suppose that each of Alice and Bob has two cards, ♣ and ♡ , and a ♡ is placed
face-down on a table. Alice (resp., Bob) puts their cards face-down on the left

side (resp., the right side) of ♡ , following the encoding rule: the order of the

cards is ♣ ♡ if the input is zero; it is ♡ ♣ if the input is one. After shuffling
the five face-down cards without changing the order of the sequence, they face
up the cards. The output of the AND protocol is one if the consecutive three
heart cards appear; it is zero otherwise.
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The major efficiency measures of card-based cryptography are the number of
cards and shuffles. The fewer cards and shuffles card-based protocols are realized,
the easier it is to execute them. In this work, we focus on the implementability
of shuffles; it is unclear how to implement shuffles that yield desired probability
distributions, though various attempts have been made thus far [7, 11, 17, 18, 22,
23, 28, 29]. For this reason, we devote effort to constructing card-based protocols
with the minimum number of shuffles and as few cards as possible.

A well-known approach to constructing card-based protocols for any function
is to realize card-based protocols for a Boolean gate such as AND and XOR since
any function can be realized by combining Boolean gates [4, 12, 15]. Hence, im-
proving card-based protocols for Boolean gates is one of the mainstream research
topics [1, 2, 4–6, 8, 9, 12–14, 19–21, 25, 26]. However, this approach increases the
number of shuffles required for the resulting card-based protocols for any func-
tion (or Boolean circuit) since the number of shuffles depends on the number
of gates consisting of the Boolean circuit. Therefore, we aim to directly propose
card-based protocols for any Boolean circuit consisting of various Boolean gates,
not any Boolean gate, with a single shuffle. Note that, as stated in [24], it is
impossible to realize card-based protocol for any non-trivial function without
shuffles; The lower bound of shuffles required for secure card-based protocols is
one.

1.2 Prior Works

Shinagawa and Nuida [24] showed a single-shuffle card-based protocol for any
n-variable Boolean circuit f : {0, 1}n → {0, 1}m with 24q + 2n cards, where
q is number of gates in the Boolean circuit. Tozawa et al. [27] improved the
Shinagawa–Nuida protocol and reduced the number of cards to 8q+2n without
additional shuffles. Kuzuma et al. [10] focused on a restricted class of Boolean
circuits and showed single-shuffle card-based protocols for an n-variable AND
function with 4n− 2 cards and an n-variable XOR function with 2n cards. Note
that, allowing multiple shuffles, Nishida et al. [16] showed a card-based protocol
with 2n+ 6 cards for any n-variable Boolean circuit f : {0, 1}n → {0, 1}, which
is the most efficient protocol in terms of the number of cards.

1.3 Our Contribution

This paper proposes new single-shuffle card-based protocols based on Yao’s gar-
bled circuits [30]. The core construction idea is to encode truth tables of each
Boolean gate with fewer cards than previous protocols while being compatible
with Yao’s garbled circuit. Unlike previous single-shuffle card-based protocols
such as Shinagawa–Nuida [24] and Tozawa et al. [27], each output of the truth
table is represented by a single card, and we add two more extra cards to make
the truth tables encoded with single cards compatible with Yao’s technique. As
a result, we show two single-shuffle card-based protocols for any Boolean circuit
f : {0, 1}n → {0, 1}m with six cards per gate: One is a non-committed-format
protocol with 2n+6q cards, and the other is a committed-format protocol with
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Table 1. A comparison among protocols with one shuffle for any Boolean circuit. q, n,
and m are the number of gates, bit-length of the input, and bits-length of the output,
respectively.

Format Number of cards Shuffle type

Shinagawa–Nuida [24] committed 24q + 2n uniform closed
Tozawa et al. [27] committed 8q + 2n uniform closed

Our protocol (Section 3.6) non-committed 6q + 2n uniform
Our protocol (Section 3.7) committed 6q + 2(n+m) uniform

2(n+m) + 6q cards, where q is the number of gates in f , and a protocol is said
to be committed if it outputs cards face-down and the output follows the same
encoding rule as the input.

Table 1 shows a comparison among the existing protocols and our protocols.
Since the number of gates q is greater than or equal to the number of the output
gates m, our protocol is more efficient than those of Shinagawa–Nuida [24] and
Tozawa et al. [27] in terms of the number of cards. It should be noted that
our protocols use a uniform shuffle, which is not closed (see Section 2.2 for the
definition), although Shinagawa–Nuida [24] and Tozawa et al. [27] used a uniform
closed shuffle.

1.4 Organization

In Section 2, we introduce basic definitions. In Section 3, we construct our single-
shuffle protocols both in the non-committed-format setting and the committed-
format setting. In Section 4, we conclude our paper.

2 Preliminaries

For an integer k ≥ 1, we denote the k-th symmetric group by Sk. For two per-
mutations π1, π2 ∈ Sk, the composition of them is denoted by π2 ◦ π1. Here,
permutations are applied from right to left, i.e., π2 ◦ π1 ∈ Sk means that per-
mutation π1 is applied and then π2 is applied. For two subsets A,B ⊆ Sk, we
define AB := {πA ◦ πB | πA ∈ A, πB ∈ B}.

2.1 Syntax of Boolean Circuits

A Boolean circuit C is defined by a 6-tuple (n,m, q, L,R,G) where n ≥ 1 is the
number of input wires, m ≥ 1 is the number of output wires, q ≥ 1 is the number
of gates, L and R are functions that specify the left and right wires in each gate,
respectively, and G is a function that specifies the truth table of each gate. The
detailed specification is given in the following.

– The number of wires in C is n + q, where n wires are the input wires
and q wires are the output wires of gates. Each input wire corresponds to
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1, 2, . . . , n, and each output wire of gates corresponds to n+1, n+2, . . . , n+q.
The last m wires n+ q −m+ 1, n+ q −m+ 2, . . . , n+ q correspond to the
output wires of C. A gate g is identified with the output wire of g, i.e., each
gate also corresponds to n+ 1, n+ 2, . . . , n+ q.

– Each gate g has two input wires: the left input wire of g is L(g) and the
right input wire of g is R(g). We assume that L(g) ≤ R(g) < g, i.e., the
input wires L(g), R(g) are smaller than g, and the left wire is smaller than
or equal to the right wire. This restriction prevents the loop of the circuit.

– A wire w, which is not an output wire of C is called the inner wire, i.e., each
inner wire corresponds to 1, 2, . . . , n+ q−m. An inner wire is an input wire
or an input wire of some gate. An inner wire w can be branched, i.e., there
might exist two or more gates having w as its input wire, or some gate can
be taken w as the left and right input wires.

– For an inner wire w, L−1(w) is defined by the set of all gates whose left
input wire is w, i.e., L−1(w) = {g ∈ {n + 1, n + 2, . . . , n + q} | L(g) = w}.
We define R−1(w) in the same way.

– For a gate g, G(g) represent the truth table of g. When g computes a function
f : {0, 1}2 → {0, 1}, G(g) represents a 4-bit binary string defined by

G(g) = (f(0, 0), f(0, 1), f(1, 0), f(1, 1)).

In this paper, for simplicity, we assume that all gates are the NAND gates,
i.e., G(g) = (1, 1, 1, 0) for all gates g. This is based on the fact that any Boolean
function f : {0, 1}n → {0, 1}m can be constructed by only NAND gates. We
note that our protocol can also be applied to a circuit with other gates.

Example of Boolean Circuit. A Boolean circuit C = (3, 1, 3, L,R,G) is given
in Figure 1, where the number of the input wires is n = 3, the number of the
output wires is m = 1, and the number of the gates is q = 3. Each input wire
corresponds to 1, 2, 3 and each gate corresponds to 4, 5, 6. The functions L and
R are defined by L(4) = 1, R(4) = 2, L(5) = 3, R(5) = 4, L(6) = 4 and R(6) = 5.
Then we have L−1(1) = {4}, R−1(1) = ∅, L−1(2) = ∅, R−1(2) = {4}, L−1(3) =
{5}, R−1(3) = ∅, L−1(4) = {6}, R−1(4) = {5}, L−1(5) = ∅ and R−1(5) = {6}.
Since all gates are the NAND gates, G(g) = (1, 1, 1, 0) for all 4 ≤ g ≤ 6.

2.2 Card-based Protocols

In this paper, we use two-colored cards: the front side of a card is either ♣ or

♡ , and the back side is ? . All cards with the same suit are indistinguishable,
and the backs of all cards are also indistinguishable.

In card-based protocols, three operations are used: permutation, shuffle, and
turn. Let k be the number of cards. A permutation operation (perm, π) for π ∈ Sk

is a deterministic operation that rearranges the order of the cards according to
π. A shuffle operation (shuffle, Π,F) for a subset Π ⊆ Sk and a probability
distribution F over Π is a probabilistic operation that randomly rearranges the
order of the cards according to a permutation π ∈ Π drawn from F . It is assumed
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Fig. 1. An example of Boolean circuits

that no player can know which permutation π is actually drawn from F . A turn
operation (turn, T ) for T ⊆ {1, 2, . . . , k} is a deterministic operation that turns
over cards in T from face-down to face-up or from face-up to face-down.

Let S be a shuffle (shuffle, Π,F). If F is a uniform distribution, S is called
a uniform shuffle. If Π is a subgroup of Sk, S is called a closed shuffle. If S is
uniform and closed, it is called a uniform closed shuffle.

2.3 Card-based Garbled Circuits

Shinagawa–Nuida [24] developed a card-based garbled circuit, which is a card-
based protocol based on garbled circuits. Tozawa et al. [27] improved the card-
based garbled circuit in terms of the number of cards. A card-based garbled
circuit consists of three phases: initialization phase, garbling phase, and evalua-
tion phase as follows:

Initialization phase: Given a Boolean circuit f : {0, 1}n → {0, 1}m and a
sequence of input commitments to x1, x2, . . . , xn, it outputs a sequence of
face-down cards I, which we call an initial state. The objective of this phase
is to encode the circuit and its input into a sequence of face-down cards.

Garbling phase: Given an initial state I, it outputs two sequences of face-
down cards C̃ and X̃, which we call a garbled circuit and a garbled input,
respectively. The objective of this phase is to randomize the inputs and the
intermediate values of the circuit without changing the functionality of the
circuit.

Evaluation phase: Given a garbled circuit C̃ and a garbled input X̃, it outputs
the output value or a commitment of the output value. The purpose of this
phase is to obtain the output value by evaluating each gate of the garbled
circuit C̃ with the garbled input X̃.
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3 Our Single-Shuffle Protocols

3.1 Idea of Our Protocol

In many card-based protocols , 0 and 1 are represented by ♡ ♣ and ♣ ♡ ,
respectively, and [27] succeeded in realizing garbled circuits with eight cards
that by encoding every 2× 2 truth table with eight cards.

Here, we briefly describe our idea for realizing the garbled circuits with six
cards that consist of three hearts and three clubs. For instance, we represent
the truth table of the NAND and AND gates as follows, where 0 and 1 are
represented by ♣ and ♡ , respectively.

NAND 0 1

0 ♡ ♡

1 ♡ ♣

AND 0 1

0 ♣ ♣

1 ♣ ♡

Facing down cards in the above truth table conceals all values in the truth
table, but the negation of them is not possible due to the encoding rule with
one card that prevents us from converting the NAND gate to the AND gate 5.
To overcome this obstacle, we append two ♣ to the NAND truth table as the
third column and permute it. Then we have the following and by deleting the
third column, we obtain the truth table of AND in a committed format.

♡ ♡ ♣

♡ ♣ ♣
permutation−−−−−−−−−−→

♣ ♣ ♡

♣ ♡ ♡

3.2 Preliminaries for Our Protocol

In our protocol, each input wire is represented by two cards ♣ ♡ and each gate

is represented by six cards ♣ ♣ ♣ ♡ ♡ ♡ . Since we have n input wires and q
gates, we use 2n+ 6q cards in total.

To clarify the position of the cards, we define 2n + 6q indices: Pi[a] (1 ≤
i ≤ n and a ∈ {0, 1}) and Pg[b][c] (n + 1 ≤ g ≤ n + q, b ∈ {0, 1}, and c ∈
{0, 1, 2}). Two indices Pi[0], Pi[1] correspond to the input wire i and six indices
Pg[0][0], Pg[1][0], Pg[0][1], Pg[1][1], Pg[0][2], Pg[1][2] correspond to the gate g. We
assume that all indices are distinct. We give an example of distinct 2n + 6q
indices in the following:

– Pi[a] = 2i− 1 + a for 1 ≤ i ≤ n and a ∈ {0, 1};
– Pg[b][c] = 2n+ 1 + 6(g − (n+ 1)) + 3b+ c for n+ 1 ≤ g ≤ n+ q, b ∈ {0, 1},

and c ∈ {0, 1, 2}.

The above indices are consecutive from 1 to 2n+ 6q.

5 The reason utilizing eight cards in [27] comes from this point.
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3.3 Initialization Phase

Given a Boolean circuit f : {0, 1}n → {0, 1}m and a sequence of input commit-
ments to x1, x2, . . . , xn, the initialization phase makes a sequence of face-down
cards on the indices of the position Pi[a] and Pg[b][c].

First, the sequence of input commitments is arranged as follows:

P1[0]

?
P1[1]

?︸ ︷︷ ︸
x1

P2[0]

?
P2[1]

?︸ ︷︷ ︸
x2

· · ·
Pn[0]

?
Pn[1]

?︸ ︷︷ ︸
xn

.

For each gate g ∈ {n + 1, n + 2, . . . , n + q}, we identify the indices Pg[a][b]
(a ∈ {0, 1} and b ∈ {0, 1, 2}) with the cells of a 2× 3 matrix as follows:

Pg[0][0] Pg[0][1] Pg[0][2]

Pg[1][0] Pg[1][1] Pg[1][2]

Then, we place six cards ♣ ♣ ♣ ♡ ♡ ♡ as follows:

♡ ♡ ♣

♡ ♣ ♣

We note that the above matrix represents the NAND gate: for two inputs a, b ∈
{0, 1}, the card on Pg[a][b] is ♣ if a = b = 1 and ♡ otherwise. It can be regarded

as the NAND gate by ♣ = 0,♡ = 1. We also note that two additional ♣ s on
Pg[0][2], Pg[1][2] are needed to garble the gate as explained in Section 3.1.

Then, we apply a turn operation so that all cards are face-down. Now we
have a sequence of 2n + 6q face-down cards on the indices of the position Pi[a]
and Pg[b][c]. This is the output of this phase.

3.4 Garbling Phase

Next, the protocol proceeds to the garbling phase. This phase just applies a
uniform shuffle (shuffle, Π,F) to the sequence of 2n+6q cards outputted by the
initialization phase. In the following, we will define Π ⊆ S2n+6q by three steps:
(1) defining four permutations, (2) defining a shuffle for randomizing a wire, and
(3) composing all shuffles.

Defining Four Permutations. For an input wire i ∈ {1, 2, . . . , n}, a permu-
tation πi is defined by

πi := (Pi[0], Pi[1]).

It represents the bit flip of the i-th input commitment. For a gate g ∈ {n+1, n+
2, . . . , n+ q}, a permutation πg is defined by

πg := (Pg[0][0], Pg[0][2]) ◦ (Pg[1][0], Pg[1][2]) ◦ (Pg[0][1], Pg[1][1]).
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It represents the bit flip of the truth table of g as follows:

♡ ♡ ♣
♡ ♣ ♣

πg−→ ♣ ♣ ♡
♣ ♡ ♡ .

For a gate g, a permutation τg is defined by

τg := (Pg[0][0], Pg[1][0]) ◦ (Pg[0][1], Pg[1][1]).

It represents a swap of the rows of the truth table of g as follows:

1 3 5

2 4 6

τg−→ 2 4 5

1 3 6
.

A permutation σg is defined by

σg := (Pg[0][0], Pg[0][1]) ◦ (Pg[1][0], Pg[1][1]).

It represents a swap of the columns of the truth table of g as follows:

1 3 5

2 4 6

σg−→ 3 1 5

4 2 6
.

Defining a Shuffle for Randomizing a Wire. For a wire w ∈ {1, 2, . . . , n+
q}, a permutation π̂w is defined by

π̂w := πw ◦
∏

g∈L−1(w)

τg ◦
∏

g′∈R−1(w)

σg′ .

By applying it, the value of the wire w is flipped and for each gate g, the rows
of g are swapped if w is the left input wire of g and the columns of g are
swapped if w is the right input wire of g. Define Πw := {id, π̂w}. A uniform
shuffle (shuffle, Πw,Fw) is a shuffle that randomizes the value of the wire w and
all gates having w as input.

Composing All Shuffles. The subset Π ⊆ Sn+q is defined by

Π := Π1Π2 · · ·Πn+q−m = {π′
1 ◦ π′

2 ◦ · · ·π′
n+q−m | π′

i ∈ Πi}.

The uniform shuffle (shuffle, Π,F) is now obtained. We note that it is a shuffle
by composing n+ q uniform shuffles (shuffle, Πw,Fw).

3.5 Evaluation Phase

Finally, the protocol proceeds to the evaluation phase. In this phase, the players
evaluate the circuit by opening cards as follows. Let vw (1 ≤ i ≤ n + q) be an
indeterminate on {0, 1}. The protocol proceeds by determining these values and
finally outputs vn+q−m+1, vn+q−m+2, . . . , vn+q as the output values.
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First, the players open all cards corresponding to the input wires: the value
of vi (1 ≤ i ≤ n) is set to the value of the i-th commitment according to the

encoding rule ♣ ♡ = 0 and ♡ ♣ = 1. Next, each gate g = n + 1, . . . , n + q is
evaluated (in this order) by opening the card on the position Pg[vL(g)][vR(g)]: the

value of vg is set to the value of the card according to the encoding rule ♣ = 0

and ♡ = 1. Note that the values of vL(g) and vR(g) are determined before g is
executed since L(g) ≤ R(g) < g. By repeating this process, we finally obtain the
output values vn+q−m+1, vn+q−m+2, . . . , vn+q.

3.6 Description of Our Protocol in the Non-committed Format

We summarize our protocol in the following.

1. First, we enter the initialization phase. Given a Boolean circuit f and the
input commitments to x1, . . . , xn, this phase outputs a sequence of 6q + 2n
face-down cards as an initial state.

2. Next, we enter the garbling phase. Given an initial state, this phase applies a
shuffle (shuffle, Π,F) defined in Section 3.4. We regard the resulting sequence
of 2n cards corresponding to the input commitments as the garbling input
and the remaining sequence of 6q cards as the garbled circuit.

3. Finally, we enter the evaluation phase. This phase opens the garbled input
and some cards of the garbled circuit. We output a m-bit string correspond-
ing to the cards of the output gates.

In the following, we prove the correctness and security of our protocol.

Correctness: Recall that for each wire 1 ≤ w ≤ n+ q−m, the permutation π̂w

is defined as follows:

π̂w := πw ◦
∏

g∈L−1(w)

τg ◦
∏

g′∈R−1(w)

σg′ .

Let w be a wire and g be a gate such that L(g) = w (resp., R(g) = w). From
the definition of π̂w, we can observe that the bit flip introduced by π̂w and the
swap of columns (resp., rows) introduced by τg (resp., σg′) is synchronized, which
guarantees that the functionality of the circuit remains the same. Therefore, this
protocol is correct.

Security: In order to prove the security, it is sufficient to show that the opened
values vi (1 ≤ i ≤ n + q −m) except the output values are independently and
uniformly random bits. (We note that once this fact is proven, a simulator can
be constructed in the same way as Shinagawa–Nuida [24].) In the following, we
prove this fact by reverse induction from n+ q −m to 1.

Let Aw be the shuffle for randomizing a wire w, i.e., Aw := (shuffle, Πw,Fw).
First, vn+q−m is a uniformly random bit due to the effect of uniform shuf-
fles An+q−m and {Aw | w ∈ L−1(n + q − m) ∪ R−1(n + q − m)}. Next, sup-
pose that vi+1, vi+2, . . . , vn+q−m are independently and uniformly random bits.
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The uniform property of vi is obvious due to the effect of uniform shuffles
Ai and {Aw | w ∈ L−1(i) ∪ R−1(i)}. Since Ai does not appear in the wires
greater than i, the randomness introduced by the shuffle Ai is independent
from vi+1, vi+2, . . . , vn+q−m. Thus vi, vi+1, . . . , vn+q−m are also independently
and uniformly random bits.

Therefore, vi (1 ≤ i ≤ n+ q −m) are independently and uniformly random
bits. This proves the security.

3.7 Our Protocol in the Committed Format

Although our protocol in Section 3.6 is a non-committed-format protocol, we can
convert it to a committed-format protocol by appending 2m additional cards,
where m is the number of the output wires. The committed-format protocol is
the same as our -committed-format protocol except that for each output gate
g ∈ {n+ q−m+1, . . . , n+ q}, we use the eight-card truth table as in Tozawa et
al. [27] instead of our six-card truth table. More concretely, we use a truth table
of an output gate g as follows:

♡ ♣ ♡ ♣

♡ ♣ ♣ ♡
.

The shuffle in the committed-format protocol can be defined in the same way as
in Section 3.4. By applying it, we obtain a committed-format protocol. Since each
output gate requires two additional cards, the number of cards in this protocol
is 6q + 2n+ 2m.

4 Conclusion

This paper proposed new single-shuffle card-based protocols for any Boolean
circuit. Our protocols are based on Yao’s garbled circuit as in previous single-
shuffle protocols [24, 27]. Namely, the truth tables of gates in the Boolean circuit
are garbled (or randomized) while keeping the output of the circuit consistent.
Our core technique to reduce the number of cards is to propose a new encoding of
the truth table: each value of the truth table is represented by one card, whereas
the previous works used two cards per value. We also used two additional cards
to apply Yao’s technique to our protocol. Therefore, our protocols require only
six cards per gate. Specifically, we proposed a non-committed single-shuffle card-
based protocol with 6q + 2n cards and then modified it to make it a committed
protocol with 2m additional cards. Since our protocols require uniform shuffles,
it would be interesting to construct a committed card-based protocol with single
uniform closed shuffles and a comparable number of cards to ours.
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Abstract. 1-out-of-n oblivious signature by Chen (ESORIC 1994) is
a protocol between the user and the signer. In this scheme, the user
makes a list of n messages and chooses the message that the user wants
to obtain a signature from the list. The user interacts with the signer
by providing this message list and obtains the signature for only the
chosen message without letting the signer identify which messages the
user chooses. Tso et al. (ISPEC 2008) presented a formal treatment of 1-
out-of-n oblivious signatures. They defined unforgeability and ambiguity
for 1-out-of-n oblivious signatures as a security requirement.
In this work, first, we revisit the unforgeability security definition by
Tso et al. and point out that their security definition has problems. In
particular, we point out that a trivial attack exists in their unforgeability
security model and address this problem by modifying their security
model and redefining unforgeable security.
Second, we improve the generic construction of a 1-out-of-n oblivious
signature scheme by Zhou et al. (IEICE Trans 2022). The bottleneck of
their construction is the size of the communication cost. We reduce the
communication cost by modifying their scheme with a Merkle tree. Then
we prove the security of our modified scheme.

Keywords: 1-out-of-n oblivious signatures · Generic construction · Round-
optimal · Merkle tree · Efficient communication cost

1 Introduction

1.1 Background

Oblivious Signatures. The notion of 1-out-of-n oblivious signatures by Chen
[6] is an interactive protocol between a signer and a user. In an oblivious signature
scheme, first, the user makes a list of n messages M = (mi)i∈{1,...,n} and chooses
one of message mj in M that the user wants to obtain a signature. Then the
user interacts with the signer by sending the list M with a first message µ at the
beginning of the interaction. The signer can see the candidate messages M that
⋆ This work was supported by JST CREST Grant Number JPMJCR2113 and JSPS

KAKENHI Grant Number JP23K16841.
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the user wants to get signed, but cannot identify which one of the messages in
M is chosen by the user. After completing the interaction with the signer, the
user can obtain a signature σ for only the chosen message mj .

1-out-of-n oblivious signatures should satisfy ambiguity and unforgeability.
Ambiguity prevents the signer from identifying which one of the messages the
signer wants to obtain the signature in the interaction. Unforgeability requires
that for each interaction, the user cannot obtain a signature of a message m /∈ M
and can obtain a signature for only one message m ∈ M where M is a list of
message that the user sends to the signer at the beginning of the interaction.

Oblivious signatures can be used to protect the privacy of users. Chen [6]
explained an application of oblivious signatures as follows. The user will buy
software from the seller and the signature from the seller is needed to use the
software. However, information about which software the user is interested in
may be sensitive at some stage. In this situation, by using oblivious signatures,
the user can make a list of n software and obtain a signature only for the one
software that the user honestly wants to obtain without revealing it to the seller
(signer). The oblivious signature can be used for e-voting systems [7,18].

Oblivious Signatures and Blind Signatures. Signatures with a similar fla-
vor to oblivious signatures are blind signatures proposed by Chaum [5]. In a blind
signature scheme, similar to an oblivious signature scheme, a user chooses a mes-
sage and obtains a corresponding signature by interacting with the signer. Typ-
ically, blind signatures satisfy blindness and one-more unforgeability (OMUF).
Blindness prevents the signer from linking a message/signature pair to the run
of the protocol where it was created. OMUF security prevents the user from
forging a new signature.

From the point of view of hiding the contents of the message, it may seem
that blind signatures are superior than oblivious signatures. But compared to
blind signatures, oblivious signature has merits listed as follows.

– Avoid Signing Disapprove Messages: In blind signatures, since the
signer has no information about the message that the user wants to obtain
the signature, the signer cannot prevent users from obtaining a signature on
the message that the signer does not want to approve.
Partially blind signatures proposed by Abe and Fujisaki [1] mitigate this
problem. This scheme allows the user and the signer to agree on a prede-
termined piece of common information info which must be included in the
signed message. However, similar to blind signatures, the signer has no in-
formation for the blinded part of a message, partially blind signatures do
not provide a full solution for the above problem.
By contrast, oblivious signatures allow the signer to view a list of messages.
If the message that the signer does not want to approve is included in the
message list, the signer can refuse to sign. Thus, the ambiguity of oblivious
signatures provides a better solution for the above problem.

– Based on Weaker Assumptions: Recent works on blind signatures are
dedicated to constructing efficient round-optimal (i.e., 2-move signing inter-
action) blind signature schemes [2,4,8,9,10,11,12,13,14,15,16]. However, these
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schemes either rely on at least one of strong primitives, models, or assump-
tions such as pairing groups [4,9,10,11,13,14], non-interactive zero-knowledge
(NIZK) [2,8,15,16], the random oracle model (ROM) [8,14], the generic group
model (GGM) [9], interactive assumptions [4,10,11,13], q-type assumptions
[12], one-more assumptions [2], or knowledge assumptions [12].
By contrast, a generic construction of a round-optimal oblivious signature
scheme without the ROM was proposed in the recent work by Zhou, Liu,
and Han [21]. This construction uses a digital signature scheme and a com-
mitment scheme. This leads to instantiations in various standard assump-
tions (e.g., DDH, DCR, Factoring, RSA, LWE) without the ROM. Thus, the
round-optimal oblivious signature schemes can be constructed with weaker
assumptions than round-optimal blind signature schemes.

Previous Works on Oblivious Signatures. The notion of oblivious signa-
tures was introduced by Chen [6] and proposed 1-out-of-n oblivious signature
schemes in the ROM. Following this seminal work, several 1-out-of-n oblivious
signature schemes have been proposed.

Tso, Okamoto, and Okamoto [19] formalized the syntax and security defini-
tion of the 1-out-of-n oblivious signature scheme. They gave the efficient round-
optimal (i.e., 2-move) 1-out-of-n oblivious signature scheme based on the Schnorr
signature scheme. The security of this scheme can be proven under the DL as-
sumption in the ROM.

Chiou and Chen [7] proposed a t-out-of-n oblivious signature scheme. This
scheme needs 3 rounds for a signing interaction and the security of this scheme
can be proven under the RSA assumption in the ROM.

You, Liu, Tso, Tseng, and Mambo [20] proposed the lattice-based 1-out-of-n
oblivious signature scheme. This scheme is round-optimal and the security can
be proven under the short integer solution (SIS) problem in the ROM.

In recent work by Zhou, Liu, and Han [21], a generic construction of a round-
optimal 1-out-of-n oblivious signature scheme was proposed. Their scheme is
constructed from a commitment scheme and a digital signature scheme without
the ROM. By instantiating a signature scheme and commitment scheme from
standard assumptions without the ROM, this generic construction leads 1-out-
of-n oblivious signature schemes from standard assumptions without the ROM.
As far as we know, their scheme is the first generic construction of a 1-out-of-n
oblivious signature scheme without the ROM.

1.2 Motivation

The security model for a 1-out-of-n oblivious signature scheme is formalized
by Tso [19]. Their security model is fundamental for subsequent works [21,20].
However, this security model has several problems. Here, we briefly review the
unforgeability security model in [19] and explain the problems of their model.
The formal description of this security game is given in Section 3.2
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Definition of Unforgeability in [19]. Informally, the unforgeability for a
1-out-of-n oblivious signature scheme in [19] is defined by the following game.

Let A be an adversary that executes a user part and tries to forge a new
signature. A engages in the signing interaction with the signer. A can make any
message list Mi and any one message mi,ji ∈ Mi. Then, A engages the i-th
signing interaction with Mi at the beginning of the interaction. By interacting
with the signer, A can obtain a signature σi on a message mi,ji . Let t be the
number of signing interaction with the signer and A. Let LSign = {mi,ji}i∈{1,...,t}
be all messages that A obtained signatures. A wins this game if A outputs a valid
signature σ∗ on a message m∗ /∈ LSign. A 1-out-of-n oblivious signature scheme
satisfies unforgeability if for all PPT adversaries A cannot win the above game
in non-negligible probability.

However, the above security game has several problems listed below.

– Problem 1: How to Store Messages in LSign: In the above security game,
we need to store corresponding messages that the signer obtains signatures.
However, by ambiguity property, we cannot identify the chosen message mi,ji

that the signer wants to obtain a signature from a transcription of the i-
th interaction with Mi. This problem can be addressed by forcing A to
output (mi,ji , σi) at the end of each interaction. However, the next problem
is serious.

– Problem 2: Trivial Attack: One flaw is the existence of a trivial attack
on the security game. Let us consider the following adversary A that runs
signing protocol execution twice. A chooses M = (m0,m1) where m0 and m1

are distinct, and sets lists as M1 = M2 = M . In the 1st interaction, A chooses
m0 ∈ M1, obtains a signature σ0 on a message m0, and outputs (m0, σ0) at
the end of interaction. In the 2nd interaction, A chooses m1 ∈ M2, obtains a
signature σ1 on a message m1, and outputs (m0, σ0) at the end of interaction.
Then, A outputs a trivial forgery (m∗, σ∗) = (m1, σ1). This attack is caused
by the reuse of a signature (m0, σ0) at the end of the signing interaction.
The unforgeability security models in previous works [20,21] are based on
the model by Tso et al. [19]. This trivial attack also works for these models
as well. This fact invalidates unforgeability security proofs in [6,19,20,21] for
1-out-of-n oblivious signature scheme.
Note that we only claim that the security model in [19] has a flaw. We do
not intend to claim that existing schemes in [6,19,20,21] are insecure.

– Problem 3: Missing Adversary Strategy: The security game does not
capture an adversary with the following strategy. Let us consider an adver-
sary A that executes the signing protocol only once. A interacts with the
signer with a message list M and intends to a signature σ∗ on a message
m∗ /∈ M , but give up outputting (m,σ) where m ∈ M at the end of sign-
ing interaction. Since the security game only considers the adversary that
outputting (m,σ) where m ∈ M at the end of the signing execution, the se-
curity game cannot capture the adversary A give up outputting (m,σ) where
m ∈ M .
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1.3 Our Contribution

The first contribution is providing a new security definition of the unforgeability
security for a 1-out-of-n oblivious signature scheme. We address the problems
described in the previous section. We refer the reader to Section 3.3 for more
detail on our definition of unforgeability security.

The second contribution is an improvement of a generic construction of 1-
out-of-n oblivious signature schemes by [20]. This round-optimal construction is
obtained by a simple combination of a digital signature scheme and a commit-
ment scheme. However, a bottleneck of this scheme is the communication cost
(See Fig. 1).

Scheme |vkOS| |µ| |ρ| |σOS|
OSZLH

[21] |vkDS| |cCOM| n|σDS| |σDS|+ |cCOM|+ |rCOM|

OSOurs

§4.2 |vkDS| |cCOM| |σDS| |σDS|+ |cCOM|+ |rCOM|+ (⌈log2 n⌉+ 1)λ+ ⌈log2 n⌉

Fig. 1. Comparison with generic construction of 1-out-of-n oblivious signature schemes.
|vkOS| represents the bit length of the verification key, |µ| represents the bit length of
the first communication, |ρ| represents the bit length of the second communication,
and |σOS| represents the bit length of the 1-out-of-n oblivious signature scheme. In
columns, λ denotes a security parameter. |cCOM| (resp. |rCOM|) denotes the bit length
of a commitment (resp. randomness) and |σDS| (resp. |vkDS|) denotes the bit length of
a digital signature (resp. verification key) used to instantiate the 1-out-of-n oblivious
signature scheme.

Particular, if the user interacts with the signer with a message list M =
(mi)i∈{1,...,n} and the first communication message µ, then the signer sends
n digital signatures (σDS

i )i∈{1,...,n} to the user as the second communication
message where σDS

i is a signature on a message (mi, µ). This means that the
second communication message cost (size) is proportional to n.

We improve the second communication cost by using a Merkle tree. Con-
cretely, instead of signing each (mi, µ) where mi ∈ M , we modify it to sign a
message (root, µ) where root is a root of the Merkle tree computed from M . By
this modification, we reduce the communication cost of the second round from
n digital signatures to only one digital signature. As a side effect of our modifi-
cation, the size of the obtained 1-out-of-n oblivious signature is increasing, but
it is proportional to log n. Our modification has the merit that the sum of a
second communication message size and a signature size is improved from O(n)
to O(log n).
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1.4 Road Map

In Section 2, we introduce notations and review commitments, digital signatures,
and Merkle tree. In Section 3, we review 1-out-of-n oblivious signatures, revisit
the definition of unforgeability by Tuo et al. [19], and redefine unforgeability.
In Section 4, we give a generic construction of 1-out-of-n oblivious signature
schemes with efficient communication cost by improving the construction by
Zhou et al. [21] and prove security for our scheme. In Section 5, we conclude our
result and discuss open problems.

2 Preliminaries

In this section, we introduce notations and review fundamental cryptographic
primitives for constructing our 1-out-of-n oblivious signature scheme.

2.1 Notations

Let 1λ be the security parameter. A function f is negligible in k if f(k) ≤
2−ω(log k). For a positive integer n, we define [n] := {1, . . . , n}. For a finite set S,
s

$←− S represents that an element s is chosen from S uniformly at random.
For an algorithm A, y ← A(x) denotes that the algorithm A outputs y on

input x. When we explicitly show that A uses randomness r, we denote y ←
A(x; r). We abbreviate probabilistic polynomial time as PPT.

We use a code-based security game [3]. The game Game is a probabilistic
experiment in which adversary A interacts with an implied challenger C that
answers oracle queries issued by A. The Game has an arbitrary amount of addi-
tional oracle procedures which describe how these oracle queries are answered.
When the game Game between the challenger C and the adversary A outputs b,
we write GameA ⇒ b. We say that A wins the game Game if GameA ⇒ 1. We
implicitly assume that the randomness in the probability term Pr[GameA ⇒ 1]
is over all the random coins in the game.

2.2 Commitment Scheme

We review a commitment scheme and its security notion.

Definition 1 (Commitment Scheme). A commitment scheme COM consists
of a following tuple of algorithms (KeyGen,Commit).

– KeyGen(1λ) : A key-generation algorithm takes as an input a security pa-
rameter 1λ. It returns a commitment key ck. In this work, we assume that
ck defines a message space, randomness space, and commitment space. We
represent these space by Mck, Ωck, and Cck, respectively.

– Commit(ck,m; r) : A commit algorithm takes as an input a commitment
key ck, a message m, and a randomness r. It returns a commitment c. In
this work, we use the randomness r as the decommitment (i.e., opening)
information for c.
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Definition 2 (Computational Hiding). Let COM = (KeyGen,Commit) a
commitment scheme and A a PPT algorithm. We say that the COM satisfies
computational hiding if for all A, the following advantage of the hiding game

AdvHideCOM,A :=∣∣∣∣∣Pr
[
b = b∗

∣∣∣∣∣
ck ← COM.KeyGen(1λ), (m0,m1, st) ← A(ck),

b
$←− {0, 1}, c∗ ← COM.Commit(ck,mb), b

∗ ← A(c∗, st)

]
− 1

2

∣∣∣∣∣

is negligible in λ.

Definition 3 (Strong Computational Binding). Let COM = (KeyGen,Commit)
a commitment scheme and A a PPT algorithm. We say that the COM satisfies
strong computational binding if the following advantage

AdvsBindCOM,A :=

Pr

[
Commit(ck,m; r) = Commit(ck,m′; r′)

∧ (m, r) ̸= (m′, r′)

∣∣∣∣∣
ck ← KeyGen(1λ),

((m, r), (m′, r′)) ← A(ck)

]

is negligible in λ.

A commitment scheme with computational hiding and strong computational
binding property can be constructed from a public key encryption (PKE) scheme
with indistinguishable under chosen plaintext attack (IND-CPA) security. We
refer the reader to [21] for a commitment scheme construction from a PKE
scheme.

2.3 Digital Signature Scheme

We review a digital signature scheme and its security notion.

Definition 4 (Digital Signature Scheme). A digital signature scheme DS
consists of following four algorithms (Setup,KeyGen, Sign,Verify).

– Setup(1λ) : A setup algorithm takes as an input a security parameter 1λ. It
returns the public parameter pp. In this work, we assume that pp defines a
message space and represents this space by Mpp. We omit a public parameter
pp in the input of all algorithms except for KeyGen.

– KeyGen(pp) : A key-generation algorithm takes as an input a public param-
eter pp. It returns a verification key vk and a signing key sk.

– Sign(sk,m) : A signing algorithm takes as an input a signing key sk and a
message m. It returns a signature σ.

– Verify(vk,m, σ) : A verification algorithm takes as an input a verification key
vk, a message m, and a signature σ. It returns a bit b ∈ {0, 1}.
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Correctness. DS satisfies correctness if for all λ ∈ N, pp ← Setup(1λ) for all
m ∈ Mpp, (vk, sk) ← KeyGen(pp), and σ ← Sign(sk,m), Verify(vk,m, σ) = 1
holds.

We review a security notion called the strong existentially unforgeable under
chosen message attacks (sEUF-CMA) security for digital signature.

Definition 5 (sEUF-CMA Security). Let DS = (Setup,KeyGen, Sign,Verify)
be a signature scheme and A a PPT algorithm. The strong existentially unforge-
ability under chosen message attacks (sEUF-CMA) security for DS is defined by
the sEUF-CMA security game GamesEUFCMA

DS,A between the challenger C and A in
Fig. 2.

GAME GamesEUFCMA
DS,A (1λ) :

LSign ← {}, pp ← Setup(1λ), (vk, sk) ← KeyGen(pp), (m∗, σ∗) ← AOSign(·)(pp, vk)
If Verify(vk,m∗, σ∗) = 1 ∧ (m∗, σ∗) /∈ LSign, return 1. Otherwise return 0.

Oracle OSign(m) :

σ ← Sign(sk,m), LSign ← LSign ∪ {(m,σ)}, return σ.

Fig. 2. The sEUF-CMA security game GamesEUFCMA
DS,A .

The advantage of an adversary A for the sEUF-CMA security game is defined
by AdvsEUFCMA

DS,A := Pr[GamesEUFCMA
DS,A ⇒ 1]. DS satisfies sEUF-CMA security if for

all PPT adversaries A, AdvsEUFCMA
DS,A (1λ) is negligible in λ.

2.4 Merkle Tree Technique

We review the collision resistance hash function family and the Merkle tree
technique.

Definition 6 (Collision Resistance Hash Function Family). Let H =
{Hλ} be a family of hash functions where Hλ = {Hλ,i : {0, 1}∗ → {0, 1}λ}i∈Iλ

.
H is a family of collision-resistant hash functions if for all PPT adversaries A,
the following advantage

AdvCollH,A(1
λ) := Pr[H(x) = H(x′)|H $←− Hλ, (x, x

′) ← A(H)]

is negligible in λ.

Definition 7 (Merkle Tree Technique [17]). The Merkle tree technique MT
consists of following three algorithms (MerkleTree,MerklePath,RootReconstruct)
with access to a common hash function H : {0, 1}∗ → {0, 1}λ.
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– MerkleTreeH(M = (m0, . . . ,m2k−1)) : A Merkle tree generation algorithm
takes as an input a list of 2k elements M = (m0, . . . ,m2k−1). It constructs
a complete binary tree whose height is k + 1 (i.e., maximum level is k).
We represent a root node as wϵ and a node in level ℓ as wb1,...bℓ where bj ∈
{0, 1} for j ∈ [ℓ]. The leaf node with an index i ∈ {0, . . . , 2k − 1} represents
wI2B(i) where I2B is a conversion function from an integer i to the k-bit
binary representation.
Each leaf node with an index i ∈ {0, . . . , 2k − 1} (i.e., wI2B(i)) is assigned
a value hI2B(i) = H(mi). Each level j internal (non-leaf) node wb1,...bj

is assigned a value hb1,...bj = H(hb1,...bj ,0||hb1,...bj ,1) where hb1,...bj ,0 and
hb1,...bj ,1 are values assigned to the left-children node wb1,...bj ,0 and the right-
children node wb1,...bj ,1, respectively. The root node wϵ is assigned a hash
value hϵ = H(h0||h1) and denote this value as root. This algorithm outputs
a value root and the description tree which describes the entire tree.

– MerklePathH(tree, i) : A Merkle path generation algorithm takes as an in-
put a description of a tree tree and a leaf node index i ∈ {0, . . . , 2k − 1}.
Then, this algorithm computes (b1, . . . bk) = I2B(i) and outputs a list path =
(hb1

, hb1,b2
, . . . , hb1,...,bk

) where bj = 1− bj for j ∈ [k].
– RootReconstructH(path,mi, i) : A root reconstruction algorithm takes as an

input a list path = (hb1
, hb1,b2

, . . . , hb1,...,bk
), an element mi, and a leaf node

index i ∈ {0, . . . , 2k − 1}. This algorithm computes (b1, . . . bk) = I2B(i) and
assigns hb1,...bk . For i = k−1 to 1, computes hb1,...bj = H(hb1,...bj ,0||hb1,...bj ,1)
and outputs root = H(h0||h1).

Lemma 1 (Collision Extractor for Merkle Tree). There exists the follow-
ing efficient collision extractor algorithms Ext1 and Ext2.

– Ext1 takes as an input a description of Merkle tree tree whose root node
is assigned value root and (m′

i, path, i). If tree is constructed from a list
M = (m0, . . . ,m2k−1), mi ̸= m′

i, and root = RootReconstructH(path,mi, i)
holds, it outputs a collision of the hash function H.

– Ext2 takes as an input a tuple (m, j, path, path′). If RootReconstructH(path,
m, j) = RootReconstructH(path′,m, j) and path ̸= path′ hold, it outputs a
collision of the hash function H.

3 Security of Oblivious Signatures Revisited

In this section, first, we review a definition of a 1-out-of-n signature scheme and
security notion called ambiguity. Next, we review the security definition of the
unforgeability in [19] and discuss the flaws of their security model. Then, we
redefine the unforgeability security for a 1-out-of-n signature scheme.

3.1 (1, n)-Oblivious Signature Scheme

We review a syntax of a 1-out-of-n oblivious signature scheme and the security
definition of ambiguity.
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Definition 8 (Oblivious Signature Scheme). a 1-out-of-n oblivious signa-
ture scheme (1, n)-OS consists of following algorithms (Setup,KeyGen,U1, S2,UDer,
Verify).

– Setup(1λ) : A setup algorithm takes as an input a security parameter 1λ. It
returns the public parameter pp. In this work, we assume that pp defines a
message space and represents this space by Mpp. We omit a public parameter
pp in the input of all algorithms except for KeyGen.

– KeyGen(pp) : A key-generation algorithm takes as an input a public param-
eter pp. It returns a verification key vk and a signing key sk.

– U1(vk,M = (m0, . . . ,mn−1), j) : This is a first message generation algorithm
that is run by a user. It takes as input a verification key vk, a list of message
M = (m0, . . . ,mn−1), and a message index j ∈ {0, . . . , n − 1}. It returns a
pair of a first message and a state (µ, st) or ⊥.

– S2(vk, sk,M = (m0, . . . ,mn−1), µ) : This is a second message generation
algorithm that is run by a signer. It takes as input a verification key vk, a
signing key sk, a list of message M = (m0, . . . ,mn−1), and a first message µ.
It returns a second message ρ or ⊥.

– UDer(vk, st, ρ) : This is a signature derivation algorithm that is run by a user.
It takes as an input a verification key vk, a state st, and a second message
ρ. It returns a pair of a message and its signature (m,σ) or ⊥.

– Verify(vk,m, σ) : A verification algorithm takes as an input a verification key
vk, a message m, and a signature σ. It returns a bit b ∈ {0, 1}.

Correctness. (1, n)-OS satisfies correctness if for all λ ∈ N, n ← n(λ), pp ←
Setup(1λ), for all message set M = (m0, . . . ,mn−1) such that mi ∈ Mpp,
(vk, sk) ← KeyGen(pp), for all j ∈ {0, . . . n − 1}, (µ, st) ← U1(vk,M, j), ρ ←
S2(vk, sk,M, µ), and (mj , σ) ← UDer(vk, st, ρ), Verify(vk,mj , σ) = 1 holds.

Definition 9 (Ambiguity). Let (1, n)-OS = (Setup,KeyGen,U1, S2,UDer,Verify)
be an oblivious signature scheme and A a PPT algorithm. The ambiguity for
(1, n)-OS is defined by the ambiguity security game GameAmb

(1,n)-OS,A between the
challenger C and A in Fig. 3.

GAME GameAmb
(1,n)-OS,A(1

λ) :

pp ← Setup(1λ), (vk, sk) ← KeyGen(pp),
(M = (m0, . . . ,mn−1), i0, i1, stA) ← A(pp, vk, sk)

b
$←− {0, 1}, (µ, stS) ← U1(vk,M, ib), b∗ ← A(µ, stA).

If b∗ = b return 1. Otherwise return 0.

Fig. 3. The ambiguity security game GameAmb
(1,n)-OS,A.

The advantage of an adversary A for the ambiguity security game is defined
by AdvAmb

(1,n)-OS,A := |Pr[GameAmb
(1,n)-OS,A ⇒ 1]− 1

2 |. (1, n)-OS satisfies ambiguity if
for all PPT adversaries A, AdvAmb

(1,n)-OS,A(1
λ) is negligible in λ.
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3.2 Definition of Unforgeability Revisited

We review the security definition of unforgeability for (1, n)-OS in previous works
in [19]. The unforgeability for a 1-out-of-n oblivious signature scheme in [19] is
formalized by the following game between a challenger C and a PPT adversary A.

– C runs pp ← Setup(1λ) and (vk, sk) ← KeyGen(pp), and gives (pp, vk) to A.
– A is allowed to engage polynomially many signing protocol executions.

In an i-th protocol execution,
• A makes a list Mi = (mi,0, . . . ,mi,n−1)) and chooses mi,ji .
• A sends (µi,Mi = (mi,0, . . . ,mi,n−1)) to C.
• C runs ρi ← S2(vk, sk,Mi, µi) and gives ρi to A.

– Let LSign be a list of messages that A obtained signatures. A outputs a forgery
(m∗, σ∗) which satisfies m∗ /∈ LSign. A must complete all singing executions
before it outputs a forgery.

If no PPT adversary A outputs a valid forgery in negligible probability in λ,
(1, n)-OS satisfies the unforgeability security.

We point out three problems for the above security definition.

– Problem 1: How to Store Messages in LSign: In the above security game,
we need to store corresponding messages that the signer obtains signatures.
However, by ambiguity property, we cannot identify the message mi,ji that
is chosen by the signer from a transcription of the i-th interaction with Mi.
This security model does not explain how to record an entry of LSign.

– Problem 2: Trivial Attack: Let us consider the following adversary A that
runs signing protocol execution twice. A chooses M = (m0,m1) where m0

and m1 are distinct, and sets lists as M1 = M2 = M . In the 1st interaction,
A chooses m0 ∈ M1, obtains a signature σ0 on a message m0, and outputs
(m0, σ0) at the end of interaction. In the 2nd interaction, A chooses m1 ∈ M2,
obtains a signature σ1 on a message m1, and outputs (m0, σ0) at the end
of interaction. Then, A outputs a trivial forgery (m∗, σ∗) = (m1, σ1). This
attack is caused by the reuse of a signature (m0, σ0) at the end of the signing
interaction.

– Problem 3: Missing Adversary Strategy: The security game does not
capture an adversary with the following strategy. Let us consider an adver-
sary A that executes the signing protocol only once. A interacts with the
signer with a message list M and intends to forge a signature σ∗ on a mes-
sage m∗ /∈ M , but give up outputting (m,σ) where m ∈ M at the end
of signing interaction. Since the security game only considers the adversary
that outputting (m,σ) where m ∈ M at the end of the signing execution,
the security game cannot capture the adversary A give up outputting (m,σ)
where m ∈ M and forge (m∗, σ∗) where m∗ /∈ M .

3.3 New Unforgeability Definition

To address the problems of the unforgeability security model by Tso et al. [19],
we modify their security model and redefine the unforgeability security. Here,
we briefly explain how to address these problems.
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– Countermeasure for Problem 1: This problem is easy to fix by forcing
A to output (mi,ji , σi) at the end of each signing interaction.

– Countermeasure for Problem 2: This attack is caused by the reuse of a
signature at the end of signing interactions. That is A submits (m,σ) twice
or more at the end of signing interactions.
To address this problem, we introduce the signature reuse check. This pre-
vents resubmission of (m,σ) at the end of signing interactions. However,
this is not enough to prevent the reuse of a signature. If a signature has a
re-randomizable property (i.e., The property that a signature is refreshed
without the signing key), A can easily avoid resubmission and succeed in the
trivial attack.
For this reason, normal unforgeability security is not enough. We address this
issue by letting strong unforgeability security be a default for the security
requirement.

– Countermeasure for Problem 3: This problem is addressed by adding
another winning condition for A. When A submits (m∗, σ∗) at the end of
i-th signing interaction, if (m∗, σ∗) is valid and m∗ /∈ Mi, A wins the game
where Mi is a list of messages send by A at the beginning of i-th signing
interaction.

By reflecting the above countermeasures to the unforgeability security model
by Tso et al. [19], we redefine the unforgeability security model as the strong
unforgeability under chosen message attacks under the sequential signing inter-
action (Seq-sEUF-CMA) security.

Definition 10 (Seq-sEUF-CMA Security). Let (1, n)-OS = (Setup,KeyGen,
U1, S2,UDer,Verify) be a 1-out-of-n oblivious signature scheme and A a PPT al-
gorithm. The strong unforgeability under chosen message attacks under the se-
quential signing interaction (Seq-sEUF-CMA) security for (1, n)-OS is defined
by the Seq-sEUF-CMA security game GameSeq-sEUFCMA

(1,n)-OS,A between the challenger C

and A in Fig. 4.
The advantage of an adversary A for the Seq-sEUF-CMA security game is

defined by AdvSeq-sEUFCMA
(1,n)-OS,A (1λ) := Pr[GameSeq-sEUFCMA

(1,n)-OS,A (1λ) ⇒ 1]. (1, n)-OS satis-

fies Seq-sEUF-CMA security if for all PPT adversaries A, AdvSeq-sEUFCMA
(1,n)-OS,A (1λ) is

negligible in λ.

Our security model is the sequential signing interaction model. One may think
that it is natural to consider the concurrent signing interaction model. However,
by extending our model to the concurrent signing setting there is a trivial at-
tack. We discuss the security model that allows concurrent signing interaction
in Section 5.

4 Our Construction

In this section, first, we review the generic construction by Zhou et al. [21].
Second, we propose our new generic construction based on their construction.
Then, we prove the security of our proposed scheme.
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GAME GameSeq-sEUFCMA
(1,n)-OS,A (1λ) :

LSign ← {}, LListM ← {}, qSign ← 0, qFin ← 0

pp ← Setup(1λ), (vk, sk) ← KeyGen(pp), (m∗, σ∗) ← AOSign(·,·),OFin(·,·)(pp, vk)
If qSign = qFin ∧ Verify(vk,m∗, σ∗) = 1 ∧ (m∗, σ∗) /∈ LSign, return 1.
Otherwise return 0.

Oracle OSign(MqSign , µ) :

If qSign ̸= qFin, return ⊥.
ρ ← S2(vk, sk,M, µ), if ρ = ⊥, return ⊥.
If ρ ̸= ⊥, qSign ← qSign + 1, LListM ← LListM ∪ {(qSign,MqSign)}, return ρ.

Oracle OFin(m∗, σ∗) :

If qSign ̸= qFin + 1, return ⊥.
If Verify(vk,m∗, σ∗) = 0, return the game output 0 and abort.
(//Oblivious signature reuse check)

If (m∗, σ∗) ∈ LSign, return the game output 0 and abort.
Retrieve an entry (qSign,MqSign) ∈ LListM.
If m∗ ∈ MqSign , LSign ← LSign ∪ {(m∗, σ∗)}, qFin ← qFin + 1, return “accept".
(//Capture adversaries that give up completing signing executions in the game.)

If m∗ /∈ MqSign , return the game output 1 and abort.

Fig. 4. The Seq-sEUF-CMA security game GameSeq-sEUFCMA
(1,n)-OS,A . The main modifications

from previous works security game are highlighted in white box .

4.1 Generic Construction by Zhou et al. [21]

The generic construction of a 1-out-of-n signature scheme (1, n)-OSZLH by Zhou
et al. [21] is a combination of a commitment scheme COM and a digital signature
scheme DS. Their construction (1, n)-OSZLH[COM,DS] = (OS.Setup,OS.KeyGen,
OS.U1,OS.S2,OS.UDer,OS.Verify) is given in Fig. 5.

We briefly provide an overview of a signing interaction and an intuition for
the security of their construction. In the signing interaction, the user chooses
a message list M = (mi)i∈{0,...,n−1} and a specific message mji that the user
wants to obtain the corresponding signature. To hide this choice from the signer,
the signer computes the commitment c on mj with the randomness r. The user
sends (M,µ = c) to the signer.

Here, we provide an intuition for the security of their construction. From
the view of the signer, by the hiding property of the commitment scheme, the
signer does not identify mj from (M,µ = c). This guarantees the ambiguity of
their construction. The signer computes a signature σDS

i on a tuple (mi, c) for
i ∈ {0, . . . , n− 1} and sends ρ = (σDS

i )i∈{0,...,n−1}.
If the signer honestly computes c on mj ∈ M , we can verify that mji is

committed into c by decommitting with r. An oblivious signature on mj is
obtained as σOS = (c, r, σDS

j ). If a malicious user wants to obtain two signatures
for two distinct messages m,m′ ∈ M or obtain a signature on m∗ /∈ M from
the signing protocol execution output (M = (mi)i∈{0,...,n−1}, µ, ρ), the malicious
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OS.Setup(1λ) :
ck ← COM.KeyGen(1λ), ppDS ← DS.Setup(1λ), return ppOS ← (ck, ppDS).

OS.KeyGen(ppOS = (ck, ppDS)) :

(vkDS, skDS) ← DS.KeyGen(ppDS), return (vkOS, skOS) ← (vkDS, skDS).
OS.U1(vk

OS,M = (m0, . . . ,mn−1), j ∈ {0, . . . , n− 1}) :
r

$←− Ωck, c ← COM.Commit(ck,m; r), µ ← c, st ← (M, c, r, j), return (µ, st).
OS.S2(vk

OS, skOS = skDS,M = (m0, . . . ,mn−1), µ = c) :

For i = 0 to n− 1, σDS
i ← DS.Sign(skDS, (mi, c)).

Return ρ ← (σDS
0 , . . . , σDS

n−1).
OS.UDer(vk

OS = vkDS, st = (M = (m0, . . . ,mn−1), c, r, j), ρ = (σDS
0 , . . . , σDS

n−1)) :

For i = 0 to n− 1, if DS.Verify(vkDS, (mi, c), σ
DS
i ) = 0, return ⊥.

σOS ← (c, r, σDS
j ), return (mj , σ

OS).
OS.Verify(vkOS = vkDS,m, σOS = (c, r, σDS) :

If c ̸= COM.Commit(ck,m; r), return 0.
If DS.Verify(vkDS, (m, c), σDS) = 0, return 0.
Otherwise return 1.

Fig. 5. The generic construction (1, n)-OSZLH[COM,DS].

user must break either the EUF-CMA security of DS or the binding property of
COM. This guarantees the unforgeability security of their construction.

A drawback of their construction is the second communication cost. A second
message ρ consists of n digital signatures. If n becomes large, it will cause heavy
communication traffic. It is desirable to reduce the number of signatures in ρ.

4.2 Our Generic Construction

As explained in the previous section, the drawback of the construction by Zhou
et al. [21] is the size of a second message ρ. To circumvent this bottleneck, we
improve their scheme by using a Merkle tree technique. Concretely, instead of
signing on (mi, c) for each mi ∈ M , we modify it to sign on (root, c) where root
is a root of the Merkle tree computed from M . This modification allows us to
reduce the number of digital signatures included in ρ from n to 1.

Now, we describe our construction. Let COM be a commitment scheme,
DS a digital signature scheme, H = {Hλ} a hash function family, and MT =
(MerkleTree,MerklePath,RootReconstruct) a Merkle tree technique in Section 2.4.
To simplify the discussion, we assume that n > 1 is a power of 2. 1

Our generic construction (1, n)-OSOurs[H,COM,DS] = (OS.Setup,OS.KeyGen,
OS.U1,OS.S2,OS.UDer,OS.Verify) is given in Fig. 6.

1 With the following modification, our scheme also supports the case where n > 1 is
not a power of 2. Let k be an integer such that 2k−1 < n < 2k. We change a list
of message M = (m0, . . .mn−1) which is given to OS.U1 and OS.S2 as a part of
an input to an augmented message list M ′ = (m′

0, . . .m
′
2k−1) where m′

i = mi for
i ∈ {0, . . . , n − 1}, m′

n−1+i = ϕ||i for i ∈ {1, . . . 2k − n}, and ϕ is a special symbol
representing that a message is empty.
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OS.Setup(1λ) :

H
$←− Hλ, ck ← COM.KeyGen(1λ), ppDS ← DS.Setup(1λ),

Return ppOS ← (H, ck, ppDS).
OS.KeyGen(ppOS = (ck, ppDS)) :

(vkDS, skDS) ← DS.KeyGen(ppDS), return (vkOS, skOS) ← (vkDS, skDS).
OS.U1(vk

OS,M = (m0, . . . ,mn−1), j ∈ {0, . . . , n− 1}) :
If there exists (t, t′) ∈ {0, . . . , n− 1}2 s.t. t ̸= t′ ∧mt = mt′ , return ⊥.
r

$←− Ωck, c ← COM.Commit(ck,m; r), µ ← c, st ← (M, c, r, j), return (µ, st).
OS.S2(vk

OS, skOS = skDS,M = (m0, . . . ,mn−1), µ = c) :
If there exists (t, t′) ∈ {0, . . . , n− 1}2 s.t. t ̸= t′ ∧mt = mt′ , return ⊥.
(root, tree) ← MerkleTreeH(M), σDS ← DS.Sign(skDS, (root, c)).
Return ρ ← σDS.

OS.UDer(vk
OS = vkDS, st = (M = (m0, . . . ,mn−1), c, r, j), ρ = (σDS

1 , . . . , σDS
n )) :

(root, tree) ← MerkleTreeH(M), path ← MerklePathH(tree, j)
If DS.Verify(vkDS, (root, c), σDS) = 0, return ⊥.
σOS ← (root, c, σDS, path, j, r), return (mj , σ

OS).
OS.Verify(vkOS = vkDS,m, σOS = (root, c, σDS, path, j, r) :

If root ̸= RootReconstructH(path,m, j), return 0.
If c ̸= COM.Commit(ck,m; r), return 0.
If DS.Verify(vkDS, (root, c), σDS) = 0, return 0.
Otherwise return 1.

Fig. 6. Our generic construction (1, n)-OSOurs[H,COM,DS].

4.3 Analysis

We analyze our scheme (1, n)-OSOurs. It is easy to see that our scheme satisfies the
correctness. Now, we prove that our generic construction (1, n)-OSOurs satisfies
the ambiguity and the Seq-sEUF-CMA security.

Theorem 1. If COM is computational hiding commitment, (1, n)-OSOurs[H,COM,
DS] satisfies the ambiguity.

Proof. The ambiguity of our scheme can be proven in a similar way in [21].
Let A be an adversary for the ambiguity game of (1, n)-OSOurs. We give a re-
duction algorithm B that reduces the ambiguity security of our scheme to the
computational hiding property of COM in Fig. 7.

Now, we confirm that B simulates the ambiguity game of (1, n)-OSOurs. In
the case that b = 0, c∗ ← COM.Commit(ck,m∗

0 = mi0) holds. B simulates
µ on the choice of mi0 in this case. Similary, in the case that b = 1, c∗ ←
COM.Commit(ck,m∗

1 = mi1) holds. B simulates µ on the choice of mi1 in this
case. Since b is chosen uniformly at random from {0, 1}, B perfectly simu-
lates the ambiguity game of (1, n)-OSOurs. We can see that AdvHide

COM,B(1
λ) =

AdvAmb
(1,n)-OSOurs,A(1

λ) holds. Thus, we can conclude Theorem 1. ⊓⊔

Theorem 2. If H is a family of collision-resistant hash functions, DS satis-
fies the sEUF-CMA security, and COM is computational binding commitment,
(1, n)-OSOurs[H,COM,DS] satisfies the Seq-sEUF-CMA security.
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B(1λ, ck) :

H
$←− Hλ, ppDS ← DS.Setup(1λ), ppOS ← (H, ck, ppDS),

(vkDS, skDS) ← DS.KeyGen(ppDS), (vkOS, skOS) ← (vkDS, skDS),
(M = (m0, . . . ,mn−1), i0, i1, stA) ← A(ppOS, vkOS, skOS)
m∗

0 ← mi0 , m
∗
1 ← mi1 , send (m∗

0,m
∗
1) to the challenger C and obtain

a commitment c∗ where c∗ ← COM.Commit(ck,m∗
b) and b

$←− {0, 1} is chosen C.
b′ ← A(µ = c∗, stA), return b∗ ← b′.

Fig. 7. The reduction algorithm B.

Proof. Let A be a PPT adversary for the Seq-sEUF-CMA game of (1, n)-OSOurs.
We introduce the base game GameBase(1,n)-OSOurs,A which simulates GameSeq-sEUFCMA

(1,n)-OSOurs,A
.

We provide GameBase(1,n)-OSOurs,A in Fig. 8.
GameBase(1,n)-OSOurs,A simulates the game GameSeq-sEUFCMA

(1,n)-OSOurs,A
by introducing flags

(e.g., Final, DSreuse) which are used for classifying forgery type and a table T
which stores the computation of the signing oracle OSign. More precisely, the
flag Final represents that a forgery (m∗, σ∗OS = (root∗, c∗, σ∗DS, path∗, j∗, r∗)) is
submitted in the final output (Final = true) or OFin (Final = false). The flag
DSreuse represents that there is a pair (m̃, σ̃OS) ̸= (m̃′, σ̃′OS) in LSign such that
the first three elements of σOS are the same. i.e., (r̃oot, c̃, σ̃DS) = (r̃oot

′
, c̃′, σ̃′DS)

holds. We represent that such a pair exists as DSreuse = true. The table T
stores a tuple (i,M, root, c, σDS) where (M, c) is an input for an i-th OSign query,
(root, tree) ← MerkleTreeH(M), σDS ← DS.Sign(skDS, (root, c)). The counter qSign
represents the number of outputs that A received from the OSign oracle and qFin

represent the number of submitted signatures from A.
Now, we divide an adversary A into three types A1,A2,A3 according to states

of flags DSreuse, DSforge, and COMcoll when A wins the game GameBase.

– A1 wins the game with DSforge = true.
– A2 wins the game with COMcoll = true.
– A3 wins the game with DSforge = false ∧ COMcoll = false.

For adversaries A1, A2, and A3, we can construct a reduction for the security
of DS, COM, and H respectively. Now, we give reductions for these adversaries.

Reduction BDS: A reduction BDS to the sEUFCMA security game of DS is
obtained by modifying GameBase(1,n)-OSOurs,A as follows. Instead of running ppDS ←
DS.Setup(1λ) and (vkDS, skDS) ← DS.KeyGen(ppDS), BDS uses (ppDS, vkDS) given
by the sEUFCMA security game of DS. For a signing query (M, c) from A, BDS

query (root, c) to the signing oracle of the sEUFCMA security game of DS, obtains
σDS ← DS.Sign(skDS, (root, c)), and returns σDS. To simplify the discussion, we
assume that A makes distinct (M, c) to BDS. (If A makes the same (M, c) more
than once, BDS simply outputs return σDS ← DS.Sign(skDS, (root, c)) which was
previously obtained by the signing oracle of the sEUFCMA security game where
root is computed from M .)
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GameBaseOSOurs,A
(1λ) :

LSign ← {}, LListM ← {}, T ← {}, qSign ← 0, qFin ← 0, Final ← false,
DSreuse ← false, COMcoll ← false, DSforge ← false, ck ← COM.KeyGen(1λ),
ppDS ← DS.Setup(1λ), ppOS ← (H, ck, ppDS), (vkDS, skDS) ← DS.KeyGen(ppDS),
(vkOS, skOS) ← (vkDS, skDS), (m∗, σ∗OS) ← AOSign(·,·),OFin(·,·)(ppOS, vkOS)

If qSign ̸= qFin ∨ OS.Verify(vkOS,m∗, σ∗) ̸= 1 ∨ (m∗, σ∗OS) ∈ LSign, return 0.
Final ← true, LSign ← LSign ∪ {(m∗, σ∗OS)}, qFin ← qFin + 1

Search a pair (m̃, σ̃OS) ̸= (m̃′, σ̃′OS) in LSign such that the first three
elements of σOS are the same. i.e., (r̃oot, c̃, σ̃DS) = (r̃oot

′
, c̃′, σ̃′DS)

If there is no such a pair, DSforge ← true, return 1.
(Final = true ∧ DSreuse = false ∧ DSforge = true ∧ COMcoll = false)

DSreuse ← true.
Parse σ̃OS as (root∗, c∗, σ∗DS, p̃ath, j̃, r̃), σ̃′OS as (root∗, c∗, σ∗DS, p̃ath

′
, j̃′, r̃′).

If (m̃, r̃) ̸= (m̃′, r̃′), COMcoll ← true, return 1.
(Final = true ∧ DSreuse = true ∧ DSforge = false ∧ COMcoll = true)

Otherwise, return 1.
(Final = true ∧ DSreuse = true ∧ DSforge = false ∧ COMcoll = false)

Oracle OSign(M = (m0, . . . ,mn−1), µ = c) :

If qSign ̸= qFin, return ⊥.
If there exists a pair (t ̸= t′ ∈ {0, . . . , n− 1}) such that mt = mt′ , return ⊥.
(root, tree) ← MerkleTreeH(M), σDS ← DS.Sign(skDS, (root, c)),
qSign ← qSign + 1, MqSign ← M , LListM ← LListM ∪ {(qSign,MqSign)},
T ← T ∪ {(qSign,MqSign , root, c, σ

DS)},
return ρ ← σDS to A.

Oracle OFin(m∗, σ∗OS) :

If qSign ̸= qFin + 1, return ⊥.
If OS.Verify(vkOS,m∗, σ∗OS) ̸= 1, return the game output 0 and abort.
If (m∗, σ∗OS) ∈ LSign, return the game output 0 and abort.
LSign ← LSign ∪ {(m∗, σ∗OS)}, qFin ← qFin + 1, retrieve (qSign,MqSign) ∈ LListM.
If m∗ ∈ MqSign , return “accept" to A.
Parse σ∗OS as (root∗, c∗, σ∗DS, path∗, j∗, r∗).
If (qSign, ∗, root∗, c∗, σ∗DS) ∈ T return the game output 1.

(Final = false ∧ DSreuse = false ∧ DSforge = false ∧ COMcoll = false)

Search a pair (m̃, σ̃OS) ̸= (m̃′, σ̃′OS) in LSign such that the first three
elements of σOS are the same. i.e., (r̃oot, c̃, σ̃DS) = (r̃oot

′
, c̃′, σ̃′DS)

If there is no such a pair, DSforge ← true, return the game output 1.
(Final = false ∧ DSreuse = false ∧ DSforge = true ∧ COMcoll = false)

DSreuse ← true.
Parse σ̃OS as (root∗, c∗, σ∗DS, p̃ath, j̃, r̃), σ̃′OS as (root∗, c∗, σ∗DS, p̃ath

′
, j̃′, r̃′).

If (m̃, r̃) ̸= (m̃′, r̃′), COMcoll ← true, return the game output 1.
(Final = false ∧ DSreuse = true ∧ DSforge = false ∧ COMcoll = true)

Otherwise, return the game output 1.
(Final = false ∧ DSreuse = true ∧ DSforge = false ∧ COMcoll = false)

Fig. 8. The base game GameBase(1,n)-OSOurs,A
.
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If BDS outputs 1 with the condition where DSforge = true, there is the
forgery (r̃oot, c̃, σ̃DS). Since DSforge = true holds, DSreuse = false holds. This
fact implies that for (m,σOS) ∈ LSign, the first three elements (root, c, σDS) of
σOS are all distinct in LSign and valid signatures for DS (i.e., DS.Verify(vkDS,
(root, c), σDS) = 1). Moreover, BDS makes qSign signing queries to signing oracle,
qSign < qFin holds where qFin is the number of entry in LSign. Hence, there is
a forgery ((r̃oot, c̃), σ̃DS) of DS. By modifying GameBase(1,n)-OSOurs,A to output this
forgery ((r̃oot, c̃), σ̃DS), we can obtain BDS.

Reduction BCOM: A reduction BCOM to the computational binding property of
COM is obtained by modifying GameBase(1,n)-OSOurs,A as follows. BCOM uses ck given
by the strong computational binding security game of COM.

If GameOSOurs,A outputs 1 with the condition where COMcoll = true, there is a
collision (m̃, r̃) ̸= (m̃′, r̃′) such that COM.Commit(ck, m̃; r̃) = COM.Commit(ck,
m̃′; r̃′) holds. Since if COMcoll = true holds, DSreuse = true holds in GameBaseOSOurs,A.
This fact implies that there is a pair (m̃, σ̃OS = (root∗, c∗, σ∗DS, p̃ath, j̃, r̃)) ̸=
(m̃′, σ̃′OS = (root∗, c∗, σ∗DS, p̃ath

′
, j̃′, r̃′)). Since (m̃, σ̃OS) and (m̃′, σ̃′OS) are valid

signatures, (m̃, r̃) ̸= (m̃′, r̃′) and COM.Commit(ck, m̃; r̃) = COM.Commit(ck,
m̃′; r̃′) hold. By modifying GameBase(1,n)-OSOurs,A to output this collision ((m̃, σ̃OS), (m̃′,

σ̃′OS)), we can obtain BCOM.

Reduction BHash: We explain how to obtain a reduction BHash to the colli-
sion resistance property from GameBase(1,n)-OSOurs,A. If GameBase(1,n)-OSOurs,A outputs 1
with the condition where Final = false ∧ DSreuse = false ∧ DSforge = false,
a collision a hash function can be found. Since Final = false ∧ DSreuse =
false ∧ DSforge = false holds, then (qSign, ∗, root∗, c∗, σ∗DS) ∈ T holds. Let
(MqSign , cqSign) be an input for the qSign-th OSign query. Then, by the computa-
tion of OSign and table T, c∗ = cqSign , (root∗, tree∗) = MerkleTreeH(MqSign), and
DS.Verify(vkDS, (root∗, c∗), σ∗DS) = 1 holds. Since m∗ /∈ MqSign , a collision of a
hash function H can be computed by (x, x′) ← Ext1(tree

∗, (m∗, path∗, i∗)). We
modify GameBase(1,n)-OSOurs,A to output this collision (x, x′) in this case.

If BBase
(1,n)-OSOurs,A

outputs 1 with the condition where DSreuse = true∧DSforge =
false ∧ COMcoll = false (regardless of the bool value Final), a collision of a
hash function can be also found. Since DSreuse = false ∧ COMcoll = false

holds, then there is a pair (m̃, σ̃OS = (root∗, c∗, σ∗DS, p̃ath, j̃, r̃)) ̸= (m̃, σ̃′OS =

(root∗, c∗, σ∗DS, p̃ath
′
, j̃′, r̃)) holds. From this fact, we can see that (p̃ath, j̃) ̸=

(p̃ath
′
, j̃′) holds. If j∗ ̸= j̃ holds, we can obtain a collision of a hash function

H as (x, x′) ← Ext1(tree
∗, (m∗, path∗, i∗). If j∗ = j̃ holds, then p̃ath = p̃ath

′

holds and thus we can compute a collision of a hash function as (x, x′) ←
Ext2(m, j∗, p̃ath, p̃ath

′
). We modify GameBase(1,n)-OSOurs,A to output this collision (x, x′)

in these case.
By reduction algorithms BDS, BCOM, and BHash described above, we can bound

the advantage AdvSeq-sEUFCMA
(1,n)-OS,A (1λ) as
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AdvSeq-sEUFCMA
(1,n)-OS,A (1λ)

= Pr[GameSeq-sEUFCMA
(1,n)-OSOurs,A

(1λ) ⇒ 1]

= Pr[GameBase(1,n)-OSOurs,A(1
λ) ⇒ 1]

= Pr[GameBase(1,n)-OSOurs,A(1
λ) ⇒ 1 ∧ DSforge = true]

+ Pr[GameBase(1,n)-OSOurs,A(1
λ) ⇒ 1 ∧ COMcoll = true]

+ Pr[GameBase(1,n)-OSOurs,A(1
λ) ⇒ 1 ∧ DSforge = false ∧ COMcoll = false]

≤ AdvsEUFCMA
DS,A1

(1λ) + AdvsBindCOM,A2
(1λ) + AdvCollH,A3

(1λ).

By this fact, we can conclude Theorem 2. ⊓⊔

5 Conclusion

Summary of Our Results. In this paper, we revisit the unforgeability se-
curity for a 1-out-of-n oblivious signature scheme and point out problems. By
reflecting on these problems, we define the Seq-sEUF-CMA security. We propose
the improved generic construction of a 1-out-of-n oblivious signature scheme
(1, n)-OSOurs. Compared to the construction by Zhou et al. [21], our construc-
tion offers a smaller second message size. The sum of a second message size and
a signature size is improved from O(n) to O(log n).

Discussion of Our Security Model and Open Problem. We introduce
the Seq-sEUF-CMA security in Definition 10. This security model restricts an
adversary A to execute signing interactions only in a sequential manner. It is
natural to consider a model that allows concurrent signing interactions. However,
if we straightforwardly extend our security model to a concurrent setting, there
is a trivial attack.

Let us consider the following adversary A that runs signing protocol ex-
ecutions twice concurrently. A chooses two list M1 = (m1,0, . . . ,m1,n−1) and
M2 = (m2,0, . . . ,m2,n−1) such that M1∩M2 = ∅ (i.e., there is no element m such
that m ∈ M1 ∧m ∈ M2). In the 1st interaction, A chooses m1,0 ∈ M1, obtains
a signature σ1 on a message m1,0. In the 2nd interaction A chooses m2,0 ∈ M2,
obtains a signature σ2 on a message m2,0. A finishs the 1st interaction by out-
putting (m2,0, σ2). Since m2,0 /∈ M1, A trivially wins the unforgeability game.

Due to this trivial attack, we cannot straightforwardly extend our security
model to the concurrent signing interaction setting. We leave an open problem
to define the unforgeability security model for a 1-out-of-n oblivious signature
scheme that supports concurrent signing interactions.
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Compact Identity-based Signature and
Puncturable Signature from SQISign

Abstract. Puncturable signature (PS) offers a fine-grained revocation
of signing ability by updating its signing key for a given message m such
that the resulting punctured signing key can produce signatures for all
messages except for m. In light of the applications of PS in proof-of-stake
blockchain protocols, disappearing signatures and asynchronous trans-
action data signing services, this paper addresses the need for design-
ing practical and efficient PS schemes. Existing proposals pertaining to
PS suffer from various limitations, including computational inefficiency,
false-positive errors, vulnerability to quantum attacks and large key and
signature sizes. To overcome these challenges, we aim to design a PS
from isogenies. We first propose an Identity-Based Signature (IBS) by
employing the Short Quaternion and Isogeny Signature (SQISign). We
provide a rigorous security analysis of our IBS and prove it is secure
against unforgeability under chosen identity and chosen message attacks.
More interestingly, our IBS achieves the most compact key and signa-
ture size compared to existing isogeny-based IBS schemes. Leveraging
our proposed IBS, we introduce the first Short Quaternion and Isogeny
Puncturable Signature (SQIPS) which allows for selective revocation of
signatures and is supported by a comprehensive security analysis against
existential forgery under chosen message attacks with adaptive punctur-
ing. Our PS scheme SQIPS provides resistance from quantum attacks,
enjoys small signature size and is free from false-positive errors.

Keywords: Puncturable signature, Isogenies, Identity-based signature,
Post-quantum cryptography.

1 Introduction

With the proliferation of digital technology and the widespread adoption of on-
line transactions, ensuring the privacy and security of sensitive data has emerged
as a paramount concern. Cryptographic techniques lay the foundation for secure
transactions by protecting the integrity and confidentiality of digital communica-
tions. Digital signatures are of particular importance among these cryptographic
techniques as they enable parties to verify the authenticity and integrity of com-
munications over the Internet. Puncturable signature (PS) is a variant of digital
signature proposed by Bellare, Stepanovs and Waters [1] at EUROCRYPT 2016.
It offers a fine-grained revocation of signing ability by updating the secret key
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with selective messages. In contrast to a conventional digital signature, PS in-
cludes an additional algorithm known as Puncture which enables the signer to
create punctured secret key with messages chosen by itself. Precisely, with the
punctured secret key that has been punctured at a specific message m, the signer
can sign on any message except for the punctured message m. The security defi-
nition of a PS requires that the adversary cannot forge signatures on punctured
messages even though the punctured secret key is compromised.
Applications. Puncturable signatures have been identified as a versatile cryp-
tographic primitive with numerous applications. These include improving the
resilience of proof-of-stake blockchain protocols, designing disappearing signa-
tures and securing asynchronous transaction data signing services. We delve
deeper into these applications and their significance below:

– Proof of Stake (PoS) and Proof of Work (PoW) are two consensus mech-
anisms used in blockchain networks to validate transactions. While PoW
requires substantial computational power, PoS relies on participants’ cryp-
tocurrency stake, resulting in a more energy-efficient approach. However, the
majority of existing PoS protocols are prone to long-range attacks [9] [7]. In
this attack, the attacker can tweak the historical records of the blockchain
which could lead to double-spending of cryptocurrency or the deletion of
prior transactions. PS provide a viable solution to construct practical PoS
blockchain resilient to long-range attacks by enabling the selective revoca-
tion of past signatures. By puncturing prior used signatures associated with
a specific stakeholder, the potential for an attacker to leverage accumulated
stakes from the past and manipulate the blockchain’s history is reduced.
This prevents the forging of past signatures and deter long-range attacks.

– Puncturable signatures are essential building blocks for designing disappear-
ing signature [10] in the bounded storage model. A disappearing signature
refers to a signature scheme where the signature becomes inaccessible or
“disappears” once the streaming of the signature stops. In the context of
bounded storage model, a disappearing signature ensures that the signature
can only be verified online and cannot be retained by any malicious party.

– Asynchronous transaction data signing services involve the signing and verifi-
cation of transaction data in a non-interactive manner without necessitating
all parties involved to be online simultaneously [15]. In this context, messages
may be delayed and participants may not be available simultaneously due to
factors like connectivity issues or delivery failures. PS have applications in
ensuring the integrity and authenticity of transaction data in asynchronous
signing services. By using PS, the transaction session identity can serve as a
prefix that is subsequently punctured after the honest user signs the trans-
action data. This ensures that no other signature can exist for messages with
the same prefix, thereby upholding the integrity of the transaction data.

Related Works. Several studies have been carried out pertaining to PS, explor-
ing their potential applications and security properties. The notion of PS was first
proposed by Bellare et al. [1] in 2016. However, their proposed scheme was based
on indistinguishability obfuscation which resulted in excessive computational
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overhead, rendering the scheme impractical. In a subsequent work, Halevi et al.
[11] proposed a PS by combining a statistically binding commitment scheme with
non-interactive zero-knowledge proofs. Their approach differed from the conven-
tional PS schemes as it involved updating the public key instead of the secret
key during each puncture operation which posed significant challenges in prac-
tical deployment. In 2020, Li et al. [13] presented a PS using a bloom filter that
surpasses prior schemes in terms of signature size and algorithm efficiency. Addi-
tionally, the authors explored the application of PS in proof-of-stake blockchain
protocols, specifically addressing the issue of long-range attacks caused by secret
key leakage [9] [7]. However, their proposed scheme faced a notable challenge in
the form of non-negligible false-positive errors, stemming from the probabilistic
nature of the bloom filter data structure. Moreover, their proposed scheme was
based on the Strong Diffie-Hellman (SDH) assumption in bilinear map setting
and is thus susceptible to quantum attacks due to Shor’s algorithm [18]. In light
of the devastating consequences that quantum computers have had on the secu-
rity of classical cryptosystems, Jiang et al. [12] proposed a generic construction
of PS from identity-based signatures (IBS). Moreover, they presented different
instantiations of their generic construction from lattice-based, pairing-based and
multivariate-based assumptions. More precisely, their lattice-based instantiation
leverages the efficient IBS proposed by Tian and Huang [19] and is based on
the Short Integer Solution (SIS) assumption. Their pairing-based instantiation
uses the identity-based version of Paterson’s signature [20] which is based on
the Computational Diffie-Hellman (CDH) assumption. The instantiation over
multivariate assumption relies on ID-based Rainbow signature [4].

Contributions. The existing proposals for PS are undesirable for practical ap-
plications. Some PS schemes have large key and signature sizes as they rely on
heavy cryptographic structures, making them computationally expensive and in-
efficient. The PS based on bloom filter suffers from non-negligible false-positive
errors, providing economical benefits to the attackers in blockchain. Some PS
schemes are prone to quantum attacks raising significant security concerns. To
address these limitations, it is imperative to develop improved and more practi-
cal approaches to PS. In this work, we identify a gap in the existing literature,
noting the absence of a construction for PS from isogenies. The emergence of
isogeny-based cryptography as a promising candidate for post-quantum cryp-
tosystems, characterized by its compact key sizes compared to other alterna-
tives, has motivated us to focus on the design of an isogeny-based PS scheme.
The compactness of isogeny-based cryptography makes it particularly appealing
for practical applications, where efficiency and scalability are crucial factors. To
show an instantiation of the generic construction of PS proposed by Jiang et
al. [12], we seek an IBS scheme from isogenies. One of the main technical chal-
lenges encountered during our research is the absence of a suitable IBS based
on isogenies to instantiate the generic construction. Though there exist two con-
structions of IBS from isogenies in the literature, none appears to be a suitable
candidate to design PS. Peng et al. [16] proposed the first construction of IBS
from isogenies. Unfortunately, their IBS scheme was proven to be flawed by Shaw

Session 6 - 2 The 26th Annual International Conference on Information Security and Cryptology

ICISC 2023 355



4

and Dutta [17] who provided a viable fix and designed an IBS scheme from ID-
based identification scheme. However, we find that the IBS scheme of [17] has a
large key and signature size, rendering it unsuitable for blockchain applications.
Furthermore, both the prior IBS schemes are based on Commutative Supersin-
gular Isogeny Diffie-Hellman (CSIDH) based group action [2] which suffers from
a subexponential attack [5] leading to poor concrete efficiency. The somewhat
unsatisfactory state-of-art motivates us to first design an IBS from isogenies with
compact key and signature size.

The most recent and sophisticated Short Quaternion and Isogeny Signature
(SQISign) by De Feo et al. [6] is the starting point in designing our IBS. The
signature scheme SQISign is derived from a one-round, high soundness, interac-
tive identification protocol. The combined size of the signature and public key of
SQISign are an order of magnitude smaller than all other post-quantum signature
schemes. We then employ our proposed IBS to design our PS from isogenies.
Thus, our main contributions in this paper are two-fold, as summarized below:

– Firstly, we design an IBS scheme from SQISign which we refer to as Short
Quaternion and Isogeny Identity-based Signature (SQIIBS). We provide a
rigorous security reduction showing it is secure against unforgeability under
chosen identity and chosen message attacks (UF-IBS-CMA). We compare our
scheme with the existing IBS schemes from isogenies and show that our
scheme outperforms existing schemes in terms of key size and signature size
which thereby reduces the storage and communication cost.

– Secondly, we employ our identity-based signature scheme SQIIBS to con-
struct our PS from isogenies which we refer to it as Short Quaternion and
Isogeny Puncturable Signature (SQIPS). We prove our scheme to be secure
against existential unforgeability under chosen message attacks with adaptive
puncturing (UF-CMA-AP). We also compare the features of our scheme with
the existing PS schemes. Our scheme works for a pre-determined time of
key punctures since the range of prefix space is fixed in advance. The size
of the punctured secret key decreases linearly as the times of key puncture
increase. Our scheme involves an efficient puncture operation that only con-
tain a conversion from a bit string to a decimal integer and the deletion of a
part in the current secret key. More positively, our scheme provides quantum
security, enjoys small signature size and is free from false-positive errors.

2 Preliminaries

Let λ ∈ N denotes the security parameter. By i ∈ [T ], we mean i belongs to
the set {1, 2, . . . , T}. The symbol #S denotes the cardinality of S. By bin(x),
we mean the binary representation of x. A function ϵ(·) is negligible if for every
positive integer c, there exists an integer k such that for all λ > k, |ϵ(λ)| < 1/λc.
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2.1 Quaternion Algebras, Orders and Ideals

Quaternion Algebras. For a, b ∈ Q∗ = Q \ {0}, the quaternion algebra over
Q, denoted by H(a, b) = Q + iQ + jQ + kQ, is defined as a four-dimensional
non-commutative vector space with basis {1, i, j, k} such that i2 = a, j2 = b
and k = ij = −ji. Every quaternion algebra H(a, b) is associated by a standard
convolution g : H(a, b) → H(a, b) given by g : α = a1 + a2i + a3j + a4k →
a1 − a2i − a3j − a4k = ᾱ. The reduced norm nr : H(a, b) → Q of a standard
convolution g is the map nr : α → αg(α). In this work, we are interested in the
quaternion algebra Bp,∞ = H(−1, −p) for some prime p.

Ideals and Orders. A fractional ideal I = α1Z+α2Z+α3Z+α4Z is a Z-lattice
of rank four with {α1, α2, α3, α4} a basis of Bp,∞. The norm of I, denoted by
nr(I), is defined as the largest rational number such that nr(α) ∈ nr(I)Z for
any α ∈ I. The conjugate ideal Ī of I is given by Ī = {ᾱ | α ∈ I}. An order
is a subring of Bp,∞ that is also a fractional ideal. A maximal order O is an
order that is not properly contained in any other order. The left order of a
fractional ideal I, denoted by OL(I), is defined as OL(I) = {α ∈ Bp,∞ | αI ⊆ I}.
Similarly, right order of a fractional ideal I, denoted by OR(I), is defined as
OR(I) = {α ∈ Bp,∞ | Iα ⊆ I}. Here I is said to be a left OL(I)-ideal or a right
OR(I)-ideal or an (OL(I), OR(I))-ideal. An Eichler order is the intersection
of two maximal orders inside Bp,∞. A fractional ideal I is called integral if
I ⊆ OL(I) or I ⊆ OR(I). Two left O-ideals I and J are equivalent if there exists
β ∈ Bp,∞ \ {0} such that I = Jβ and is denoted by I ∼ J . A special extremal
order is an order O in Bp,∞ which contains a suborder of the form R+ jR where
R = Z[ω] ⊂ Q[i] is a quadratic order and ω has smallest norm in O.

2.2 Elliptic curves, isogenies and Deuring’s correspondence

Isogenies. Let E1 and E2 be two elliptic curves over a finite field F . An isogeny
from E1 to E2 is a non-constant morphism φ : E1 → E2 over F satisfying
φ(ΘE1) = ΘE2 where ΘEi

is the point at infinity of the curve Ei for i = 1, 2.
The degree of the isogeny φ, denoted by deg(φ) is its degree as a rational map. A
non-zero isogeny φ : E1 → E2 is called separable if and only if deg(φ) = #ker(φ)
where ker(φ) = φ−1(ΘE2) is the kernel of φ. An isogeny φ is said to be cyclic
(non-backtracking) if its kernel is a cyclic group. For any isogeny φ : E1 → E2,
there exists a unique dual isogeny φ̂ : E2 → E1 satisfying φ ◦ φ̂ = [deg(φ)], the
multiplication-by- deg(φ) map on E2. An isogeny from an elliptic curve E to itself
is called an endomorphism. The set of all endomorphisms of E forms a ring under
pointwise addition and composition, called the endomorphism ring of E and is
denoted by End(E). For a supersingular elliptic curve E, the endomorphism ring
End(E) is isomorphic to an order in a quaternion algebra. The j-invariant of an
elliptic curve E : y2 = x3 + Ax + B over F is given by j(E) = 1728 4A3

4A3+27B2 .
Theorem 2.21. [2] Given a finite subgroup G of an elliptic curve E1, there
exists a unique (up to F -isomorphism) elliptic curve E2 and a separable isogeny
φ : E1 → E2 such that ker(φ) = G and E2 := E1/G with deg(φ) = #ker(φ).
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Throughout this work, we focus on supersingular curves over F = Fp2 . We
fix the curve E0 : y2 = x3 +x over Fp2 which has special extremal endomorphism
ring End(E0) = O0 = ⟨1, i, i+j

2 , 1+k
2 ⟩ where i2 = −1, j2 = −p and k = ij.

Deuring’s correspondence: Deuring’s correspondence [8] establishes a one-
to-one correspondence between the set of isomorphism classes of supersingular
curves over Fp2 and the set of ideal classes of a given maximal order. Under this
correspondence, we look into the connection between ideals in maximal orders
of quaternions and separable isogenies between supersingular curves over Fp2 .

Theorem 2.22. Let φ : E0 → E1 be a separable isogeny and O0 = End(E0)
and O1 = End(E1) are the maximal orders corresponding to the endomorphism
rings of E0 and E1. Then we define the corresponding left O0-ideal Iφ = {α ∈
O0 | α(P ) = ΘE0 for all P ∈ ker(φ)}. Conversely, given a left O0-ideal I, we
can define the kernel E0[I] = ∩α∈IE0[α] = {P ∈ E0 | α(P ) = ΘE0 for all α ∈ I}
and compute the separable isogeny φI : E0 → E0/E0[I] that corresponds to I.

Lemma 2.23. [6]. Let O be a maximal order, I be a left O-ideal and β ∈ I \{0}.
Then χI(β) = I β̄

nr(I) is a left O-ideal equivalent to I and has norm nr(β)
nr(I) .

Pushforward and pullback isogeny. Consider three elliptic curves E0, E1,
E2 over Fp2 and two separable isogenies φ1 : E0 → E1 and φ2 : E0 → E2
of coprime degrees N1 and N2 respectively. The pushforward of φ1 by φ2 is
denoted by [φ2]∗φ1 and is defined as the separable isogeny [φ2]∗φ1 from E2 to
some new curve E3 such that ker([φ2]∗φ1) = φ2(ker(φ1)) and deg([φ2]∗φ1) = N1.
Similarly, the pushforward of φ2 by φ1 is denoted by [φ1]∗φ2 and is defined as the
separable isogeny [φ1]∗φ2 : E1 → E3 such that ker([φ1]∗φ2) = φ1(ker(φ2)) and
deg([φ1]∗φ2) = N2. Pullback isogeny is the dual notion of pushforward isogeny.
Consider two separable isogeniers φ1 : E0 → E1 and ρ2 : E1 → E3 of coprime
degrees. The pullback of ρ2 by φ1 is denoted by [φ1]∗ρ2 and is defined as the
separable isogeny [φ1]∗ρ2 from E0 to a new curve E4 satisfying [φ1]∗ρ2 = [φ̂1]∗ρ2.

The pushforward and pullback terms can be extended to ideals as well.
Consider a (O0, O1)-ideal J and a (O0, O2)-ideal K where O0 = End(E0),
O1 = End(E1) and O2 = End(E2). The pushforward of J by K, denoted by
[K]∗J is the ideal I[φK ]∗φJ

corresponding to the pushforward isogeny [φK ]∗φJ .
Consider a (O1, O3)-ideal L where O1 = End(E1), O3 = End(E3), then the
pullback of L by J , denoted by [J ]∗L is defined as [J ]∗L = [J̄ ]∗L .

Lemma 2.24. [6] Let I is an ideal with left order O0 and right order O and
J1, J2 be O0-ideals with J1 ∼ J2 and gcd(nr(J1), nr(J2), nr(I)) = 1. Suppose that
J1 = χJ2(β) and β ∈ J2 ∩ O0 ∩ O. Then [I]∗J1 ∼ [I]∗J2 and [I]∗J1 = χ[I]∗J2(β).

2.3 SigningKLPT algorithm

We briefly review below the sub-algorithms invoked by the algorithm Sign-
ingKLPT. The details of which can be found in the work of De Feo et al. [6].
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Cornacchia(M) → (x, y): This algorithm on input M ∈ Z either outputs ⊥ if M
cannot be represented as f(x, y) or returns a solution (x, y) to f(x, y) = M .

EquivalentPrimeIdeal(I) → L ∼ I: This algorithm takes as input a left O0-ideal
I represented by Minkowski reduced basis [14] (δ1, δ2, δ3, δ4). It chooses an
integer m, generates a random element δ = Σixiδi with xi ∈ [−m, m] and
checks if nr(δ)

nr(I) is a prime number. If not, it continues to generate random
δ until it finds a δ ∈ I for which nr(δ)

nr(I) is a prime number. The algorithm
outputs the ideal L = χI(δ) = I δ̄

nr(I) equivalent to I and of prime norm.
EquivalentRandomEichlerIdeal(I, N) → L ∼ I: This algorithm takes as input a

left O0-ideal I and an integer N and finds a random equivalent left O0-ideal
L of norm coprime to N .

FullRepresentIntegerO0(M) → γ: This algorithm takes input an integer M ∈ Z
with M > p and outputs an element γ ∈ O0 with nr(γ) = M as follows.

i. Sets m′ = ⌊
√

4M
p ⌋ and samples a random integer z′ ∈ [−m′, m′].

ii. Sets m′′ = ⌊
√

4M
p − (z′)2⌋ and samples a random integer t′ ∈ [−m′′, m′′].

iii. Sets M ′ = 4M −p
(
(z′)2+(t′)2)

and runs Cornacchia(M ′) until Cornacchia
returns a solution (x′, y′) to f(x′, y′) = M ′.

iv. If x′ ̸= t′ (mod 2) or z′ ̸= y′ (mod 2) then go back to Step (i).
v. The algorithm outputs γ = x + yi + z i+j

2 + t 1+k
2 ∈ O0 of norm M where

x = x′−t
2 , y = y′−z

2 , z = z′ and t = t′.
IdealModConstraint(I, γ) → (C0 : D0): On input a left O0-ideal I of norm N and

an element γ ∈ O0 of norm Nn, this algorithm outputs a projective point
(C0 : D0) ∈ P1(Z/NZ) satisfying γµ0 ∈ I with µ0 = (C0 + ωD0)j ∈ Rj.

EichlerModConstraint(I, γ, δ) → (C0 : D0): This algorithm takes input a left
O0-ideal I of norm N , elements γ, δ ∈ O0 of norms coprime to N and
outputs a projective point (C0 : D0) ∈ P1(Z/NZ) satisfying γµ0δ ∈ I where
µ0 = (C0 + ωD0)j ∈ Rj.

FullStrongApproximationS(N, C, D) → µ: Taking as input a prime N , integers
C, D and a subset S ⊂ N, this algorithm outputs µ ∈ O0 of norm in S
satisfying 2µ = λµ0 + Nµ1 where µ0 = (C0 + ωD0)j ∈ Rj, λ ∈ Z and
µ1 ∈ O0. When S = {d ∈ N : d|D} for some D ∈ N, we simply write
FullStrongApproximationD.

CRTM,N (x, y) → z: This is the algorithm for Chinese Remainder Theorem
which takes as input x ∈ ZM , y ∈ ZN and returns z ∈ ZMN satisfying z ≡ x
(mod M) and z ≡ y (mod N) where M and N are coprime to each other.

We now describe the algorithm SigningKLPTℓe(Iτ , I) [6] which takes as input a
prime l, a fixed e ∈ N, a left O0 and a right O-ideal Iτ of norm Nτ and a left
O-ideal I and outputs an ideal J ∼ I of norm ℓe. The steps involved in the
algorithm SigningKLPT are illustrated in Fig. 1 and explicitly described below.

1. Runs the algorithm EquivalentRandomEichlerIdeal(I, Nτ ) to generate a ran-
dom ideal K ∼ I with gcd(nr(K), Nτ ) = 1. We denote the right order of the
ideal K (or I) by O2.
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2. Performs the pullback of the (O, O2)- ideal K by the (O0, O)-ideal Iτ to
obtain a (O0, O′)-ideal K ′ = [Iτ ]∗K where O′ = End(E′) for some curve E′.

3. Computes an ideal L = K ′ δ̄′

nr(K′) = χK′(δ′) ← EquivalentPrimeIdeal(K ′)
equivalent to K ′ but of prime norm N for some δ′ ∈ K ′. (See Lemma 2.23)

4. Chooses e0 ∈ N and runs the algorithm FullRepresentIntegerO0(Nℓe0) to ob-
tain an element γ ∈ O0 such that nr(γ) = Nℓe0 . Sets e1 = e − e0 ∈ N.

5. Finds the projective point (C0 : D0) ∈ P1(Z/NZ) ← IdealModConstraint(L, γ)
satisfying γµ0 ∈ L where µ0 = (C0 + ωD0)j ∈ Rj.

6. Chooses δ ∈ O0 with gcd(nr(δ), Nτ ) = 1 and runs the algorithm Eichler-
ModConstraint(Z + Iτ , γ, δ) on input the ideal Z + Iτ of norm Nτ and ele-
ments γ, δ ∈ O0 of norms coprime to Nτ to find the projective point (C1 :
D1) ∈ P1(Z/NτZ) satisfying γµ1δ ∈ Z + Iτ where µ1 = (C1 + ωD1)j ∈ Rj.

7. Computes C ← CRTN,Nτ (C0, C1) where C is the solution modulo NNτ to
the system of congruences C ≡ C0 (mod N) and C ≡ C1 (mod Nτ ) and
D ← CRTN,Nτ

(D0, D1) where D is the solution modulo NNτ to the system
of congruences D ≡ D0 (mod N) and D ≡ D1 (mod Nτ ). If ℓep(C2 + D2)
is not a quadratic residue, go back to Step 4 and repeat the process.

8. Executes the algorithm FullStrongApproximationℓ⋆(NNτ , C, D) to generate
µ ∈ O0 of norm ℓe1 where ℓ⋆ = {ℓα : α ∈ N}.

9. Sets β = γµ, obtains the (O0, O′)-ideal χL(β) = L β̄
nr(L) (See Lemma 2.23)

and computes the (O, O2)- ideal J = [Iτ ]∗χL(β) by using pushforward of
the ideal χL(β) by the (O0, O)-ideal Iτ . (See Lemma 2.24)

10. The algorithm then returns the ideal J ∼ I.

Fig. 1. Pictorial description of SigningKLPT algorithm

Correctness. Step 5 and Step 8 ensure β ∈ L whereas Step 6 ensures β ∈
Z + Iτ . Also we have, nr(β) = nr(γ)nr(µ) = Nℓe0 ℓ̇e1 = Nℓe which implies nr(J)
= nr([Iτ ]∗χL(β)) = nr(β)

nr(L) = Nℓe

N = ℓe. Also, Lemma 2.24 applied to χL(β) =

L β̄
nr(L) = χK′(δ′) β̄

nr(L) = K ′ δ̄′

nr(K′)
β̄

nr(L) = χK′( βδ′

nr(L) ) implies that [Iτ ]∗χL(β) ∼
[Iτ ]∗K ′. This proves J ∼ K and we also have K ∼ I, which implies J ∼ I.
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2.4 Signature Scheme

Definition 2.41. A signature scheme associated with a message space M is a
tuple of probabilistic polynomial-time (PPT) algorithms Sig = (Setup, KeyGen,
Sign, Verify) with the following syntax:
Sig.Setup(1λ) → pp : A trusted party taking input 1λ outputs the public pa-

rameter pp and makes it publicly available.
Sig.KeyGen(pp) → (sk, pk) : On input pp, the user runs this algorithm to gen-

erate a signing and verification key pair (sk, pk).
Sig.Sign(pp, sk, m) → σ : Taking input pp, sk and a message m ∈ M, the signer

executes this algorithm to generate a signature σ on the message m.
Sig.Verify(pp, pk, m, σ) → Valid/Invalid : On input pp, pk, m ∈ M and a

signature σ, the verifier checks the validity of the signature σ on m.

Correctness. For all pp ← Sig.Setup(1λ), all (sk, pk) ← Sig.KeyGen(pp) and all
signature σ ← Sig.Sign(pp, sk, m), it holds that

Sig.Verify(pp, pk, m, σ) = Valid

Definition 2.42. A signature scheme Sig is secure against existential unforge-
ability under chosen-message attacks (UF-CMA) if for all PPT adversary A, there
exists a negligible function ϵ such that

AdvUF-CMA
Sig, A (λ) = Pr[A wins in ExpUF-CMA

Sig, A (λ)] < ϵ

where the experiment ExpUF-CMA
Sig, A (λ) is depicted in Fig.2.

Setup: The challenger C generates the public parameter pp ← Sig.Setup(1λ) and secret-public
key pair (sk, pk) ← Sig.KeyGen(pp). It forwards pp and pk to the adversary A while keeps sk
secret to itself. It also maintains a list SList and initializes SList to ∅.

Query Phase: A issues polynomially many adaptive signature queries to the following oracle:
− OS(sk, ·) : On receiving a signature query on a message m, the challenger C checks if

m /∈ M. If the check succeeds, it returns ⊥. Otherwise, it computes a signature σ ←
Sig.Sign(pp, sk, m) on the message m under the secret key sk and updates SList ← SList ∪
{m}. It returns the computed signature σ to the adversary A.

Forgery: The adversary A eventually submits a forgery (m∗, σ∗). The adversary A wins the
game if m∗ /∈ SList and Valid ← Sig.Verify(pp, pk, m∗, σ∗).

Fig. 2. ExpUF-CMA
Sig, A (λ): Existential unforgeability under chosen-message attack

2.5 SQISign: an isogeny-based signature scheme

The signature scheme SQISign [6] comprises of four PPT algorithms (Setup,
KeyGen, Sign, Verify) having the following interface:
SQISign.Setup(1λ) → ppsgn: A trusted authority runs this algorithm on input a
security parameter 1λ and performs the following steps:

i. Chooses a prime p and fixes the supersingular curve E0 : y2 = x3+x over Fp2

with special extremal endomorphism ring End(E0) = O0 = ⟨1, i, i+j
2 , 1+k

2 ⟩.
ii. Picks a smooth number D = 2e where 2e > p3.
iii. Picks an odd smooth number Dc = ℓe where ℓ is a prime and e ∈ N and

computes µ(Dc) = (ℓ + 1) · ℓe−1.
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iv. Samples a cryptographic hash function H1 : Fp2 × {0, 1}∗ → [µ(Dc)].
v. Samples an arbitrary function ΦDc

(E, s) that maps a curve E and an integer
s ∈ [µ(Dc)] to a non-backtracking isogeny of degree Dc from E [3].

vi. Sets the public parameter ppsgn = (p, E0, Dc, D, H1, ΦDc).
SQISign.KeyGen(ppsgn) → (sk, pk): On input ppsgn, the key generation algorithm
run by a user generates a signing-verification key pair (sk, pk) as follows:

i. Picks a random isogeny τ : E0 → EA of degree Nτ .
ii. Sets the signing key sk = τ and verification key pk = EA.

SQISign.Sign(ppsgn, sk, m) → σ: Taking input ppsgn, signing key sk = τ and a
message m ∈ {0, 1}∗, the signer generates a signature σ on m as follows:

i. Picks a random commitment isogeny ψ : E0 → E1.
ii. Computes s = H1(j(E1), m) and sets the challenge isogeny ΦDc

(E1, s) = φ
where φ : E1 → E2 is a non-backtracking isogeny of degree Dc.

iii. Computes Īτ , Iτ , Iψ and Iφ corresponding to τ̂ , τ , ψ and φ respectively.
iv. The signer having the knowledge of O = End(EA) through sk = τ and O2 =

End(E2) through φ ◦ ψ : E0 → E2, executes the algorithm SigningKLPT2e(Iτ , I)
described in Section 2.3 on input the (O0, O)-ideal Iτ and the left O-ideal
I = IφIψ Īτ to obtain a (O, O2)-ideal J ∼ I of norm D = 2e.

v. Constructs a cyclic isogeny η : EA → E2 of degree D corresponding to the
ideal J such that φ̂ ◦ η is cyclic. The signature is the pair σ = (E1, η).

SQISign.Verify(ppsgn, pk, m, σ) → Valid/Invalid: The verifier verifies the validity
of the signature σ = (E1, η) on the message m as follows:

i. Computes s = H1(j(E1), m) and then recovers the isogeny ΦDc(E1, s) = φ.
ii. Checks if η is an isogeny of degree D from EA to E2 and that φ̂ ◦ η : EA → E1

is cyclic.
iii. If all the checks succeed returns Valid, otherwise returns Invalid.
Correctness. It follows from the correctness of SigningKLPT algorithm.

3 Security Aspect of SQISign

To prove the security of the signature scheme SQISign, the authors resort to
a computational assumption that formalises the idea that the isogeny η corre-
sponding to the ideal J returned by the algorithm SigningKLPT is indistinguish-
able from a random isogeny of the same degree. Before defining the problem
formally, we analyze the structure of η.

Lemma 3.01. [6] Consider the ideal L and element β ∈ L computed as in
steps 3, 9 respectively of the algorithm SigningKLPT described in Section 2.3.
The isogeny η corresponding to the output J of SigningKLPT algorithm is equal
to η = [τ ]∗ι where ι is an isogeny of degree ℓe satisfying β = ι̂ ◦ φL.

We recall the following notations before defining the (computationally) indistin-
guishable problem underlying the security of SQISign.
UL,Nτ

: For a given ideal L of norm N , UL,Nτ
denotes the set of all isogenies

ι computed in Lemma 3.01 from elements β = γµ ∈ L where γ is any
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possible output of the algorithm FullRepresentIntegerO0 and µ is computed
by algorithm FullStrongApproximation in Step 8 of SigningKLPT.

PNτ : We define PNτ =
⋃

C∈Cl(O) UC,Nτ where we write UC,Nτ for UL,Nτ where
L ← EquivalentPrimeIdeal(C) for an equivalence class C in the ideal class
group Cl(O0) of O0.

IsoD,j(E): Denotes the set of cyclic isogenies of degree D whose domain is a
curve inside the isomorphism class of E.

[τ ]∗P: Denotes the subset {[τ ]∗φ | φ ∈ P} of IsoD,j(E0) where P is a subset of
IsoD,j(E) and τ : E → E0 is an isogeny with gcd(deg(τ), D) = 1.

K: a probability distribution on the set of cyclic isogenies whose domain is E0,
representing the distribution of SQISign private keys.

Definition 3.02. [6] Let p be a prime and D be a smooth integer. Let τ : E0 →
EA be a random isogeny drawn from K and let Nτ be its degree. Let Oracleτ be
an oracle sampling random elements in [τ ]∗PNτ

. Let η be an isogeny of degree
D whose domain curve is E. Given p, D, K, EA, η and a polynomial number of
queries to Oracleτ , the Real or Random Isogeny problem is to determine where
1. whether η is uniformly random in IsoD,j(EA)
2. or η is uniformly random in [τ ]∗PNτ .

Informally speaking, the problem states that the ideals output by the algo-
rithm SigningKLPT are indistinguishable from uniformly random ideals of the
same norm. The hardness assumption underlying the security of SQISign is the
Real or Random Isogeny problem defined in Definition 3.02.

Theorem 3.03. [6] The scheme SQISign is UF-CMA secure under the hardness
of Real or Random Isogeny Problem defined in Definition 3.02.

3.1 Identity-based signature

Definition 3.11. An identity-based signature is a tuple IBS = (Setup, Extract,
Sign, Verify) of four PPT algorithms with the following syntax:
IBS.Setup(1λ) → (ppibs, msk): The key generation centre (KGC) on input 1λ

generates a public parameter ppibs and a master secret key msk.
IBS.Extract(ppibs, msk, id) → uskid: The KGC runs this key extract algorithm

on input the public parameter ppibs, the master secret key msk and user
identity id. It generates the user secret key uskid for the given identity id.

IBS.Sign(ppibs, uskid, m) → σ: Taking input the public parameter ppibs, user
secret key uskid and a message m, the signer executes this randomized algo-
rithm and outputs a signature σ on the message m.

IBS.Verify(ppibs, id, m, σ) → Valid/Invalid: The verifier runs this deterministic
algorithm on input the public parameter ppibs, an identity id, a message m
and a signature σ to verify the validity of the signature σ.

Correctness. For all (ppibs, msk) ← IBS.Setup(1λ), all uskid ← IBS.Extract(ppibs,
msk, id), all m and all id, it holds that

IBS.Verify(ppibs, id, m, IBS.Sign(ppibs, uskid, m)) → Valid.
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Definition 3.12. An IBS scheme is said to be secure against unforgeability
under chosen identity and chosen message attacks (UF-IBS-CMA) if for all PPT
adversary A, there exists a negligible function ϵ such that

AdvUF-IBS-CMA
IBS, A (λ) = Pr[A wins in ExpUF-IBS-CMA

IBS, A (λ)] < ϵ

where the experiment ExpUF-IBS-CMA
IBS, A (λ) that formalizes the unforgeability game

is described in Fig.3.

Setup: The challenger C takes input the security parameter 1λ and generate (ppibs, msk) ←
IBS.Setup(1λ). It gives the public parameter ppibs to A while keeps the master secret key msk
secret to itself. Also it maintains three lists Klist, Clist and Mlist and initializes each to ∅.

Query Phase: C responds to polynomially many adaptive queries made by A as follows:
– Oracle OExtract(·): On receiving a query on a user identity id from A, C checks whether
(id, uskid) ∈ Kist. If so, it returns uskid and appends id to CList. Otherwise, it generates uskid ←
IBS.Extract(ppibs, msk, id), returns uskid and appends (id, uskid) to Klist and id to Clist.
– Oracle OSign(·): On receiving a query on a message m and a user identity id from A, C
computes uskid as in the extraction query, except for appending identity id to Clist. It then
computes a signature σ ← IBS.Sign(ppibs, uskid, m) and appends (m, id, σ) to Mlist.

Forgery: The adversary A eventually outputs a message m∗, user identity id∗ and a forge sig-
nature σ∗. The adversary A wins the game if IBS.Verify(ppibs, id∗, m∗, σ∗) → Valid with the
restriction that id∗ /∈ Clist and (m∗, id∗, ·) /∈ Mlist.

Fig. 3. ExpUF-IBS-CMA
IBS, A (λ) : Unforgeability under chosen identity and chosen message

attacks

3.2 Puncturable Signature Scheme

Definition 3.21. A puncturable signature is a tuple PS = (PS.Setup, PS.Puncture,
PS.Sign, PS.Verify) of PPT algorithms associated with a message space M and
prefix space P that satisfy the following requirements. Note that, if x ∈ P, then
there exists some m ∈ M with prefix x and every message m has a unique prefix.
PS.Setup(1λ) → (ppps, sk0): On input 1λ, the signer executes this algorithm to

generate the public parameter pkps and initial secret key sk0.
PS.Puncture(sk, x′) → sk′: The signer takes as input its secret key sk and a prefix

x′ ∈ P and runs this randomized algorithm to output an updated secret key
sk′. We say the prefix x′ has been punctured and refer the updated secret
key sk′ as a punctured secret key.

PS.Sign(ppps, sk, m) → Σ/ ⊥: Taking input ppps, secret key sk and a message
m ∈ M, the signer runs this randomized algorithm to generate a signature
Σ if the prefix x′ ∈ P has not been punctured. Otherwise, it returns ⊥.

PS.Verify(ppps, m, Σ) → Valid/Invalid: This is a deterministic algorithm that
takes as input the public parameter ppps, a message m and a signature Σ.
It outputs Valid if Σ is a valid signature on m and Invalid otherwise.

Correctness. The scheme PS is correct if it satisfies the following conditions:
i. For any message m ∈ M, any prefix x′ ∈ P and any (ppps, sk0) ← PS.Setup(1λ),

it holds that PS.Verify(ppps, m, PS.Sign(ppps, sk0, m)) → Valid where sk0 is
the initial non-punctured secret key.
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ii. For any message m ∈ M with prefix x′ ∈ P which has been punctured with
secret key sk, it holds that PS.Verify(ppps, m, PS.Sign(ppps, sk′, m)) → Invalid
where sk′ ← PS.Puncture(sk, x′) is the punctured secret key corresponding
to the prefix x′.

iii. For any message m ∈ M with prefix x ∈ P which has not been punc-
tured, we have PS.Verify(ppps, m, PS.Sign(ppps, sk′, m)) → Valid where sk′ ←
PS.Puncture(sk, x′) is the punctured secret key corresponding to the prefix
x′ ̸= x of a message m′ with m′ ̸= m.

Definition 3.22. A puncturable signature scheme PS is secure against existen-
tial unforgeability under chosen-message attacks with adaptive puncturing (UF-
CMA-AP) if for all PPT adversary A, there exists a negligible function ϵ such
that

AdvUF-CMA-AP
PS, A (λ) = Pr[A wins in ExpUF-CMA-AP

PS, A (λ)] < ϵ

where the experiment ExpUF-CMA-AP
PS, A (λ) is described in Fig. 4.

Setup: The challenger C takes input the security parameter 1λ and generates (ppps, sk0) ←
PS.Setup(1λ). It forwards ppps to A while keeps sk secret to itself. It also maintains the set
Qsig for signed messages and the set Qpun for punctured prefixes and initializes each to ∅.

Query Phase: The adversary A issues polynomially many adaptive queries to the oracles
OPuncture(sk, ·) and OSign(ppps, sk, ·) as follows:

− OPuncture(sk, ·) : Upon receiving a query on prefix x′, the challenger C generates a punctured
secret key sk′ ← Puncture(sk, x′) and updates Qpun ← Qpun ∪ {x′}.

− OSgn(sk, ·) : On receiving a signature query on a message m with prefix x′ ∈ P, the
challenger C checks if x′ ∈ Qpun. If the check succeeds, it returns ⊥. Otherwise, it
computes the signature Σ ← PS.Sign(ppps, sk, m) on the message m and updates Qsig ←
Qsig ∪ {m}. It returns the computed signature Σ to the adversary A.

Challenge: The adversary A sends a target prefix x∗ to the challenger C and issues additional
puncture and signature queries as described in the Query phase.

Corruption Query: C returns the current secret key sk∗ if x∗ ∈ Qpun and ⊥ otherwise.
Forgery: The adversary A eventually submits a forgery (m∗, Σ∗, x∗) where x∗ is the prefix of

m∗. A wins the game if m∗ /∈ Qsig, x∗ ∈ Qpun and Valid ← PS.Verify(ppps, m∗, Σ∗).

Fig. 4. ExpUF-CMA-AP
PS, A (λ): Existential unforgeability under chosen-message attacks with

adaptive puncturing

4 Our Identity-based Signature from SQISign

In this section, we propose our identity-based signature from SQISign. We refer to
our scheme as Short Quaternion and Isogeny Identity-based Signatures (SQIIBS).
SQIIBS.Setup(1λ) → (ppibs, msk): A KGC on input the security parameter 1λ

generates the public parameter ppibs and a master secret key msk as follows:
i. Same as the algorithm SQISign.Setup described in Section 2.5. Additionally,

it picks a random isogeny τ1 : E0 → E
(1)
A .

ii. Publishes the public parameter ppibs = (p, E0, Dc, D, H1, ΦDc , E
(1)
A ) and

keeps the master secret key msk = τ1 secret to itself.
SQIIBS.Extract(ppibs, msk, id) → uskid: On input the public parameter ppibs =
(p, E0, Dc, D, H1, ΦDc

, E
(1)
A ), master secret key msk = τ1 and an identity id, the

KGC executes this algorithm to generate the user secret key uskid as follows:
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i. Picks a random isogeny τ2 : E0 → E
(2)
A .

ii. Selects a random commitment isogeny ψ1 : E0 → E
(1)
1 .

iii. Computes s1 = H1(j(E(1)
1 ), bin(j(E(2)

A ))||id) and sets ΦDc(E(1)
1 , s1) = φ1

where φ1 : E
(1)
1 → E

(1)
2 is a non-backtracking isogeny of degree Dc.

iv. Computes the ideals Īτ1 , Iτ1 , Iψ1 and Iφ1 corresponding to the isogenies τ̂1,
τ1, ψ1 and φ1 respectively.

v. The KGC having the knowledge of O(1) = End(E(1)
A ) through τ1 and O(1)

2 =
End(E(1)

2 ) through φ1 ◦ ψ1 : E0 → E
(1)
2 , executes the SigningKLPT2e(Iτ1 , I1)

algorithm (Section 2.3) on input the (O0, O(1))-ideal Iτ1 and a left O(1)-ideal
I1 = Iφ1Iψ1 Īτ1 to obtain a (O(1), O(1)

2 )-ideal J1 ∼ I1 of norm D = 2e.
vi. Constructs the isogeny η1 : E

(1)
A → E

(1)
2 of degree D corresponding to the

ideal J1 such that φ̂1 ◦ η1 : E
(1)
A → E

(1)
1 is cyclic and sets certid = (E(1)

1 , η1).
vii. Issues the user secret key uskid = (τ2, certid = (E(1)

1 , η1)).
SQIIBS.Sign(ppibs, uskid, m) → σ: On input ppibs = (p, E0, Dc, D, H1, ΦDc

, E
(1)
A ),

user secret key uskid = (τ2, certid) and a message m ∈ {0, 1}∗, the signer generates
a signature σ on m as follows:

i. Picks a random commitment isogeny ψ2 : E0 → E
(2)
1 .

ii. Computes s2 = H1(j(E(2)
1 ), m) and sets the challenge isogeny ΦDc

(E(2)
1 , s2) =

φ2 where φ2 : E
(2)
1 → E

(2)
2 is a non-backtracking isogeny of degree Dc.

iii. Computes the ideal Īτ2 , Iτ2 , Iψ2 and Iφ2 corresponding to the isogenies τ̂2,
τ2, ψ2 and φ2 respectively.

iv. The signer having the knowledge of O(2) = End(E(2)
A ) through τ2 and O(2)

2 =
End(E(2)

2 ) through φ2 ◦ ψ2, executes the algorithm SigningKLPT2e(Iτ2 , I2)
described in Section 2.3 on input the (O0, O(2))-ideal Iτ2 and a left O(2)-ideal
I2 = Iφ2Iψ2 Īτ2 to obtain a (O(2), O(2)

2 )-ideal J2 ∼ I2 of norm D.
v. Constructs the isogeny η2 : E

(2)
A → E

(2)
2 of degree D corresponding to the

ideal J2 such that φ̂2 ◦ η2 : E
(2)
A → E2

1 is cyclic and sets σ = (E(2)
1 , η2).

vi. Extracts certid from uskid and sets the signature σ = (σ, E
(2)
A , certid).

SQIIBS.Verify(ppibs, id, m, σ) → Valid/Invalid: The verifier employing ppibs =
(p, E0, Dc, D, H1, ΦDc

, E
(1)
A ) verifies the validity of signature σ = (σ, E

(2)
A , certid)

on m ∈ {0, 1}∗ as follows:
i. Parses σ = (σ = (E(2)

1 , η2), E
(2)
A , certid = (E(1)

1 , η1)).
ii. Computes s1 = H1(j(E(1)

1 ), bin(j(E(2)
A ))||id) and s2 = H1(j(E(2)

1 ), m).
iii. Recovers the isogenies ΦDc(E(1)

1 , s1) = φ1 and ΦDc(E(2)
1 , s2) = φ2.

iv. Checks if η1 is an isogeny of degree D from E
(1)
A to E

(1)
2 and that φ̂1 ◦ η1 :

E
(1)
A → E

(1)
1 is cyclic.

v. Checks if η2 is an isogeny of degree D from E
(2)
A to E

(2)
2 and that φ̂2 ◦ η2 :

E
(2)
A → E

(2)
1 is cyclic.

vi. If all the checks succeed returns Valid, otherwise returns Invalid.
Correctness. The correctness of our proposed scheme SQIIBS follows immedi-
ately from the correctness of SQISign signature described in Section 2.5.
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4.1 Efficiency

A theoretical comparison of our scheme SQIIBS with the existing works on IBS
from isogenies is provided in Table 1 and Table 2. We compare our scheme
with the CSIDH-based IBS scheme by Peng et al. [16] as well as the recently
proposed IBS scheme by Shaw et al. [17]. Table 2 depicts that the secret key size
and signature size of the existing IBS scheme grows with the value of S1. The
exponential size of S1 = 2η1−1 leads to large key and signatures, making them
impractical for real-life applications. The user secret key in our scheme comprises
of an elliptic curve over the field Fp2 and two isogenies of degree 2e. The elliptic
curve is represented by its j-invariant and thus it is of size 2 log p. As discussed in
[6], an isogeny of degree 2e can be compressed to e bits where e = 15

4 log p. Thus
the user secret key is of size 2 log p+2( 15

4 ) log p = 2 log p+ 15
2 log p. The signature

in our scheme comprises of three elliptic curves over Fp2 and two isogenies of
degree 2e. Thus, the signature in our scheme is of size 3(2 log p) + 2( 15

4 ) log p =
6 log p + 15

2 log p. Our scheme enjoys improved efficiency in terms of key and
signature sizes which thereby reduces the storage and communication cost.

Table 1. Comparison of our SQIIBS with existing IBS schemes

Scheme Security Analysis Rejection Sampling Security
Peng et al.’s IBS[16] ✗ ✓ CSIDH
Shaw et al.’s IBS [17] ✓ ✗ CSI-FiSh

Our Work ✓ ✗ SQISign

CSIDH = Commutative Supersingular Isogeny Diffie-Hellman, CSI-FiSh = Commutative Supersingular
Isogeny based Fiat-Shamir signature, SQISign = Short Quaternion and Isogeny Signature.

Table 2. Comparison of secret and signature size of our SQIIBS with existing IBS
schemes from isogenies

Scheme |uskid| |σ|
Peng et al.’s IBS[16] nT1S1 log(2I1 + 1) + T1S1 log p T1T2[n log(2I2 + 1) + log S1] + T1S1 log p
Shaw et al.’s IBS [17] T1S1[log S0 + log N ] T1T2[log N + log S1] + T1S1 log p

Our Work 2 log p + 15
2 log p 6 log p + 15

2 log p

Here n ∈ N, p is a prime, I0, I1 = δ0I0, I2 = δ1I1, T1, T2, S0 = 2η0 − 1 and S1 = 2η1 − 1 are
integers with T1 < S0 and T2 < S1. N is the size of ideal class group for CSIDH-512 parameter set.

4.2 Security Analysis

Theorem 4.21. Our proposed scheme SQIIBS is UF-IBS-CMA secure as the
underlying signature scheme SQISign is UF-CMA secure.

Proof. Let us assume that there exists an adversary A that wins the UF-IBS-CMA
game with non-negligible probability. At the end of the game, A outputs a valid
forgery (m∗, id∗, σ∗) where σ∗ = (σ∗, (E(2)

A )∗, certid∗). We employ the adversary A
as a subroutine to design an adversary B that breaks the UF-CMA security of the
signature scheme SQISign. To complete the security reduction, B simulating the
IBS security game with A must embed the public key given to B by its UF-CMA
challenger C into some part of the “target” which A takes as a target of forgery.
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There are two attack points in our construction. The adversary A may either
take the public parameter ppibs provided by B or it reuses the components certid∗

and (E(2)
A )∗ of the answer of the signing oracle on id∗ and message m ̸= m∗ for

its forgery. We denote the later event as “REUSE”. Then the advantage of A is
given by Pr[Success] = Pr[Success|¬REUSE] + Pr[Success|REUSE] where Success
is the event that A wins in ExpUF-IBS-CMA

IBS, A (λ). For each of the two cases ¬REUSE
and REUSE, we give reductions as follows:

Case 1 Pr[Success|¬REUSE]: We describe below how the UF-CMA adversary B
plays the role of the challenger and simulates the experiment ExpUF-IBS-CMA

IBS, A (λ).

Setup: The UF-CMA challenger C generates the public parameter ppsgn =
(p, E0, Dc, D, H1, ΦDc) by executing the algorithm SQISign.Setup(1λ) and
computes a secret-public key pair (sk, pk) ← SQISign.KeyGen(ppsgn) where
sk = τ1 and pk = E

(1)
A and forwards ppsgn and pk to the adversary B. It keeps

sk secret to itself. The challenger C also maintains a list SList and initializes
SList to ∅. Upon receiving ppsgn = (p, E0, Dc, D, H1, ΦDc) and pk = E

(1)
A

from C, B sets ppibs = (p, E0, Dc, D, H1, ΦDc , E
(1)
A ) and sends it to A. It also

initializes the lists Klist, Clist, Mlist to ∅.
Query Phase: The adversary B responds to polynomially many adaptive

queries made by A to the oracles OExtract and OSign as follows:
– Oracle OExtract(·): On receiving a query on a user identity id from A, B
checks whether (id, uskid) ∈ Kist. If there exists such a pair in Klist, it returns
uskid to A and appends id to CList. If (id, uskid) /∈ Kist, B picks a random
isogeny τ2 : E0 → E

(2)
A and queries its signing oracle OSign(sk = τ1, ·) sim-

ulated by C on the message bin(j(E(2)
A ))||id. Upon receiving the signature

certid = (E(1)
1 , η1) from C, the adversary B sets uskid = (τ2, certid) and re-

turns it to A. The adversary B also appends (id, uskid) to Klist and id to Clist.
The challenger C appends bin(j(E(2)

A ))||id in Slist.
– Oracle OSign(·): On receiving a query on a message m ∈ {0, 1}∗ and a user
identity id from A, B retrieves the pair (id, uskid) from Klist where uskid =
(τ2, certid) is the user secret key corresponding to id. If (id, uskid) /∈ Kist,
B picks a random isogeny τ2 : E0 → E

(2)
A and queries its signing oracle

OS(sk = τ1, ·) on the message bin(j(E(2)
A ))||id. Upon receiving the signature

certid = (E(1)
1 , η1) under sk = τ1 from C, B sets uskid = (τ2, certid). It then

executes σ = (E(2)
1 , η2) ← SQISign.Sign(ppsgn, τ2, m), sets the signature σ =

(σ, E
(2)
A , certid) and sends it to A. It also appends (m, id, σ) to Mlist.

Forgery: The adversary A eventually outputs a message m∗, user identity
id∗ and a forge signature σ∗ where σ∗ = (σ∗, (E(2)

A )∗, certid∗). If A wins the
UF-IBS-CMA game with non-negligible probability then (m∗, id∗, σ∗) must be
a valid forgery. Thus, IBS.Verify(ppibs, id∗, m∗, σ∗) → Valid where id∗ /∈ Clist
and (m∗, id∗, ·) /∈ Mlist. The adversary B submits bin(j((E(2)

A )∗))||id∗, certid∗

as a forgery to its own challenger C.
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The event ¬REUSE means (id∗, uskid∗) /∈ Klist where uskid∗ = (τ∗
2 , certid∗).

This implies that (bin(j((E(2)
A )∗))||id∗) /∈ Slist . Hence, the adversary B has out-

put the valid forgery (bin(j((E(2)
A )∗))||id∗, cert∗

id) such that SQISign.Veriy(ppsgn,
E

(1)
A , bin(j((E(2)

A )∗))||id∗, cert∗
id) → Valid. From the security of SQISign, it follows

that Pr[Success|¬REUSE] is negligible.

Case 2 Pr[Success|REUSE]: In this case the adversary A reuses the components
certid∗ and (E(2)

A )∗ of the answer of the signing oracle query on identity id∗ and
message m ̸= m∗ for its forgery.

Setup: The UF-CMA challenger C generates the public parameter ppsgn =
(p, E0, Dc, D, H1, ΦDc

) by executing the algorithm SQISign.Setup(1λ) as in
Case 1 and computes a secret-public key pair (sk, pk) ← SQISign.KeyGen(ppsgn)
where sk = τ2 and pk = E

(2)
A and forwards ppsgn and pk to the adversary

B. It keeps sk secret to itself. The challenger C maintains a list SList and
initializes SList to ∅. Upon receiving ppsgn = (p, E0, Dc, D, H1, ΦDc

) and
pk = E

(2)
A from the challenger C, the adversary B picks a random isogeny

τ1 : E0 → E
(1)
A , sets ppibs = (p, E0, Dc, D, H1, ΦDc , E

(1)
A ), msk = τ1 and

sends ppibs to A. It initializes the lists Klist, Clist, Mlist to ∅ and chooses
r ← {1, 2, . . . , q(λ)} where q(λ) is the maximum number of queries by A.

Query Phase: The adversary B responds to polynomially many adaptive
queries to the oracles OExtract and OSign made by A. Let id′ be the iden-
tity for which the rth signing query of A was made.
– Oracle OExtract(·): If A ever makes an extract query for the identity id′, the
experiment is aborted. On receiving a query on a user identity id ̸= id′ from
A, B checks whether (id, uskid) ∈ Kist. If there exists such a pair in Klist, it
returns uskid and appends id to CList. If (id, uskid) /∈ Kist, it picks a random
isogeny τ2 : E0 → E

(2)
A and uses msk = τ1 to compute certid = (E

(1)
1 ,η1)

← SQISign.Sign(ppsgn, τ1, bin(j(E
(2)
A ))||id). It then sets uskid = (τ2,certid) and

returns it to A. It appends (id,uskid) to Klist and id to Clist.
– Oracle OSign(·): The adversary B receives signing queries on pairs (m, id)
from the adversary A. For the rth signing query on (id′, m) by A, B first
checks whether (m, id′, σ) ∈ Mlist. If there exists such a tuple, the adversary
B aborts the experiment. Otherwise, B computes certid′ = ((E(1)

1 )′, η′
1) ←

SQISign.Sign(ppsgn, τ1, bin(j(E(2)
A ))||id′) using msk = τ1 and queries its sign-

ing oracle OS(sk = τ2, ·) on m. Upon receiving the signature σ = (E(2)
1 , η2)

on m from C under secret key sk = τ2, B sets σ′ = (σ, E
(2)
A , certid′) and sends

it to A. The adversary B updates the Mlist with (m, id′, σ′) and the chal-
lenger C updates Slist with m. For the ith query where i ∈ {r + 1, . . . , q(λ)},
on identity id′ and a message m′ by A, the adversary B checks whether
(m′, id′, σ′) ∈ Mlist. If such a tuple exists, B answers the query from the
Mlist, otherwise it proceeds as in the rth signing query.
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Upon receiving a query on a message m and identity id ̸= id′, B retrieves
the pair (id,uskid) from Klist where uskid = (τ2,certid) is the user secret key
corresponding to id. If (id, uskid) /∈ Kist, it picks a random isogeny τ2 : E0 →
E

(2)
A and uses its master secret key msk = τ1 to compute certid = (E

(1)
1 ,η1)

← SQISign.Sign(ppsgn, τ1, bin(j(E
(2)
A ))||id) and sets uskid = (τ2,certid). It then

computes the signature σ = (E
(2)
1 ,η2) ← SQISign.Sign(ppibs, τ̄2, m) on m and

sets σ = (σ,E
(2)
A ,certid) and sends it to A. It appends (m, id, σ) to Mlist.

Forgery: If A eventually outputs a message m∗, user identity id∗ and a forge
signature σ∗ where σ∗ = (σ∗, (E(2)

A )∗, certid∗) and the experiment was never
aborted, B submits (m∗, σ∗) as a forgery to its own challenger C. If A wins the
UF-IBS-CMA game with non-negligible probability then (m∗, id∗, σ∗) must
be a valid forgery. Thus, we have IBS.Verify(ppibs, id∗, m∗, σ∗) = Valid, id∗ /∈
Clist and (m∗, id∗, ·) /∈ Mlist. Note that the condition (m∗, id∗, ·) /∈ Mlist
means that the adversary B never queried its signing oracle OS(τ2, ·) on m∗.

With probability at least 1/q(λ), the experiment is not aborted and id′ =
id∗. The success probability of B in forging a signature for SQISign is thus
at least Pr[Success|REUSE]/q(λ). From the security of SQISign, it follows that
this quantity must be negligible. Since q is polynomial in λ, we must have
Pr[Success|REUSE] is negligible as well.

5 Puncturable Signature : Concrete Construction

We now describe our Short Quaternion and Isogeny Puncturable Signature
(SQIPS) leveraging our scheme SQIIBS described in Section 4. Let M = {0, 1}∗

denotes the message space and P = {0, 1}l ⊆ M be the prefix space of our PS.

SQIPS.Setup(1λ) → (ppps, sk0): On input 1λ, the signer executes this algorithm
to generate the public parameter pkps and initial secret key sk as follows:

i. Invokes the algorithm SQIIBS.Setup(1λ) to compute the key pair (ppibs, msk)
as follows:

– Chooses a prime p and fixes the supersingular curve E0 : y2 = x3 + x
over Fp2 with special extremal endomorphism ring O0 = ⟨1, i, i+j

2 , 1+k
2 ⟩.

– Picks a smooth number D = 2e where 2e > p3.
– Picks an odd smooth number Dc = ℓe where ℓ is a prime and computes

µ(Dc) = (ℓ + 1) · ℓe−1.
– Samples a cryptographic hash function H1 : Fp2 × {0, 1}∗ → [1, µ(Dc)].
– Samples an arbitrary function ΦDc(E, s) that maps a pair (E, s) of an

elliptic curve E and an integer s ∈ [1, µ(Dc)] to a non-backtracking
isogeny of degree Dc from E [3].

– Picks a random isogeny τ1 : E0 → E
(1)
A .

– Sets ppibs = (p, E0, Dc, D, H1, ΦDc
, E

(1)
A ) and msk = τ1.

ii. For each prefix x′ ∈ {0, 1}l, executes the algorithm SQIIBS.Extract(ppibs, msk =
τ1, x′) to compute the key uskx′ and stores it in an array T of size 2l.
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– Picks a random isogeny τ2 : E0 → E
(2)
A .

– Selects a random commitment isogeny ψ1 : E0 → E
(1)
1 .

– Computes s1 = H1(j(E(1)
1 ), bin(j(E(2)

A ))||x′) and sets the challenge isogeny
ΦDc

(E(1)
1 , s1) = φ1 where φ1 : E

(1)
1 → E

(1)
2 is a non-backtracking isogeny

of degree Dc.
– Computes the ideals Īτ1 , Iτ1 , Iψ1 and Iφ1 corresponding to the isogenies

τ̂1, τ1, ψ1 and φ1 respectively.
– The signer having the knowledge of O(1) = End(E(1)

A ) through τ1 and
O(1)

2 = End(E(1)
2 ) through φ1 ◦ ψ1, runs the SigningKLPT2e(Iτ1 , I1) algo-

rithm (Section 2.3) on input the (O0, O(1))-ideal Iτ1 and a left O(1)-ideal
I1 = Iφ1Iψ1 Īτ1 to obtain a (O(1), O(1)

2 )-ideal J1 ∼ I1 of norm D = 2e.
– Constructs the isogeny η1 : E

(1)
A → E

(1)
2 of degree D corresponding to

the ideal J1 such that φ̂1 ◦ η1 is cyclic and certx′ = (E(1)
1 , η1).

– Issues the user secret key uskx′ = (τ2, certx′ = (E(1)
1 , η1)).

iii. Sets T [indx′ ] = uskx′ where indx′ = (x′)10 ∈ {0, 1, . . . , 2l − 1} is the decimal
representation of the binary string x′.

iv. Sets the public parameter ppps = ppibs and secret key sk = T .

SQIPS.Puncture(sk, x′) → sk′: The signer on input the secret key sk = T and
a prefix x′ ∈ {0, 1}l, computes indx′ = (x′)10 and sets T [ind] = 0. It returns
the updated punctured secret key sk′ = T where the value corresponding to the
index ind of the array T is made 0.
SQIPS.Sign(ppps, sk, m) → Σ/ ⊥: Taking input ppps = (p, E0, Dc, D, H1, ΦDc , E

(1)
A ),

secret key sk = T and a message m ∈ {0, 1}∗, the signer either generates a sig-
nature Σ if the prefix x′ of m has not been punctured or it returns ⊥.

i. Returns ⊥ if T [indx′ ] = 0.
ii. If T [indx′ ] ̸= 0, it retrieves the value uskx′ = (τ2, certx′ = (E(1)

1 , η1)) =
T [indx′ ] from the array and executes the algorithm SQIIBS.Sign(ppibs, uskx′ , m)
as follows to generate a signature on m.

– Picks a random commitment isogeny ψ2 : E0 → E
(2)
1 .

– Computes s2 = H1(j(E(2)
1 ), m) and ΦDc(E(2)

1 , s2) = φ2 where φ2 :
E

(2)
1 → E

(2)
2 is a non-backtracking challenge isogeny of degree Dc.

– Computes the ideal Īτ2 , Iτ2 , Iψ2 and Iφ2 corresponding to the isogenies
τ̂2, τ2, ψ2 and φ2 respectively.

– The signer having the knowledge of O(2) = End(E(2)
A ) through τ2 and

O(2)
2 = End(E(2)

2 ) through φ2 ◦ ψ2, runs the SigningKLPT2e(Iτ2 , I2) algo-
rithm (Section 2.3) on input the (O0, O(2))-ideal Iτ2 and a left O(2)-ideal
I2 = Iφ2Iψ2 Īτ2 to obtain a (O(2), O(2)

2 )-ideal J2 ∼ I2 of norm D = 2e.
– Constructs the isogeny η2 : E

(2)
A → E

(2)
2 of degree D corresponding to

the ideal J2 such that φ̂2◦η2 : E
(2)
A → E

(2)
1 is cyclic. It sets σ = (E(2)

1 , η2).
– Extract certx′ from uskx′ and sets the signature σ = (σ, E

(2)
A , certx′).

iii. Returns the puncturable signature Σ = σ.
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SQIPS.Verify(ppps, m, Σ) → Valid/Invalid: This algorithm takes as input ppps =
(p, E0, Dc, D, H1, ΦDc

, E
(1)
A ), a message m ∈ {0, 1}∗ and a signature Σ = σ =

(σ, E
(2)
A , certx′) where x′ ∈ {0, 1}l is the prefix of the message m ∈ {0, 1}∗. It

outputs Valid if Σ is a valid signature on m and Invalid otherwise.
i. Executes the algorithm SQIIBS.Verify as follows to check the validity of the

signature Σ = σ = (σ, E
(2)
A , certx′) on m.

– Parses σ = (σ = (E(2)
1 , η2), E

(2)
A , certx′ = (E(1)

1 , η1)).
– Computes s1 = H1(j(E(1)

1 ), bin(j(E(2)
A ))||x′) and s2 = H1(j(E(2)

1 ), m).
– Recovers the isogenies ΦDc(E(1)

1 , s1) = φ1 and ΦDc(E(2)
1 , s2) = φ2.

– Checks if η1 is an isogeny of degree D from E
(1)
A to E

(1)
2 and that φ̂1 ◦η1 :

E
(1)
A → E

(1)
1 is cyclic.

– Checks if η2 is an isogeny of degree D from E
(2)
A to E

(2)
2 and that φ̂2 ◦η2 :

E
(2)
A → E

(2)
1 is cyclic.

– If all the checks succeed returns Valid, otherwise returns Invalid.
Correctness. The correctness of our puncturable signature scheme SQIPS from
isogenies follows from the correctness of our identity-based signature SQIIBS.

Theorem 5.01. Our proposed puncturable signature SQIPS is UF-CMA-AP se-
cure as the underlying identity-based signature SQIIBS is UF-IBS-CMA secure.

Proof. Let us assume that there exists a PPT adversary A that wins the experi-
ment ExpUF-CMA-AP

SQIPS, A (λ) depicted in Fig 4 with a non-negligible advantage. We de-
sign an adversary B who simulates the PS security experiment ExpUF-CMA-AP

SQIPS, A (λ),
exploits A as a subroutine and wins the IBS security experiment ExpUF-IBS-CMA

SQIIBS, B (λ)
with the same advantage. Let C denotes the challenger for the security experi-
ment ExpUF-IBS-CMA

SQIIBS, B (λ).

Setup: The challenger C on input the security parameter 1λ, computes (ppibs, msk)
← SQIIBS.Setup(1λ) and sends ppibs to B. Additionally, C executes the algo-
rithm SQIIBS.Extract(ppibs, msk, x′) to compute the key uskx′ for each prefix
x′ ∈ {0, 1}l and forms the array T [indx′ ] = uskx′ . Also it initiates three lists
Klist, Clist and Mlist to ∅. Upon receiving the public parameter ppibs from
its own challenger C, the adversary B sets ppps = ppibs and forwards it to A.
It also initializes the sets Qsig for signed messages and Qpun for punctured
prefixes to ϕ.

Query Phase: The adversary A issues polynomially many adaptive queries to
the following oracles OPuncture(sk, ·) and OSgn(sk, ·).
− OPuncture(sk = T, ·) : Upon receiving a query on prefix x′, the challenger

C updates Qpun ← Qpun ∪ {x′}.
− OSgn(sk = T, ·) : On receiving a signature query on a message m ∈

{0, 1}∗, the adversary B checks if x′ ∈ Qpun where x′ is the prefix of m.
If the check succeeds, it returns ⊥. Otherwise, it issues a signature query
on (m, x′) for a with message m and identity x′ to C. The challenger
C extracts T [indx′ ] = uskx′ from sk = T , computes the signature Σ ←
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SQIIBS.Sign(ppibs, uskx′ , m) and sends it to B who forwards it to A. The
adversary B updates Qsig ← Qsig ∪ {m}.

Challenge: The adversary A sends a target prefix x∗ ∈ {0, 1}l to the adversary
B which B forwards to C as the target identity. The adversary A can issue
additional puncture and signature queries as described in the Query phase.

Corruption Query: Upon receiving a corruption query on x∗ ∈ {0, 1}l, the
adversary B returns ⊥ if x∗ /∈ Qpun. Otherwise, B queries its extract oracle
OExtract(·) for each prefix x′ ∈ {0, 1}l \{x∗} and updates the array T with the
response uskx′ ← SQIIBS.Extract(ppibs, msk, x′) from C by setting T [indx′ ] =
uskx′ . For each x′ ∈ Qpun, the adversary B deletes the related key by setting
T [indx′ ] = 0 and returns the current secret key sk = T to A.

Forgery: A eventually submits a forgery (m∗, Σ∗, x∗) where x∗ is the prefix of
m∗. B uses the forgery of A to frame its own forgery (m∗, x∗, Σ∗).

If the adversary A wins the game then we have m∗ /∈ Qsig, x∗ ∈ Qpun
and Valid ← SQIPS.Verify(ppps, m∗, Σ∗). The condition m∗ /∈ Qsig means that
(m∗, x∗, ·) /∈ Mlist. Also note that the adversary B has not made any extraction
query on x∗, thus x∗ /∈ Clist. Moreover, Valid ← SQIPS.Verify(ppps, m∗, Σ∗)
implies that Valid ← SQIIBS.Verify(ppibs, m∗, Σ∗).
5.1 Comparison of our scheme SQIPS with the existing puncturable signatures

In Table 3, we compare our scheme with the existing schemes on PS. The PS
scheme by Li et al. [13] is based on the τ -Strong Diffie-Hellman assumption
(τ -SDH) in bilinear map setting and is proven secure in the random oracle
model (ROM). Their scheme employs the probabilistic bloom filter data struc-
ture and suffers from non-negligible false-positive errors. Jiang et al. [12] de-
signed a pairing-based PS which is free from false positive errors and is secure
under the hardness of the Computational Diffie-Hellman (CDH) assumption in
the standard model (SDM). However, none of these schemes are resistant to
quantum attacks. The PS schemes from lattices and MPKC proposed by Jiang
et al. [12] enjoy post-quantum security and are based on the hardness of Short
Integer Solution (SIS) and Multivariate Quadratic polynomial (MQ) assump-
tions respectively. Our isogeny-based PS is post-quantum secure as it is based
on SQISign cryptosystem and is also free from false-positive errors.

Table 3. Comparison of the existing puncturable signature schemes

Instantiation Assumption Security Model Post-quantum False-positive errors
Li et al. [13] τ -SDH ROM ✗ ✓

Pairing Inst. [12] CDH SDM ✗ ✗

Lattice Inst. [12] SIS ROM ✓ ✗

Multivariate Inst. [12] MQ ✓ ✗

Our Isogeny Inst. SQISign ROM ✓ ✗
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Abstract. We propose a new Hamming metric code-based signature
scheme (called HWQCS) based on quasi-cyclic low density parity-check
(QC-LDPC) codes. We propose the use of high error on QC-LDPC codes
for constructing this signature and analyse its complexity. We show that
HWQCS signature scheme achieves EUF-CMA security in the classical
random oracle model, assuming the hardness of the syndrome decoding
problem and the codeword finding problem for QC-LDPC codes. Further-
more, we also give a detailed security analysis of the HWQCS signature
scheme. Based on the complexities of solving the underlying problems,
the public key size and signature size of the HWQCS signature scheme
are 1568 bytes and 4759 bytes respectively at 128-bit security level.

Keywords: code-based cryptography · signature · QC-LDPC codes

1 Introduction

Code-based cryptography is based on the problem of decoding random linear
codes, which is referred to as the syndrome decoding problem and is known to
be NP-hard [11]. The most common code-based cryptosystems are the McEliece
cryptosystem [30] and the Niederreiter cryptosystem [33], which are equivalent
in terms of their security. Solving the NP-hard syndrome decoding problem is
believed to be hard even for quantum computers. Over the years, a number
of code-based cryptographic schemes have been proposed. These include some
promising key encapsulation mechanisms called BIKE [4], Classic McEliece[12]
and HQC [1], which become fourth-round candidates in the NIST call for post-
quantum cryptography standardization.

Unlike encryption and key encapsulation mechanisms, the construction of
code-based digital signature schemes seems to be more challenging. This is in-
dicated by the absence of code-based signature scheme in the second round
onwards of the NIST PQC standardization. The most common techniques to
construct signatures are based on two generic frameworks, which are, hash-and-
sign constructions and Fiat-Shamir framework [23] constructions. The hash-and-
sign construction requires some trapdoor functions, such as CFS [17] and Wave
[19]. On the other hand, Fiat-Shamir framework construction does not necessar-
ily use trapdoor functions in general, such as Stern [41], CVA [15], MPT [31],
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CVE [8], cRVDC [9], etc. However, most of them are inefficient or have large
key or signature sizes. Furthermore, some of the proposed code-based signatures
were even found to be insecure. For example, the KKS [24], RZW [37], CVE [8],
SHMWW [39] and MPT [31] are shown to be insecure in [34], [18], [25], [5] and
[35] respectively.

Recently, there is a new technique to construct signature schemes, which
is called MPC (multiparty computation) in the head paradigm. This approach
combines secret key sharing scheme and identification scheme in the multi-party
computations setting, for example, CCJ signature [14], FJR signature [22], etc.
The purpose of this construction is to reduce the signature size. But most of the
signature size is still around eight thousand bytes. Therefore, it is still a challenge
to construct signature schemes with practical signature size and public key size.

In this paper, we proposed a new signature scheme (called HWQCS) based
on quasi-cyclic low density parity-check (QC-LDPC) codes. The proposed sig-
nature scheme is based on the Fiat-Shamir transformation and introduces high
weight error on QC-LDPC codes. HWQCS signature scheme resists Prabowo-
Tan’s attack [35] on MPT-like signature scheme [31]. This is achieved by signing
a message depending on a new ephemeral secret key for each signature rather
than relying only on a fixed secret key. So, each signature can be viewed as a one-
time signature. Furthermore, this signature is also secure against Bit-Flipping
algorithm attack and statistical attack.

The organization of this paper is as follows. In Section 2, we provide a brief
review of the properties of linear codes, quasi-cyclic codes and also define the
syndrome decoding problem, etc. In Section 3, we propose a new high weight
signature scheme (called HWQCS) which is based on 2-quasi-cyclic codes. We
also provide security proof of the proposed HWQCS signature scheme under the
random oracle model. In Section 4, we give a detailed analysis of various possible
attacks on the proposed signature scheme HWQCS. In Section 5, we examine
the public/secret key size and signature size for various security levels. Finally,
the paper is concluded in Section 6.

2 Preliminaries

In this paper, let n, k be integers, denote by F2 the finite field of two elements,
let a = (a1, . . . , an) ∈ Fn

2 be a vector in Fn
2 .

2.1 Linear Codes

Definition 1 Let a = (a1, . . . , an) ∈ Fn
2 . The support of a is the set consisting

of all indices i ∈ {1, . . . , n} such that ai ̸= 0. The Hamming weight of a, denoted
by wt(a) is the cardinality of its support. The Hamming distance between a and
b, denoted by d(a,b) is defined as wt(a− b), i.e., the number of coordinates a
and b differs on.
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Definition 2 Let k and n be two positive integers with k ≤ n. An [n, k]-linear
code C of length n and dimension k is a linear subspace of dimension k of the
vector space Fn

2 . The rate of the code C is R = k
n .

Definition 3 Let C be an [n, k]-linear code of length n and dimension k. We call
its minimum distance δ the minimum Hamming weight of a non-zero codeword
in C, i.e.,

δ = min{wt(a) | a ∈ C,a ̸= 0}
= min{wt(a− b) | a,b ∈ C,a ̸= b}.

We sometimes refer to C as an [n, k, δ]-code if δ is known.

Definition 4 A matrix G ∈ Fk×n
2 is said to be a generator matrix of an [n, k]-

linear code C if its rows form a basis of C. Then, C = {uG | u ∈ Fk
2}. The

parity-check matrix of C is H ∈ F(n−k)×n
2 such that GHT = 0 or cHT = 0 for

all c ∈ C. Furthermore, G and H are said to be in systematic form if they are
written as

G = [Ik A] resp. H = [In−k B],

for some A ∈ Fk×(n−k)
2 and B ∈ F(n−k)×k

2 .

Problem 1 (Syndrome Decoding Problem (SDP)). Given a matrix H ∈
F(n−k)×n
2 , a vector s ∈ Fn−k

2 and an integer w > 0 as input. The Syndrome
Decoding problem is to determine a vector e ∈ Fn

2 such that wt(e) ≤ w and
s = eHT .

Problem 2 (Codeword Finding Problem (CFP)). Given a matrix H ∈
F(n−k)×n
2 , and an integer w > 0 as input. The Codeword Finding problem is to

determine a vector e ∈ Fn
2 such that wt(e) = w and eHT = 0.

The SDP problem and CFP problem are well known and was proved to be
NP-complete by Berlekamp, McEliece and van Tilborg in [11]. Moreover, it is
proved that there exists a unique solution to SDP if the weight w is below the
so-called GV Distance.

Definition 5 Let C be an [n, k] linear code over F2. The Gilbert–Varshamov
(GV) Distance is the largest integer d such that

d−1∑
i=0

(
n

i

)
≤ 2n−k.

The first generic decoding method to solve SDP is called the Information
Set Decoding (ISD) method, introduced by Prange [36] (denoted as Pra62) in
1962. It is the best known algorithm for decoding a general linear code. Since
then, several improvements of the ISD method have been proposed for codes
over the binary field, such as LB88 [26], Leon88 [27], Stern88 [40], Dum91 [20],

Session 6 - 3 The 26th Annual International Conference on Information Security and Cryptology

ICISC 2023378



4 Chik How Tan and Theo Fanuela Prabowo

and more recently by BLP11 [13], MMT11 [28], BJMM12 [7], MO15 [29]. The
computational complexity of solving the syndrome decoding problem is quanti-
fied by the work factor WFA(n, k, w), which is defined as the average cost in
binary operations of algorithm A to solve it. The work factor of Pra62 is given
as follows.

WFPra62(n, k, w) =
min{

�
n
w


, 2n−k}�

n−k
w

 .

When w = o(n), then WFPra62(n, k, w) =
(nw)
(n−k

w )
and 1

w log2
(nw)
(n−k

w )
≈ c, where

c := − log2(1− k
n ). Therefore, we have WFPra62(n, k, w) ≈ 2cw(1+o(1)).

Among the variants of solving algorithms for the syndrome decoding problem,
the following result from [42] shows that their work factors are asymptotically
the same.

Proposition 1 [42] Let k and w be two functions of n such that limn→∞
k
n = R,

0 < R < 1, and limn→∞
w
n = 0. For any algorithm A among the variants of

Pra62, Stern88, Dum91, MMT11, BJMM12 and MO15, their work factors are
asymptotically the same as

WFA(n, k, w) = 2cw(1+o(1)), where c = − log2(1−R)

when n tends to infinity.

2.2 Quasi-Cyclic Linear Codes

Let F2 be the finite field of two elements and let R := F2[x]/(x
k − 1) be the

quotient ring of polynomials over F2 of degree less than k. Given a = a0+a1x+
. . . + ak−1x

k−1 ∈ R, we denote a := (a0, a1, . . . , ak−1) ∈ Fk
2 . Let R∗ = {a ∈

R | a is invertible inR}. Let V be a vector space of dimension k over F2. Denote
Vk,w := {a ∈ R = F2[x]/(x

k−1) | wt(a) = w}. We sometimes abuse the notation
by interchanging a with a ∈ R.

Definition 6 (Circulant Matrix) Let v = (v0, · · · , vk−1) ∈ V, a circulant matrix
defined by v is

V :=




v0 v1 . . . vk−1

vk−1 v0 . . . vk−2

...
...

. . .
...

v1 v2 . . . v0


 ∈ Fk×k

2 .

For u,v ∈ R, the product w = uv can be computed as w = uV = vU , and
wl =


i+j=l mod k uivj for l = 0, · · · , k − 1, where w = (w0, · · · , wk−1). To find

the weight of uv, we first compute the probability that wi = 1, say p′, then
wt(w) = p′ ∗ k. Now, we compute the probability that wi = 1 as follows.
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Lemma 1 [35] Let u ∈ Vk,ωu
, v ∈ Vk,ωv

and w = uv = (w0, · · · , wk−1).
Denote the probability that wi = 1, for i ∈ {0, · · · , k− 1}, as P (k, ωu, ωv). Then

P (k, ωu, ωv) =
1(
k
ωv

)
∑

1≤l≤min(ωu,ωv)
l odd

(
ωu

l

)(
k − ωu

ωv − l

)
.

Definition 7 (Quasi-Cyclic Codes) A linear block code C of length lk over F2 is
called a quasi-cyclic code of index l if for any c = (c0, · · · , cl−1) ∈ C, the vector
obtained after applying a simultaneous circular shift to every block c0, · · · , cl−1

is also a codeword.

Definition 8 (Systematic 2-Quasi-Cyclic Codes, 2-QC Codes) A systematic 2-
quasi-cyclic [2k, k]-code has generator matrix of the form [H Ik] ∈ Fk×2k

2 and
parity check matrix [Ik HT ] ∈ Fk×2k

2 .

Due to the quasi-cyclic structure of a code, any blockwise circular shift of a
codeword is also a codeword. So, any circular shift of a syndrome will correspond
to a blockwise circular shift of the error pattern. It has been shown in [38] that
the work factor of the ISD algorithm for solving the syndrome decoding problem
and the codeword finding problem for 2-quasi-cyclic codes for n = 2k are

WFA,2QCSD(n, k, w) :=
WFA(n, k, w)√

n− k
= 2c[1/2+w(1+o(1))]−(log2 n)/2

and
WFA,2QCCF(n, k, w) :=

WFA(n, k, w)

n− k
= 2c[1+w(1+o(1))]−log2 n

respectively. Since the methods and the work factors for solving the syndrome
decoding problem and the codeword finding problem for 2-quasi-cyclic codes re-
quire exponential time, therefore, we assume that the syndrome decoding prob-
lem and the codeword finding problem on quasi-cyclic codes are hard problems.
We define the decisional codeword finding problem for 2-quasi-cyclic codes as
follows.

Problem 3 (Decisional Codeword Finding Problem for 2-Quasi-Cyclic Codes
(2QC-DCFP)). Given a matrix [Ik h] ∈ F2k×k

2 , and an even integer w > 0 as
input, decide if there exists h0,h1 ∈ R such that wt(h0) = wt(h1) = w/2 and

(h0,h1)

[
Ik
h

]
= 0.

In the special case of 2-quasi-cyclic codes with parity check matrix H =
[h0 h1] ∈ Fk×2k

2 , where (h0,h1) and e are of low weight approximate to
√
2k,

we have what is called the quasi-cyclic low density parity check (QC-LDPC)
codes. These codes are commonly used in the construction of key encapsulation
mechanisms and signatures, such as BIKE [4] and HQC [1]. The Bit-Flipping
algorithm [43] is used to decode an error e in BIKE.
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On the other hand, for our signature (proposed in Section 3), we have n = 2k,
H = [Ik c] and e = (e1, e2) is of high weight such that wt(e) ≫

√
n, wt(e)

n < 1
2 ,

wt(e1)
k + wt(ce2)

k > 1
2 and wt(c) <

√
k. Experimental results show that the Bit-

Flipping algorithm [43] is unable to obtain e correctly in this case (many bits
are decoded incorrectly). Up to our knowledge, there is no efficient decoding
algorithm for high weight error. Therefore, we define the following problem and
assume that it is a hard problem.

Problem 4 (Syndrome Decoding Problem for High Weight on QC-LDPC Codes
(HWQC-LDPC-SDP)) Let ω be integer, n = 2k, H = [Ik c] and e = (e1, e2) is of
high weight such that ω=wt(e) ≫

√
n, wt(e)

n < 1
2 ,

wt(e1)
k + wt(ce2)

k > 1
2 and

wt(c) <
√
k. Given H ∈ Fk×2k

2 , s ∈ Fk
2 and ω as input. The syndrome decoding

problem for high weight on QC-LDPC code is to determine e such that wt(e) = ω
and s = eHT .

3 HWQCS Signature Scheme

In this section, we present the Hamming-metric code-based digital signature
scheme from QC-LDPC codes with high weight errors, which we call the HWQCS
signature scheme. The HWQCS signature scheme is based on the hardness of
the syndrome decoding problem and the codeword finding problem on quasi-
cyclic codes. Furthermore, the HWQCS signature scheme is different from the
MPT signature scheme [31] and is resistant to Prabowo-Tan’s attack [35] as each
signature can be thought of as a one-time signature with a new ephemeral secret
key, while the MPT signature is based on a fixed secret key.

A signature scheme consists of three algorithms: KeyGen, Sign and Verify.

– KeyGen: Given a security parameter λ, the key generation algorithm returns
a key pair (pk, sk) where pk and sk are the public key and the secret key
respectively.

– Sign: The algorithm, on input a message m and the secret key sk, returns a
signature σ.

– Verify: Given a message m, a public key pk and a signature σ as input, the
algorithm returns either 0 or 1 depending on whether the signature σ is valid
or not.

Before we describe a HWQCS signature scheme, we first define the required
parameters. Let k, ωf , ωu, ωe, ωc, ωs, ωt be integers as public parameters. The
HWQCS signature scheme is described as follows.
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Algorithm 1: Key Generation of HWQCS Signature Scheme
Input : k, ωf , security parameter λ
Output: pk = (h)

1 Choose random f1, f2 ∈ Vk,ωf and both are invertible
2 Compute h := f−1

1 f2 in R∗

3 The public key is pk = (h) and the secret key is sk = (f1, f2)

Algorithm 2: Signing of HWQCS Signature Scheme
Input : k, ωf , ωu, ωe, ωc, ωs, ωt, message m, pk = (h) and sk = (f1, f2)
Output: signature σ

1 Choose random e1, e2 ∈ Vk,ωe and u1,u2 ∈ Vk,ωu

2 Compute b := (e1, e2)

[
h

h−1

]
in R

3 Compute c := H(m∥b∥(u1f2 + u2f1)∥pk) ∈ Vk,ωc

4 Compute si := uifi + cei in R for i = 1, 2
5 if wt(s1) > ωs or wt(s2) > ωs or wt(u1f2 + u2f1) > ωt then
6 repeat from Step 1
7 else
8 the signature is σ = (c,b, s1, s2)
9 end if

Algorithm 3: Verification of HWQCS Signature Scheme
Input : message m, pk, signature σ = (c,b, s1, s2)
Output: validity of the signature

1 Compute t := (s1, s2)

[
h

h−1

]
− cb in R

2 Compute c′ := H(m∥b∥t∥pk) ∈ Vk,ωc

3 if c′ = c and wt(t) ≤ ωt and t ̸= 0 in R then
4 the signature is valid
5 else
6 the signature is invalid
7 end if
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Correctness:

t = (s1, s2)

[
h

h−1

]
− cb

= (u1f2 + ce1h) + (u2f1 + ce2h
−1)− c(e1h+ e2h

−1)

= u1f2 + u2f1

We define the notion of existential unforgeability under adaptive chosen mes-
sage attack as follows.

Definition 9 (EUF-CMA Security) A signature scheme is existential un-
forgeable under adaptive chosen message attack (EUF-CMA) if given a public
key pk to any polynomial-time adversary A who can access the signing oracle
Sign(sk, ·) and query a number of signatures, then the adversary A can produce
a valid signature σ for a message m which has not been previously queried to the
signing oracle only with negligible success probability (the success probability is
denoted as Pr[Forge]).

The advantage Adv of an adversary A in successfully solving a problem is
defined as follows.

Definition 10 The advantage of an adversary A in solving a problem B denoted
as Adv(B) is defined as the probability that A successfully solves problem B.

We define the following assumptions which are used to prove the security of
the proposed signature scheme.

Assumption 1 (Syndrome Decoding for 2-Quasi-Cyclic Code (2QC-SDP) As-
sumption) The syndrome decoding for 2-quasi-cyclic code assumption is the as-
sumption that the advantage of an adversary A in solving 2QC-SDP is negligible,
i.e. Adv(2QC-SDP) < ϵ2QC-SDP.

Assumption 2 (Codeword Finding for 2-Quasi-Cyclic Codes (2QC-CFP) As-
sumption) The codeword finding for quasi-cyclic codes assumption is the as-
sumption that the advantage of an adversary A in solving 2QC-CFP is negligible,
i.e. Adv(2QC-CFP) < ϵ2QC-CFP.

Assumption 3 (Decisional Codeword Finding for 2-Quasi-Cyclic Codes (2QC-DCFP)
Assumption) The decisional codeword finding for 2-quasi-cyclic codes assump-
tion is the assumption that the advantage of an adversary A in solving 2QC-DCFP
is negligible, i.e. Adv(2QC-DCFP) < ϵ2QC-DCFP.

Assumption 4 (Syndrome Decoding for High Weight on QC-LDPC Codes
(HWQC-LDPC-SDP) Assumption) The syndrome decoding for high weight of QC-
LDPC codes assumption is the assumption that the advantage of an adversary A
in solving HWQC-LDPC-SDP is negligible, i.e. Adv(HWQC-LDPC-SDP) < ϵHWQC-LDPC-SDP.
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Theorem 1 Under the 2QC-SDP, 2QC-DCFP, 2QC-CFP, HWQC-LDPC-SDP assumptions,
the HWQCS signature scheme with parameters (k, ωf , ωu, ωe, ωc, ωs, ωt) is secure
under the EUF-CMA model in the classical random oracle model.

Proof. We consider a chosen-message EUF adversary A against the HWQCS
signature scheme. To prove the security, adversary A interacts with the real
signature scheme and makes a sequence of experiments. The adversary A is
first given a public key h. A made qs signing queries and qH hash (H) queries.
Finally, A outputs a message/signature pair such that the message has not been
queried previously to the signing oracle. Let Pri[Forge] be the probability of an
event in experiment i that A obtains a valid signature of a message that has
not been queried previously to the signing oracle. Let Pr0[Forge] be the success
probability of an adversary A at the beginning (Experiment 0). Our goal is to
give an upper-bound of Pr0[Forge].

Experiment 1. During the course of the experiment, if there is a collision in H,
then we abort the experiment. The number of queries to the hash oracle or the
signing oracle throughout the experiment is at most qs + qH. Thus,

| Pr0[Forge]− Pr1[Forge] | ≤
qs + qH(

k
ωc

) .

Experiment 2. During the course of the experiment, A received a number of
signatures σj = (c,b, s1, s2)j for j = 1, · · · , qs. If A could solve for (e1, e2)j

from bj = (e1, e2)j

[
h

h−1

]
for some j, then A could forge a new signature. But,

the probability that A could solve it is bounded by ϵ2QC-SDP and we abort the
experiment in this case. Thus,

| Pr1[Forge]− Pr2[Forge] | ≤ ϵ2QC-SDP.

Experiment 3. During the course of the experiment, A received a number of
signatures σj = (c,b, s1, s2)j for j = 1, · · · , qs. If A could solve for (uifi, ei)

from (si)j = (uifi, ei)j

[
Ik
cj

]
for i = 1, 2 for some j, then A could forge a new

signature. But, the probability that A could solve it is bounded by ϵHWQC-LDPC-SDP
and we abort the experiment in this case. Thus,

| Pr2[Forge]− Pr3[Forge] | ≤ 2ϵHWQC-LDPC-SDP.

Experiment 4. In this experiment, a public key h is replaced by a random h′ ∈
R∗. To distinguish Experiment 4 from Experiment 3, the adversary must in fact
distinguish a well-formed public key h = f−1

1 f2 from a random invertible element
of R. Thus, we have

| Pr3[Forge]− Pr4[Forge] | ≤ ϵ2QC-DCFP.
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Furthermore, in this experiment, an adversary A has no signature information
on h′ and needs to solve a codeword finding problem for 2-quasi-cyclic codes in
order to forge a signature. Thus,

| Pr4[Forge] | ≤ ϵ2QC-CFP.

Combining the above experiments, the success probability of the adversary
A is

| Pr0[Forge] | ≤
3∑

i=0

| Pri[Forge]− Pri+1[Forge] |+ | Pr4[Forge] |

≤ ϵ2QC-CFP + ϵ2QC-DCFP + 2ϵHWQC-LDPC-SDP + ϵ2QC-SDP +
qs + qH(

k
ωc

) .

4 Security Analysis

Let λ be the security level. For the security analysis, we consider two common
types of attacks, namely, key recovery attacks and signature forgeries.

4.1 Key Recovery Attack

Finding the secret key (f1, f2) from the public key h = f−1
1 f2 is equivalent

to finding the codeword (f1, f2) with parity check matrix [h Ik] such that

(f1, f2)

[
h
Ik

]
= 0. The work factor of solving the codeword finding problem for

quasi-cyclic parity-check codes is

WFA,2QCCF(2k, k, 2ωf ) = 2c[1+2ωf (1+o(1))]−log2 2k, where c = 1.

Therefore, we can prevent key recovery attack by choosing the parameters such
that 1 + 2ωf (1 + o(1))− log2 2k ≥ λ, where λ is the security level.

Another method to find the secret key (f1, f2) is by performing exhaustive
search for f1 and checking whether f1h is of small Hamming weight wf . The
complexity of performing this exhaustive search is

(
k
ωf

)
. So, we must choose the

parameters such that log2
(

k
ωf

)
≥ λ, where λ is the security level.

Based on the above, we choose the parameters such that

min
{
log2

(
k

ωf

)
, 1 + 2ωf (1 + o(1))− log2 2k

}
≥ λ.

This ensures that the scheme is resistant against key recovery attacks.
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4.2 Signature Forgery

4.2.1 Collision

For a signature scheme based on the Schnorr scheme, it is important to
address the issue of collisions between different messages. In order to prevent
collisions, one way is to use a collision-free hash function. Another way is to
use a secure hash function such that the collision is minimal, that is, satisfying
log2

�
k
ωc


≥ 2λ, where λ is the security level.

4.2.2 Forgery From Known Signature

We consider the following methods to forge a signature.

4.2.2.1 Forgery via Syndrome Decoding Algorithm

From a given signature, we have b = e1h + e2h
−1, si = uifi + cei, where

i = 1, 2. Equivalently, b = (e1, e2)


h

h−1


, si = (uifi, ei)


Ik
c


for i = 1, 2.

(1) One may use syndrome decoding algorithms to recover (e1, e2) from b =

(e1, e2)


h

h−1


. The work factor is

WFA,2QCSD(2k, k, 2ωe) = 2c[1/2+2ωe(1+o(1))]−(log2 2k)/2, where c = 1.

In order to prevent this attack, we choose k, ωe such that

1/2 + 2ωe(1 + o(1))− (log2 2k)/2 ≥ λ,

where λ is the security level.
(2) One may also use syndrome decoding algorithms to recover (e1, e2,u1f1,u2f2)
from 


b
s1
s2


 =



h h−1 0k 0k

c 0k Ik 0k

0k c 0k Ik







e1
e2
u1f1
u2f2




Note that the weight of (e1, e2,u1f1,u2f2) is ω = 2(ωe+wt(u1f1)). So, the work
factor is

WFA,4QCSD(4k, k, ω) =
min{

�
4k
ω


, 24k−k}�

4k−k
ω

√
4k − k

=
min{

�
4k
ω


, 23k}�

3k
ω

√
3k

.

(3) Another method to find the ephemeral secret (e1, e2) is by performing ex-
haustive search on e1 and checking whether e2 = bh+e1h

2 is of small Hamming
weight we. The complexity of performing this method is

�
k
ωe


. In order to prevent

this attack, we choose k, ωe such that log2
�
k
ωe


≥ λ, where λ is the security level.

Suppose an adversary can recover (e1, e2) using any of the above methods.
Then, the adversary obtains uifi = si−cei for i = 1, 2. Afterwards, he can forge
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a new signature by generating new b′ = e′1h+e′2h
−1 and setting s′i = uifi+c′e′i,

for i = 1, 2.
Based on the above analysis, in order to resist forgery attacks with security

level λ, we choose the parameters k, ω, ωe satisfying the following conditions:

min
{
log2

(
k

ωe

)
, 1/2 + 2ωe(1 + o(1))− (log2 2k)/2, log2

min{
(
4k
ω

)
, 23k}(

3k
ω

)√
3k

}
≥ λ.

4.2.2.2 Forgery via Bit-Flipping Algorithm

Given a signature, we have si = uifi + cei, where i = 1, 2. One may try to

apply the bit-flipping algorithm on si = (uifi, ei)

[
Ik
c

]
for i = 1, 2 to recover ei.

In this case, n = 2k, H =

[
Ik
c

]
and the threshold τ = ⌊ρ ·ωc⌋, where ρ is the

probability that (ei)j = (si)j = 1 for j ∈ {0, · · · , k− 1} and will be given in the
following proposition.

Proposition 2 If c0 = 1 and (si)j = 1, then ρ = Prob[ (ei)j = (si)j = 1 ] is
equal to

(1−P (k, ωu, ωf )) ∗ (1−P (k, ωc− 1, ωe− 1))+P (k, ωu, ωf ) ∗P (k, ωc− 1, ωe− 1).

Proof. If c0 = 1, then

(si)j = (uifi + cei)j = (ei)j +

k−1∑
l=0

(ui)l(fi)j−l mod k +
∑

0≤l≤k−1
l̸=j

cl(ei)j−l mod k.

Note that the probability that (uifi)j = 1 and
∑

l ̸=j(ci)l(ei)j−l mod k = 1 are
P (k, ωu, ωf ) and P (k, ωc − 1, ωe − 1) respectively. Hence, the probability that
(ei)j = (si)j = 1 is

(1−P (k, ωu, ωf )) ∗ (1−P (k, ωc− 1, ωe− 1))+P (k, ωu, ωf ) ∗P (k, ωc− 1, ωe− 1).

As in Problem 4, we choose the parameters such that wt(uifi) + ωe ≫
√
2k,

wt(uifi)+wt(cei)
k > 1

2 and ωc ≪
√
k. With this choice of parameters, the bit-

flipping algorithm will not be able to decode correctly to obtain ei for i = 1, 2.
Hence, one cannot obtain uifi and forge a new signature.

4.2.3 Forgery Without Knowing Any Signature

Note that an adversary can generate b = e1h+ e2h
−1. To forge a signature,

the adversary has to produce si of low weight. As the adversary needs to pro-
duce uifi of low Hamming weight and u1f1h such that u2f2h

−1 are also of low
Hamming weight, therefore wt(uifi) must be set to low. In order to ensure this,
we need to define the normal distribution and present the following lemma and
corollary.

Let N (0, σ2) be the normal distribution with mean 0 and standard deviation

σ. Its density function is ρσ(x) = ( 1√
2πσ2

)e−
x2

2σ2 for x ∈ R.
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Lemma 2 [16] For k > 2, Z ∼ N (0, σ2), then

Pr[ |z| > kσ | z ← Z ] ≤ 1

2
(e−k2

+ e−
k2

2 ).

Corollary 1 (1) For κ > 2, Y ∼ N (µ, σ2), then Pr[ |y − µ| > κσ | y ← Y ] ≤
1
2 (e

−κ2

+ e−
κ2

2 ).

(2) Let n be a large positive integer and 0 < p < 1. If Y is a binomial distribution
with parameters n and p (denoted Bin(n, p)), then Y approximates to N (µ, σ2),
where µ = np and σ =

√
np(1− p).

(3) In (2), if 0 < l < p < 1 and κ = (p−l)
√
n√

p(1−p)
, then

Pr[ |y − np| > (p− l)n | y ← Y ] ≤ 1

2
(e−κ2

+ e−
κ2

2 ) < e−κ2/2.

Setting n = k, p = 1
2 and l < 1

2 in Corollary 1 (3), we have Pr[|y − k
2 | >

( 12−l)k | y ← Bin(k, p)] < e−κ2/2. To ensure that the probability is negligible, we
should choose κ such that κ = (1−2l))

√
k and 1

2 (e
−κ2

+e−κ2/2) < e−κ2/2 < 2−λ,
that is,

κ2

2
log2 e > λ =⇒ κ >

√
2λ

log2 e
.

Letting κ0 =
√

2λ
log2 e , we have

λ 128 192 256
κ0 13.320 16.314 18.838

This means that if an adversary randomly picks an element a in place of
uifi for i = 1, 2, then the probability that |wt(a) − k

2 | ≤ κ
√

k/4 is more than
1− 2−λ. Hence, by selecting appropriate l, k such that (1− 2l)

√
k ≥ κ0, we can

ensure that the adversary cannot find a of weight less than lk. Therefore, it is
not possible to forge a signature with probability more than 2−λ.

5 Parameters Selections

Based on the above security analysis, the parameters (k, ωf , ωu, ωe, ωc, ωs) of the
signature scheme must be chosen properly in order to achieve λ-bit computa-
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tional security. The following conditions are to be fulfilled:

min
{
log2

(
k

ωf

)
, 1 + 2ωf (1 + o(1))− log2 2k

}
≥ λ,

log2

(
k

ωc

)
≥ 2λ,

min
{
log2

(
k

ωe

)
,
1

2
+ 2ωe(1 + o(1))− log2 2k

2
, log2

min{
(
4k
ω

)
, 23k}(

3k
ω

)√
3k

}
≥ λ,

(1− 2l)
√
k >

√
2λ

log2 e
,

wt(uifi) + ωe ≫
√
2k,

wt(uifi) + wt(cei)

k
>

1

2
.

The parameters for various security levels are given in the following Table 1.

Table 1. The parameters of the HWQCS signature

Name λ k ωf ωu ωe ωc
wt(s)

k
wt(uf)

k
wt(t)

k

Para-1 128 12539 145 33 141 31 0.3863 0.2694 0.3937
Para-2 192 18917 185 41 177 39 0.3938 0.2779 0.4013
Para-3 256 25417 201 51 191 51 0.3978 0.2786 0.4019

To compute the size of HWQCS signature scheme, the public key size is ⌈k/8⌉
bytes, the secret key size is 2 ∗ ⌈⌈log2 k⌉ ∗ ωf/8⌉ bytes and the signature size is
3 ∗ ⌈k/8⌉+ ⌈⌈log2 k⌉ ∗ ωc/8⌉ bytes. We list their sizes for various security levels
in Table 2.
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Table 2. Size of Signature Schemes (at certain classical security levels)

Scheme Security Size (in Bytes)
PK SK Sg

HWQCS-I 128 1,568 508 4,759
HWQCS-II 192 2,365 694 7,169
HWQCS-III 256 3,178 754 9,630

As listed in Table 2, the public key size, secret key size and signature size
of the proposed signature scheme HWQCS-I are 1568 bytes, 508 bytes and 4759
bytes respectively for 128-bit classical security level.

We provide comparison of the key sizes and signature size for various code-
based signature schemes in Table 3.

Table 3. Comparison of Various Code-based Signature Schemes (at certain classical
security levels)

Scheme PK size SK size Sg size C.Sec
HWQCS-I 1.568 KB 508 B 4.759 KB 128

Durandal-I19 [3] 15.25 KB 2.565 KB 4.060 KB 128
WAVE23 [32] 3.60 MB 2.27 MB 737 B 128
CCJ23 [14] 90 B 231 B 12.52 KB 128
SDitH23 [2] 120 B 404 B 8.26 KB 128
BG23 [10] 1 KB 2 KB 13.5 KB 128

cRVDC19 [9] 0.152 KB 0.151 KB 22.480 KB 125
CVE18 [8] 7.638 KB 0.210 KB 436.600 KB 80

In Table 3, it can be observed that the signature size of the proposed signa-
ture scheme HWQCS-I is smaller than the other signature schemes except for
the WAVE23 signature scheme [32] and the Durandal-I19 signature scheme [3].
However, it should be noted that the public key sizes for both the WAVE23 and
Durandal-I19 signature schemes exceed ten thousand bytes. These are larger
than that of the signature scheme HWQCS-I. Moreover, recently there is an
attack on Durandal-I19 [6] which requires it to increase its parameter sizes.

Although the public key size of the CCJ23 signature scheme [14] and the
SDitH23 signature scheme [2] are relatively small, but their signature sizes
are more than eight thousand bytes. Overall, the proposed signature scheme
HWQCS-I has shorter combined key and signature sizes than other signature
schemes.

6 Conclusion

In this paper, we constructed a new Hamming metric code-based signature
scheme (called HWQCS signature scheme). The security of HWQCS signature
is based on the hardness of the syndrome decoding problem and the codeword
finding problem on 2-quasi-cyclic codes, as well as on high error for quasi-cyclic
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low parity-check codes respectively. We provided security proof of the HWQCS
signature scheme under the random oracle model and gave detailed analysis on
the security of the HWQCS signature scheme against Bit-Flipping attack and
statistical attack. Furthermore, we also provided concrete parameter choices for
the HWQCS signature scheme and compared its key sizes and signature size to
other existing signature schemes. The signature scheme HWQCS-I outperforms
other code-based signature schemes with a public key size of 1568 bytes, secret
key size of 508 bytes and signature size of 4759 bytes at 128-bit security level.
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Abstract. Dynamic searchable symmetric encryption (SSE) realizes ef-
ficient update and search operations for encrypted databases, and there
has been an increase in this line of research in the recent decade. Dy-
namic SSE allows the leakage of insignificant information to ensure effi-
cient search operations, and it is important to understand and identify
what kinds of information are insignificant. In this paper, we propose
an efficient dynamic SSE scheme Laura under the small leakage, which
leads to appealing security requirements such as forward privacy, (Type-
II) backward privacy, and result hiding. Laura is constructed based on
Aura (NDSS 2021) and is almost as efficient as Aura while only allowing
less leakage than Aura. We also provide experimental results to show the
concrete efficiency of Laura.

Keywords: Dynamic searchable encryption · Backward Privacy · En-
crypted database.

1 Introduction

Searchable symmetric encryption (SSE) [12, 24] provides a way to search a large
database efficiently (e.g., cloud storage) for encrypted data. In particular, SSE
that supports update operations is called dynamic SSE [20], which has attracted
attention over the past decade [10, 16, 19, 20, 22, 23].

Forward and Backward Privacy. Dynamic SSE aims to efficiently per-
form keyword searches on encrypted data while revealing some insignificant
information to the server. A common understanding of what kinds of leakage
are insignificant has been updated by exploring leakage-abuse attacks [5, 9, 17,
28] against SSE. In particular, file injection attacks demonstrated by Zhang et
al. [28] showed that forward privacy [7], which guarantees that the adversary
cannot learn if newly-added files contain previously-searched keywords, must be
a de facto standard security requirement for dynamic SSE.

Backward privacy [8], which guarantees that search operations reveal no use-
ful information on previously-deleted files even if they contain searched keywords,
has been spotlighted since it sounds like another natural security requirement.
However, it is more difficult to achieve backward privacy than forward privacy
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since it is just like we require the server to forget previously-stored information.
For example, we have to hide even information about when and which files are
added and/or deleted to meet backward privacy. Therefore, one of the current
major research interests in dynamic SSE is how efficiently we construct dynamic
SSE schemes with backward privacy.

Importance of Result-Hiding SSE. As described above, leakage-abuse at-
tacks tell us which information should not be leaked during update and search
operations. Existing attacks are classified into passive and active ones. Passive
attacks (e.g., [17]) aim to identify keywords behind search queries from admit-
ted leakage information and seem more likely to happen in the real world than
active attacks (e.g., [28]), which require that the server can force the client to
upload arbitrary files. A major drawback of passive attacks is that they also
require partial information of the stored data as extra information in addition
to the leakage profiles. This is quite an unrealistic assumption. Hence, the sub-
sequent works (e.g., [5, 9]) have attempted to weaken the assumption. Recently,
Bkackstone et al. [5] showed passive attacks that only require 5% of the client’s
data, whereas the Islam et al.’s seminal work [17] requires at least 95% of the
client’s data. In particular, it is worth noting that their attacks only use access
pattern leakage, which is a standard leakage profile of dynamic SSE. Although
there are, fortunately, countermeasures such as volume-hiding techniques [18],
they significantly decrease the efficiency of dynamic SSE schemes. Thus, it be-
comes more important to seek efficient constructions of result-hiding schemes,
which are dynamic SSE schemes mitigating access pattern leakage.

1.1 Our Contribution

In this paper, we propose Laura, a new result-hiding dynamic SSE scheme with
forward and Type-II backward privacy, which is the most investigated security
level of backward privacy. Laura is constructed based on Aura [25]; Laura is built
from only symmetric-key primitives, specifically, from any pseudorandom func-
tion (PRF), any symmetric-key encryption (SKE), and any approximate mem-
bership query (AMQ) data structure. Laura achieves better practical efficiency
to Aura and requires less leakage than Aura; this is the reason why we call our
scheme Laura, which stands for Low-leakage Aura.

We give experimental results to show the concrete efficiency of Laura and
v-Laura, which is a variant of Laura; their deletion and search procedures are
almost as efficient as Aura, and their addition procedures are substantially more
efficient than Aura. For example, Laura and v-Laura take less than a second to
add 200,000 entries, while Aura takes about a minute. For concrete efficiency
comparison among Laura, v-Laura, and Aura, see Section 6.

As a side result, we also figure out that in Aura (as well as Laura and v-Laura),
the client is assumed to never re-add any keyword-identifier pair (w, id) once
deleted, where id is a file identifier. This assumption seems reasonable in prac-
tice since id should be replaced with a new one if the client wants to re-add a
previously-deleted file whose identifier is id. We also show a variant of Laura,
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Table 1: Efficiency comparison among Type-II backward-private dynamic SSE
schemes. Suppose that the client has performed search and update operations t
times in total. d and n are the total numbers of distinct keywords and files, re-
spectively. aw, nw, and n

(srch)
w,del are the total numbers of all updates for w, files

currently containing a keyword w, and times a keyword w has been affected
by search operations since the last search for w, respectively. It clearly holds
aw ≥ n̂w ≥ nw, where n̂w := nw + n

(srch)
w,del . N is the total numbers of (document,

keyword) pairs, i.e., N := Σwnw. Let N ′ := Σwn̂w and N̂ := Σwaw. Namely, it

holds N̂ ≥ N ′ ≥ N . |σ| and |EDB| denote bit-lengths of client’s state informa-
tion and encrypted database. RT and RH stand for roundtrips and result hiding,
respectively. SK indicates whether the scheme is constructed from only symmetric-
key primitives. RU stands for re-updatability, which allows the client to re-add a
previously-deleted entry (w, id) to EDB.

|σ| |EDB|
Update Search

RT RH SK RU
Comp. Comm. Comp. Comm.

SDa [13] O(1) O(N̂) O(log N̂)†O(log N̂)† O(âw)
♯ O(n̂w) 2 ✓ ✓ ✓

SDd [13] O(1) O(N̂) O(log3 N̂) O(log N̂) O(âw)
♯ O(nw) 2 ✓ ✓ ✓

Fides [8] O(d) O(N ′) O(1) O(1) O(n̂w) O(n̂w) 3 ✓ — ✓

Aura [25]

(+EKPE [14])
O(d) O(N̂) O(1)‡ O(1) O(n̂w) O(nw) 1 — ✓ —

Laura (§4.2) O(d) O(N ′) O(1)‡ O(1) O(n̂w) O(n̂w) 3 ✓ ✓ —

v-Laura (§5.1) O(d) O(N ′) O(1)‡ O(1) O(n̂w) O(n̂w) 2 ✓ ✓ —

s-Laura (§5.2) O(d) O(N ′) O(1)‡ O(1) O(n̂
(srch)
w,del )

♯O(n̂w) 3 ✓ ✓ ✓

† Amortized analysis.
‡ To be precise, the deletion procedure depends on the time complexity of the un-
derlying AMQ structure, which is O(1) in almost all existing constructions.

♯ Let âw := aw + log N̂ and n̂
(srch)
w,del := n̂w · n(srch)

w,del for compact notations.

called s-Laura, that removes the assumption, i.e., it allows the client to re-add
previous-deleted entries to the encrypted database, although s-Laura requires
extra search costs.

Efficiency Comparison. We compare the asymptotic efficiency of dynamic
SSE schemes with forward and Type-II backward privacy in Table 1. Note that we
evaluate the server-side complexities of update and search algorithms. Although
the efficiency of Laura and v-Laura seems comparable to Fides [8] and Aura [25],
Laura and v-Laura has clear advantages over them; Fides employs public-key
primitives such as trapdoor permutations for its building block. Moreover, Fides
returns a (tentative) search result that contains deleted identifiers. Therefore,
the client themself has to remove such deleted ones to obtain the correct search
result. Although Laura and v-Laura also require for the client to remove deleted
identifiers, the client can easily find them thanks to the underlying approximate

Session 7 - 1 The 26th Annual International Conference on Information Security and Cryptology

ICISC 2023396



4 T. Amada et al.

membership query (AMQ) data structure. Aura achieves the minimum roundtrip,
however, the size of encrypted databases is large. Furthermore, Aura reveals the
access pattern and therefore is not a result-hiding scheme. Among the dynamic
SSE schemes that satisfy all properties (RH, SK, and RU) listed in the table,
s-Laura is more efficient than SDa and SDd.

2 Preliminaries

Notations. For any integer a ∈ Z, let [a] := {1, 2, . . . , a}. For a finite set X , we

use x
$← X to represent processes of choosing an element x from X uniformly

at random. For a finite set X , we denote by X ← x and |X | the addition x
to X and cardinality of X , respectively. Concatenation is denoted by ∥. In
the description of the algorithm, all arrays, strings, and sets are initialized to
empty ones. We consider probabilistic polynomial time (PPT) algorithms. For
any non-interactive algorithm A, out ← A(in) means that A takes in as input and
outputs out. In this paper, we consider two-party interactive algorithms between
a client and a server, and it is denoted by (outC; outS) ← A(inC; inS), where inC
and inS are input of client and server, respectively and outC and outS are output
of client and server, respectively. If necessary, we mention the transcript trans
and describe the algorithm as ⟨(outC; outS), trans⟩ ← A(inC; inS). The security
parameter and negligible function are denoted by κ and negl(·), respectively.

Pseudorandom Functions (PRFs). A family of functions π := {πkprf : {0, 1}∗
→ {0, 1}m}kprf∈{0,1}κ , where m = poly(κ), is said to be a (variable-input-length)
PRF family if for sufficiently large κ ∈ N and all PPT algorithm D, it holds

|Pr[Dπ(kprf,·)(1κ) = 1 | kprf
$← {0, 1}κ] − Pr[DR(·)(1κ) = 1 | R $← R]| < negl(κ),

where R is a set of all mappings R : {0, 1}∗ → {0, 1}m.

Symmetric-Key Encryption (SKE). An SKE Πske consists of three PPT
algorithms Πske = (G,E,D). G takes a security parameter κ as input and outputs
a secret key kske, and E takes a plaintext m and kske as input and outputs the
ciphertext c. D takes c with kske and outputs m or ⊥ as a symbol of failure.
In this paper, we assume Πske is CPA security. For formal definitions, we refer
the readers to [21]. Also, if necessary, we explicitly describe a nonce used in
an SKE. Specifically, for nonce r, the encryption and decryption algorithms are
denoted by E(kske,m; r) and D(kske, c; r), respectively. The ciphertext is treated
as r∥c. Note that (nonce-based) CTR and CBC modes in block ciphers satisfy
CPA security and the above properties.

Approximate Membership Query (AMQ) Structure. Probabilistic data
structures, known as Approximate Membership Query (AMQ) data structures,
provide membership queries with compact data sizes by allowing “false posi-
tives.” The most appealing feature of AMQ structures is to make the false-
positive probability small enough by setting specific parameters appropriately.
We consider AMQ structures that support both insertion and deletion opera-
tions. While the Bloom filter [6], one of the well-known AMQ structures, does
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not support deletion, recent ones, such as the cuckoo filter [15] and quotient
filter [4], do. Formally, an arbitrary set U ∈ {0, 1}∗, an AMQ data structure
Πamq = (AMQ.Gen,AMQ.Insert,AMQ.Delete,AMQ.Lookup) consists of the fol-
lowing PPT algorithms:

– (T , aux) ← AMQ.Gen(U , par): it takes U and a parameter par as input, and
outputs an initial structure T and auxiliary information aux. The parameter
par depends on the construction of the specific AMQ structure.

– T ′ ← AMQ.Insert(T , x, aux): it takes as input a data structure T , an element
x ∈ U to be added, and aux, and outputs an updated structure T ′.

– T ′ ← AMQ.Delete(T , x, aux): it takes as input a data structure T , an element
x ∈ U to be deleted, and aux, and outputs an updated structure T ′.

– true/false ← AMQ.Lookup(T , x, aux): it takes as input a data structure T ,
an element x ∈ U to be queried, and aux, and outputs true or false.

AMQ structures meet the following two properties. Due to the page limita-
tion, we omit the formal description and will give it in the full version.

– Completeness: Let S be a set of elements that have been inserted (and not
deleted). For all x ∈ S, it holds AMQ.Lookup(T , x, aux) = true, where T is
the corresponding structure.

– Bounded False-Positive Probability : Let n := |S|. Then, there exists µn ∈
(0, 1] such that it holds Pr[AMQ.Lookup(T , x, aux) = true] ≤ µn for any
x ∈ U \ S.

3 Dynamic SSE

3.1 Notation for Dynamic SSE

Λ := {0, 1}λ is a set of possible keywords (sometimes called a dictionary), where
λ = poly(κ). A document fid has its unique identifier id ∈ {0, 1}ℓ, which is
irrelevant to the contents of fid, where ℓ = poly(κ). A counter t represents the
global counter through the protocol; it is initialized to 0 at setup and incremented
for each search or update operation. A database DB(t) at t is represented as a set

of keyword-identifier pairs (w, id), i.e., DB(t) := {(wi, idi)}N(t)
i=1 , where N(t) is the

number of pairs stored in the server at t. We denote ID(t) by a set of identifiers in
DB(t). That is, ID(t) := {id | ∀w ∈ Λ, (w, id) ∈ DB(t)}. Similarly, W(t) is denoted

by a set of keywords in DB(t), i.e., W(t) := {w | ∀id ∈ ID(t), (w, id) ∈ DB(t)}.

3.2 Model

Dynamic SSE consists of three PPT algorithms (Setup,Update, Search). Firstly,
the client runs Setup to generate a secret key, initial state information, and an
initial encrypted database, which is sent to the server. The client interacts with
the server and runs Update and Search repeatedly to add or delete a pair (w, id)
and search for keywords.
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Definition 1 (Dynamic SSE). A Dynamic SSE Σ := (Setup,Update, Search)
over Λ consists of the following PPT algorithms:

– (k, σ(0),EDB(0)) ← Setup(1κ): it is an non-interactive algorithm that takes
a security parameter κ as input and outputs a secret key k, initial state
information σ(0), and initial encrypted database EDB(0).

– (σ(t+1);EDB(t+1)) ← Update(k, op, in, σ(t);EDB(t)): it is an interactive al-
gorithm that takes k, an operation label op ∈ {add, del}, the corresponding
input in := (w, id), and σ(t) as input of the client and encrypted database

EDB(t) as input of the server, and outputs updated state information σ(t+1)

for the client and updated encrypted database EDB(t+1) for the server.

– (X (t)
q , σ(t+1);EDB(t+1)) ← Search(k, q, σ(t);EDB(t)): it is an interactive al-

gorithm that takes k, a searched keyword q, and σ(t) as input of the client
and encrypted database EDB(t) as input of the server, and outputs updated

state information σ(t+1) and a search result X (t)
q for the client and updated

encrypted database EDB(t+1) for the server.

Briefly, the correctness of the above model ensures that it holds X (t)
q = {id ∈

ID(t) | (q, id) ∈ DB(t)} with overwhelming probability for any keyword q ∈ Λ.
For a formal definition, we refer the readers to [10].

3.3 Security

Dynamic SSE guarantees that the (honest-but-curious) server does not learn
any information beyond some explicit information leakage during a sequence
of operations. Therefore, such information leakage is characterized as a leakage
function L := (LSetup,LUpd,LSrch), where LSetup, LUpd, and LSrch are functions
that refer to information leaked during Setup, Update, and Search, respectively.

L-Adaptive Security. We define L-adaptive security of SSE in a simulation-
based manner. We consider two experiments: a real experiment Real in which
the Dynamic SSE scheme is performed in the real world and an ideal experiment
Ideal that at most leaks a leakage function L. Specifically, a real experiment RealD
is performed by the client and a PPT algorithm D = (D1,D2, . . . ,DQ+1), while
ideal experiment IdealD,S,L is performed by D and a simulator S = (S0, S1, . . . ,SQ)
with leakage function L. In each experiment, D adaptively queries and attempts
to distinguish between the two experiments. If D cannot distinguish between
them, D has not learned more information than the leakage function L; we call
this L-adaptive security. Each experiment is formally given in Fig. 1, and the
security definition is as follows [27].

Definition 2 (L-Adaptive Security). Let Σ be a Dynamic SSE scheme.
Σ is L-adaptively secure, with regard to a leakage function L, if for any PPT
algorithm D, any sufficiently large κ ∈ N, and any Q := poly(κ), there exists a
PPT algorithm S s.t. |Pr [RealD(κ,Q) = 1]− Pr [IdealD,S,L(κ,Q) = 1]| < negl(κ).
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Real Experiment: RealD(κ,Q)

1: (k, σ(0),EDB(0)) ← Setup(1κ)
2: stD := {EDB(0)}
3: for t = 1 to Q do
4: query ← Dt(stD)
5: if query = (upd, op, in) then
6: ⟨(σ(t);EDB(t)), trans(t)⟩

← Update(k, op, in, σ(t−1);EDB(t−1))
7: if query = (srch, q) then

8: ⟨(σ(t),X (t−1)
q ;EDB(t)), trans(t)⟩

← Search(k, q, σ(t−1);EDB(t−1))
9: stD ← (EDB(t), trans(t))
10: b ← DQ+1(stD)
11: return b

Ideal Experiment: IdealD,S,L(κ,Q)

1: (EDB(0), stS) ← S0(LSetup(κ))
2: stD := {EDB(0)}
3: for t = 1 to Q do
4: query ← Dt(stD)
5: if query = (upd, op, in) then
6: ⟨(st′S;EDB(t)), trans(t)⟩

← St(stS,LUpd(t, op, in);EDB
(t−1))

7: if query = (srch, q) then
8: ⟨(st′S;EDB(t)), trans(t)⟩

← St(stS,LSrch(t, q);EDB
(t−1))

9: stD ← (EDB(t), trans(t))
10: stS := st′S
11: b ← DQ+1(stD)
12: return b

Fig. 1: Real and ideal experiments.

Forward and Backward Privacy. The well-known security notions for update
operations are forward privacy [7] and backward privacy [8].

Forward privacy, roughly speaking, ensures that while running an update of
a keyword-identifier pair (q, id), no information about the keyword q is exposed
to the server. This means that the keyword q cannot be associated with all pre-
vious searches and update operations. Forward privacy is an important security
requirement since Zhang et al. [28] showed effective attacks against non-forward-
private dynamic SSE schemes. The formal definition is as follows:

Definition 3 (Forward Privacy [7]). Let Σ be a L-adaptively secure dy-
namic SSE scheme. Σ is forward private if LUpd(for op = add) can be written
as LUpd(t, add, (q, id)) = L′(t, add, id), where L′ is stateless function.

On the other hand, loosely speaking, backward privacy guarantees that while
running a search for a keyword q, the least possible (ideally, no) information
about the deleted pair (q, id) is leaked to the server. However, if leakage regarding
deletion operations is to be completely eliminated, significant costs are required
due to efficiency trade-offs. Therefore, Bost et al. [8] introduced three levels of
backward privacy: from Type-I with the least leakage to Type-III with the most
leakage. In this paper, we focus on Type-II backward privacy, which achieves a
good balance between security levels and achievable efficiency. To describe their
definition, we define several functions of leaked information as follows. Let Q(t)

be the set of all operations of each counter u ∈ [t], and its elements are described
as (u, q) ∈ Q(t) for a search for a keyword q and (u, op, (q, id))) ∈ Q(t) for an
update of a keyword-identifier pair (q, id), where op ∈ {add, del}.

Session 7 - 1 The 26th Annual International Conference on Information Security and Cryptology

ICISC 2023400



8 T. Amada et al.

– Search pattern SP(t)
q : A set of counters at which the keyword q has been

searched. That is, SP(t)
q := {u | (u, q) ∈ Q(t)}.

– Access pattern TimeDB(t)
q : A set of pairs of an identifier id ∈ ID(t) that

includes a keyword q at t and a counter u when the corresponding keyword-
identifier pair (q, id) was added. That is,

TimeDB(t)
q :=

{
(uadd, id)

∣∣∣∣
(uadd, add, (q, id)) ∈ Q(t)

∧ ∀udel, (udel, del, (q, id)) /∈ Q(t)

}
,

where we assume uadd < udel without the loss of generality.
– Update pattern Update(t)q : It is a set of counters for all update operations

on q, i.e., Update(t)q :=
{
u | (u, add, (q, id)) ∈ Q(t) ∨ (u, del, (q, id)) ∈ Q(t)

}
.

Using the above functions, Type-II backward privacy is defined as follows.

Definition 4 (Type-II Backward Privacy [8]). Let Σ be a L-adaptively
secure dynamic SSE scheme. Σ is Type-II backward private if LUpd and LSrch

can be written as:

LUpd(t, op, (q, id)) = L′(t, op, q) and LSrch(t, q) = L′′(SP(t)
q ,TimeDB(t)

q ,Update(t)q ),

where L′ and L′′ are stateless functions.

Result Hiding. As mentioned in the introduction, taking into account the
recent progress in leakage abuse attacks, it is important to realize an efficient
dynamic SSE scheme that never leaks identifiers of search results. Such a scheme
is called a result-hiding one. Although several result-hiding schemes [13, 8] are
already known, to the best of our knowledge, there is no formal definition of
the result-hiding property. Therefore, we first define it formally. We consider the
following leakage functions.

– Concealed access pattern Time(t)q : It is a set of counters contained in

TimeDB(t)
q . That is, Time(t)q := {u | ∃id s.t. (u, id) ∈ TimeDB(t)

q }.
– Deletion history DelHist(t)q : It is a set of pairs of two counters at which

each of addition and deletion operations is performed on the same (q, id)
pair. That is,

DelHist(t)q :=

{
(uadd, udel)

∣∣∣∣
∃id s.t. (uadd, add, (q, id)) ∈ Q(t)

∧ (udel, del, (q, id)) ∈ Q(t)

}
.

Although DelHist(t)q is a well-known leakage function to define Type-III backward
privacy, we also use it to define the result-hiding property.

Definition 5 (Result-Hiding Dynamic SSE). Let Σ be a L-adaptively se-
cure dynamic SSE scheme. Σ is called a result-hiding scheme if LUpd and LSrch

can be written as:

LUpd(t, op, (q, id)) = L′(t, op, q) and LSrch(t, q) = L′′(SP(t)
q ,Time(t)q ,DelHist(t)q ),

where L′ and L′′ are stateless functions.
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Efficient Result-Hiding SSE with Forward and Backward Privacy 9

Namely, result-hiding schemes do not leak any identifiers during updates and
searches. Note that the search operation may leak all information related to the
counters of update operations on q since the result-hiding property should be
a property in which result-hiding schemes reveal no information on identifiers
themselves contained in search results.

Remark 1. One may think that the result-hiding property conflicts with a com-
mon use case of dynamic SSE, where the server returns both a search result
and the corresponding actual documents. The property prevents the server from
returning the actual documents unless the client reveals the search result to
the server; the reveal means the leakage of the access pattern and makes the
result-hiding property meaningless! Nevertheless, in such a common use case,
the result-hiding property should be valuable since the client can choose whether
the client reveals the access pattern. Of course, the property would be more ap-
pealing in other use cases, e.g., where actual documents are stored on another
server.

4 Laura: Low-leakage Aura

We propose a new efficient dynamic SSE scheme that meets forward privacy,
Type-II backward privacy, and the result-hiding property. Although the con-
struction approach of our scheme is based on Aura, our scheme allows less leakage
than Aura. Thus, we call our scheme Laura, which stands for low-leakage Aura.

4.1 Construction Idea

Construction Overview of Aura. Sun et al. [25] introduced a core building
block of Aura, called symmetric revocable encryption (SRE). Briefly speaking,
SRE supports puncturable decryption. In SRE, plaintexts are encrypted along
with a tag. A decryption key associated with a certain revoked set, containing
revoked tags, cannot decrypt ciphertexts related to the revoked tags. In Aura,
SRE’s puncturable decryption functionality allows the server to decrypt cipher-
texts without leaking deleted entires as follows. When adding (w, id), the client
encrypts id with a tag τ and the ciphertext is stored on the server. When delet-
ing (w, id), the client adds the corresponding tag τ to a revoked tag set Rw on
w, stored in the local storage. When searching for w, the client retrieves the
revoked tag set Rw and generates a decryption key associated with Rw. The
server decrypts ciphertexts with the key and obtains id if the corresponding tag
τ ′ is not revoked (i.e., τ ′ /∈ Rw); it obtains ⊥ otherwise due to the puncturable
decryption functionality. Therefore, the client can delegate the process of re-
moving deleted entries to the server; it does not leak when and which identities
have been deleted. The client just receives and outputs the search result from
the server. Consequently, Aura is the first (efficient) dynamic SSE that supports
both non-interactive search operations and Type-II backward privacy. However,
there is still room for improvement as follows:
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10 T. Amada et al.

1) Although a Bloom filter [6] is used to compress the revoked tag set Rw, the
client has to store them on the local storage. It is desirable to reduce the
amount of local storage on the client side (i.e., state information) as much
as possible.

2) Aura employs logical deletion; for a deletion operation of (w, id), an entry
(del, (w, id)) is added to an encrypted database EDB. As a result, the size of

EDB in Aura is N̂ =
∑

w aw, where aw is the total number of updates for w.

3) As seen above, the server decrypts the ciphertexts and gets the access pat-
terns. Namely, Aura is not a result-hiding scheme.

Our Approach. A common approach to realizing result-hiding schemes is to
have the client decrypt the search results [8, 11, 13]. With this approach in mind,
our scheme is based on Aura combined with Etemad et al.’s forward-private
scheme [14], which are not result-hiding schemes; we no longer employ SRE but
the concept of revoked tags. The construction idea for Laura is to perform a
variant of logical deletion using tags; sending the server a revoked tag τ of a
deleted pair (w, id), instead of the (encrypted) pair itself, when deleting (w, id).
Therefore, the client does not have to remember the tags. Laura maintains the
revoked tags with an (arbitrary) AMQ data structure that supports deletion
operations, whereas Sun et al. [25] only considered the Bloom filter for Aura.
Hence, the client easily finds the deleted entries with the AMQ.Lookup algorithm,
which leads to the result-hiding property while keeping efficiency.3

Moreover, we also achieve a smaller EDB through re-addition techniques [14,
26]: for a search query on w, the server retrieves all values related to the query
from EDB and deletes them. After getting the search result, the client re-adds
all entries except for deleted ones for the next search. We summarize what our
approach resolves.

1) Laura achieves a smaller (concrete) storage size on the client side than Aura.

2) Laura achieves a smaller |EDB| = N ′ =
∑

w(nw + n
(srch)
w,del ) than Aura, where

n
(srch)
w,del is the total number of times a keyword w has been affected by search

operations since the last search for w. It clearly holds N̂ ≥ N ′.

3) Laura is a result-hiding scheme. Furthermore, compared to existing these
schemes, Laura achieves compression of EDB and efficient removal of deleted
entries due to the AMQ data structure.

In addition to the above benefits, Laura is more practically efficient than
Aura. We will see that in Section 6.

3 Though the server needs to send the AMQ structure to the client during the search
operation, the size of the structure is reasonably small. For example, if we select
the cuckoo filter [15] as the AMQ structure, its size is 0.79MB for 100,000 deleted
entries with the false-positive probability p = 10−4. As a reference, according to the
Aura paper [25], SDd [13] requires 8.58MB of total communication costs for search.
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Algorithm: Laura

Setup(1κ)

Client:

1: kprf, krh, kske
$← {0, 1}κ

2: (T , aux) ← AMQ.Gen({0, 1}λ, par)
3: fcw, scw, Index[] := ε // ε is an empty value

4: return
(
k := (kprf, krh, kske), σ

(0) := (scw, fcw),EDB
(0) := (Index, T , aux)

)

Update(k, add, (w, id), σ(t);EDB(t))

Client:
1: τ ← π(krh, w∥id)
2: if scw is undefined then
3: (scw, fcw) := (0, 0)
4: fcw := fcw + 1 // increment fcw
5: K

(scw)
w ← g(kprf, w∥scw) // generate the PRF key for address

6: addr ← h(K
(scw)
w , fcw), val ← E(kske, τ∥id)

7: Send trans
(t)
1 := (addr, val) to the server

8: return σ(t+1) := (scw, fcw)w∈W(t+1)

Server:

10: Index[addr] := val

11: return EDB(t+1) := (Index, T , aux)

Update(k, del, (w, id), σ(t);EDB(t))

Client:
1: if fcw is defined then
2: τ ← π(krh, w∥id)
3: Send trans

(t)
1 := τ to the server

4: return σ(t+1) := σ(t)

Server:

6: T ′ ← AMQ.Insert(T , τ, aux)
7: return EDB(t+1) := (Index, T ′, aux)

Fig. 2: Setup and Update of our dynamic SSE scheme Laura.

4.2 Our Construction

Let π : {0, 1}∗ → {0, 1}λ and g : {0, 1}∗ → {0, 1}κ be (variable-input-length)
PRF families and h : {0, 1}∗ → {0, 1}η be a hash function, where λ and η are
polynomials in κ. LetΠamq = (AMQ.Gen,AMQ.Insert,AMQ.Delete,AMQ.Lookup)
be an AMQ data structure. We propose a dynamic SSE scheme Laura = (Setup,
Update, Search) from Πamq, π, g, and h. The pseudo-codes for Laura are given in
Figs. 2 and 3, and we provide overviews of each algorithm below.

Setup: Setup(1κ). The client generates a secret key k := (kske, kprf, krh), where
kske is an SKE secret key and kprf and krh are PRF keys used to compute ad-
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12 T. Amada et al.

Algorithm: Laura

Search(k, q, σ(t);EDB(t))

Client:
1: K

(scw)
q ← g(kprf, q∥scq)

2: Send trans
(t)
1 := (K

(scw)
q , fcq) to the server

Server:

3: for i = 1 to fcq do

4: addr ← h(K
(scw)
q , i), val := Index[addr], C(t)

q ← val

5: Index[addr] := NULL // delete old addresses

6: Send trans
(t)
2 := (C(t)

q , T , aux) to the client // Send copy of T
Client:

7: for ∀c ∈ C(t)
q do

8: τ∥id ← D(kske, c) // the first λ MSBs of val is tag
9: if AMQ.Lookup(T , τ, aux) = true then // logical deletion of (q, id)

10: D(t)
q ← τ

11: else // search result

12: X (t)
q ← id, Y(t)

q ← (τ, id)

13: scq := scq + 1, fcq := |X (t)
q | // update state

14: K̂
(scq)
q ← g(kprf, q∥scq) // generate new keys

15: ctr := 1
16: for ∀(τ, id) ∈ Y(t)

q do

17: âddr ← h(K̂
(scq)
q , ctr), v̂al ← E(kske, τ∥id)

18: R(t)
q ← (âddr, v̂al), ctr := ctr + 1

19: Send trans
(t)
3 := (D(t)

q ,R(t)
q ) to the server

20: return (X (t)
q , σ(t+1) := (scq, fcq)q∈W(t+1))

Server:

21: for ∀(âddr, v̂al) ∈ R(t)
q do

22: Index[âddr] := v̂al // set new addresses and value

23: for ∀τ ∈ D(t)
q do

24: T ′ ← AMQ.Delete(T , τ, aux), T := T ′

25: return EDB(t+1) := (Index, T , aux)

Fig. 3: Search of our dynamic SSE scheme Laura.

dresses and tags, respectively. The client initializes two counters fcw and scw,
an array Index, and an AMQ data structure T (along with its auxiliary infor-
mation aux). The client sets the state information σ(0) := (fcw, scw), and sends

EDB(0) := (IndexT , aux) to the server.

Addition: Update(k, add, (w, id), σ(t);EDB(t)). First, the client retrieves the file
counter fcw and the search counter scw in σ(t) and increments fcw. The client
next derives a PRF key K

(scw)
w from the PRF key kprf using the keyword w to

calculate an address addr. Also, the client computes a tag τ , which will be sent
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to the server during the deletion operation, of the pair (w, id) from the PRF
key krh, and encrypts τ∥id with the SKE secret key kske. The server adds the

ciphertext to Index[addr] in EDB(t).

Deletion: Update(k, del, (w, id), σ(t);EDB(t)). The client only computes the tag
τ of the pair (w, id) using the PRF key krh and sends it to the server. The server

executes AMQ.Insert to insert τ into the data structure T in EDB(t).

Search: Search(k, q, σ(t);EDB(t)). First, the client creates the PRF key K
(scw)
q

for the search keyword q and sends it together with fcq to the server. For every i =

1, . . . , fcq, the server computes an address g(K
(scw)
q , i) and adds its stored value

val to the set C(t)
q . The server sends C(t)

q and a copy of the data structure T to the
client and frees the memory of all the addresses accessed. For every value val ∈
C(t)
q , the client checks whether it has been deleted as follows. The client decrypts

val and obtains τ∥id, and executes AMQ.Lookup with τ to check whether the
pair (w, id) has been logically deleted. If AMQ.Lookup outputs false, id is added

to the search result X (t)
q . Next, the client re-adds the pairs (w, id) except for the

deleted ones. The client increments scq, and adds the pairs in the same way

to the above addition procedure. The server updates EDB(t) as in the addition

procedure and also receives a tag set D(t)
q of the deleted entry. For every tag

τ ∈ D(t)
q , the server executes AMQ.Delete to remove the tags from the data

structure T . This re-addition procedure is important to provide forward privacy
and reduce the size of EDB and T .

4.3 Security Analysis

Correctness. Before analyzing the security of Laura, we show that it satisfies
the correctness. Laura might output wrong search results due to false positives
in the underlying AMQ data structure Πamq. The correctness error probabil-
ity depends on the false-positive probability; due to the bounded false-positive
probability property, there exists, and we can evaluate an upper bound µn of
the false-positive probability. Therefore, by setting the parameters of Πamq ap-
propriately, one can make the correctness error probability negligible.

Security. To show the security of Laura, we consider a leakage function called
deletion pattern DelTime(t)q , which is a set of counters for all deletion operations
on w. Namely,

DelTime(t)q :=

{
udel

∣∣∣∣
∃id s.t. (uadd, add, (q, id)) ∈ Q(t)

∧ (udel, del, (q, id)) ∈ Q(t)

}
,

where we assume uadd < udel without the loss of generality.

Theorem 1. If Πske is CPA-secure, Πamq is an AMQ data structure, π and g
are (variable-input-length) PRF families, and h is a random oracle, the dynamic
SSE scheme Laura = (Setup,Update, Search) in Figs. 2 and 3 is an L-adaptively
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secure result-hiding scheme that supports forward privacy and Type-II backward
privacy, with the following leakage function L = (LSetup,LUpd,LSrch):

LSetup(1
κ) = Λ, LUpd(t, op, in) = (t, op),

LSrch(t, q) = (SP(t)
q ,Update(t)q ,DelTime(t)q ),

for any t and any q ∈ Λ.

Note that DelTime(t)q can be derived from Update(t)q and op included in LUpd:

DelTime(t)q := {u ∈ Update(t)q | LUpd(u, op, (q, id)) = (u, del)}. Since Time(t)q and

DelHist(t)q imply Update(t)q , our construction clearly meets both Type-II backward
privacy and the result-hiding property.

Proof (Sketch). Due to the page limitation, we give a proof sketch. We will
provide the detailed proof in the full version. We prove that the simulator S can
simulate the update and search operations only with the leakage functions L.

Addition. With leakage LUpd(t, add, in) = (t, add) for a query (upd, add, in), S

simulates a transcript trans
(t)
1 := (addr, c). In the real experiment Real, addr

and c are η-bit pseudo-random numbers and ciphertexts of τ∥id, respectively. If
h is a random oracle and Πske is CPA-secure, addr and c are indistinguishable
from an η-bit random string r and a ciphertext c′ of 0λ+l, except with negligible

probability, respectively. Hence, S can set trans
(t)
1 := (r, c′).

Deletion. With leakage LUpd(t, del, in) = (t, del) for a query (upd, del, in), S

simulates a transcript trans
(t)
1 := τ . If π is a PRF family, τ is indistinguishable

from a λ-bit random string r′ except with negligible probability. Therefore, S

can set trans
(t)
1 := r′.

Search. With leakage LSrch(t, q) = (SP(t)
q ,Update(t)q ,DelTime(t)q ) for a query

(srch, q), S simulates transcripts trans
(t)
1 := (K

(scw)
q , fcq), trans

(t)
2 := (C(t)

q , T ,

aux), and trans
(t)
3 := (D(t)

q ,R(t)
q ). Roughly speaking, due to the security of the

underlying PRF g, S can set a κ-bit random string as K
(scw)
q . Since fcq can be

derived from Update(t)q and DelTime(t)q , S can simulate trans
(t)
1 . Since C(t)

q is a
set of all ciphertexts generated during the addition operation for q, S retrieves a

ciphertext simulated at every u ∈ Update(t)q \ DelTime(t)q and sets them as C(t)
q .4

S easily simulates T and aux since tags for w, which are entered into AMQ.Insert
and AMQ.Delete, are correctly simulated during the deletion operation. Hence, S

can simulate trans
(t)
2 . The set D(t)

q of deleted tags can also be simulated as above.

R(t)
q can be simulated as in the case of the addition since each (âddr, v̂al) ∈ R(t)

q

is generated in the same manner as the addition operation. Therefore, S can

simulate trans
(t)
3 . ⊓⊔

4 To be precise, S has to change the way to retrieve ciphertexts depending on SP
(t)
q ;

S first retrieves ciphertexts re-added at the last search for q, i.e., at t′ = max SP
(t)
q ,

and then retrieves ciphertexts simulated from t′ to t.
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Algorithm: v-Laura

Setup(1κ)

Client:

1: kprf, krh, kske
$← {0, 1}κ

2: fcw, scw,F[], Index[],Cache[] := ε // ε is an empty value

3: return
(
k := (kprf, krh, kske), σ

(0) := (scw, fcw,F),EDB
(0) := (Index,Cache)

)

Update(k, add, (w, id), σ(t);EDB(t))

Client:
1: τ ← π(krh, w∥id)
2: if scw is undefined then
3: (scw, fcw) := (0, 0)
4: (Tw, aux) ← AMQ.Gen({0, 1}λ, par)
5: F[w] := (Tw, aux)
6: fcw := fcw + 1 // increment fcw
7: K

(scw)
w ← g(kprf, w∥scw) // generate the PRF key for address

8: c ← E(kske, id; τ) // Encryption with nonce

9: addr ← h(K
(scw)
w , fcw), val := τ∥c

10: Send trans
(t)
1 := (addr, val) to the server

11: return σ(t+1) :=
(
(scw, fcw)w∈W(t+1) ,F

)
Server:

12: Index[addr] := val

13: return EDB(t+1) := (Index,Cache)

Update(k, del, (w, id), σ(t);EDB(t))

Client:
1: if fcw is defined then
2: τ ← π(krh, w∥id)
3: (Tw, aux) ← F[w]
4: T ′

w ← AMQ.Insert(Tw, τ, aux)
5: F[w] := (T ′

w, aux)
6: return σ(t+1) :=

(
(scw, fcw)w∈W(t+1) ,F

)

Fig. 4: Setup and Update of our dynamic SSE scheme v-Laura.

5 Extensions

5.1 A Variant of Laura: v-Laura

Although Laura is very efficient with small client storage, there is a trade-off
between it and the communication cost, as noted in the footnote in Sec. 4.1.
Specifically, the server has to send the AMQ structure together with a search
result during the search algorithm (line 6 in Fig. 3). The idea to reduce commu-
nication cost is to store the AMQ structure on the client side for each keyword,
as in Aura. For clients with ample storage or narrow bandwidth, a more suitable

Session 7 - 1 The 26th Annual International Conference on Information Security and Cryptology

ICISC 2023408



16 T. Amada et al.

Algorithm: v-Laura

Search(k, q, σ(t);EDB(t))

Client:
1: K

(scw)
q ← g(kprf, q∥scq)

2: tknq ← g(kprf, q)
3: (Tq, aux) := F[q]

4: Send trans
(t)
1 :=

(
K

(scw)
q , tknq, fcq, (Tq, aux)

)
to the server

Server:

5: C(t)
q := Cache[tknq]

6: for i = 1 to fcq do

7: addr ← h(K
(scw)
q , i), val := Index[addr], C(t)

q ← val

8: Index[addr] := NULL // delete old addresses

9: for ∀val ∈ C(t)
q do

10: parse val = τ∥c // the first λ MSBs of val is tag(nonce)
11: if AMQ.Lookup(Tq, τ, aux) = true then // logical deletion of (w, id)

12: C(t)
q := C(t)

q \ {val}
13: Cache[tknq] := C(t)

q

14: Send trans
(t)
2 := C(t)

q to the client
15: return EDB(t+1) := (Index,Cache)

Client:

7: for ∀(τ, c) ∈ C(t)
q do

8: X (t)
q ← D(kske, c; τ) // decrypt c to get search result

9: (T ′
q , aux) ← AMQ.Gen({0, 1}λ, par)

10: fcq := 0, scq := scq + 1, F[q] := (T ′
q , aux) // update state

11: return
(
X (t)

q , σ(t+1) :=
(
(scq, fcq)q∈W(t+1) ,F

))

Fig. 5: Search of our dynamic SSE scheme v-Laura.

and efficient variant scheme than Laura, called v-Laura, can be constructed. At
first glance, it seems to be the same as Aura, but the following are differences;

1) AMQ is used only as a compression of the deleted tag set without SRE
functionality. Therefore, efficient AMQs can be selected, not limited to the
bloom filter used for SRE in Aura. The v-Laura also achieves efficient search
by eliminating SRE processing, which is dominant in Aura searches (see
Sec. 5).

2) The server removes the deleted entries using AMQ structure while the client
decrypts the search results to achieve result-hiding, similar to Laura.

3) The v-Laura can compress the size of val in EDB with the idea of using τ as
a nonce in encryption. In some block cipher modes of CPA-secure Πske, the
nonce is used for security and is stored with the ciphertext. Since τ plays
the role of nonce, it can compress the size of the original nonce.
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The pseudo-codes for v-Laura are given in Figs. 4 and 5, and we provide
overviews of each algorithm below. However, we omit the same part of Laura.

Setup: Setup(1κ). The client generates a secret key k := (kske, kprf, krh). The
client initializes two counters fcw and scw, and three array Index and Cache
and F. The client sets the state information σ(0) := (fcw, scw,F), and sends

EDB(0) := (IndexCache) to the server.

Addition: Update(k, add, (w, id), σ(t);EDB(t)). First, the client calculates an
address addr and tag τ , like Laura. Also, the client encrypts id using τ as nonce
(i.e., c ← E(kske, id; τ)) and sends addr and val := τ∥c to the server. The server

adds val to Index[addr] in EDB(t).

Deletion: Update(k, del, (w, id), σ(t);EDB(t)). The client only computes the tag
τ and executes AMQ.Insert to insert τ into the data structure Tw for w in σ(t).

Search: Search(k, q, σ(t);EDB(t)). First, the client creates K
(scw)
q and tknq with

the PRF key kprf and sends them together with fcq and Tq to the server. The

server gets Cache[tknq] as a set C(t)
q . For every i = 1, . . . , fcq, the server computes

an address g(K
(scw)
q , i) and adds its stored value val to the set C(t)

q . For every

val ∈ C(t)
q , the server parse val := τ∥c and executes AMQ.Lookup with τ and

Tq to check whether the pair (q, id) has been logically deleted. If AMQ.Lookup

outputs true, val is removed from C(t)
q . Next, the server sets C(t)

q to Cache[tknq]

and updates EDB(t), and sends C(t)
q to the client. For every value val ∈ C(t)

q , the

client decrypts val to obtain id and adds it to the search result X (t)
q . Finally,

the client initializes Tq and fcq and increments scq.
v-Laura also satisfies Theorem 1. The proof is shown in full version.

5.2 A Strongly Secure variant of Laura: s-Laura

As explained in the introduction, Aura implicitly requires every pair of (w, id)
to be added at most only once; it does not allow the client to re-add previously
deleted pairs. Indeed, Laura and v-Laura work well under the same assumption.
In other words, if the client wants to add and delete a pair (w, id) multiple
times, those schemes are no longer Type-II backward private. This limitation
stems from the fact that the corresponding tag of the pair (w, id) is generated
deterministically in those schemes. The extended scheme s-Laura, which stands
for strongly-secure Laura, allows to run Update of pair (w, id) any number of
times. The basic idea of s-Laura is that the deletion tag of the pair (w, id) changes
with each deletion. The client holds extra information dcw which increments
for each deletion regarding w. When pair (w, id) is deleted, a delete tag τdcw is
generated from τ and dcw. The client then computes tags τ1, . . . , τdcw from τ and
dcw, and executes AMQ.Lookup with τi for every i ∈ [dcw] to check whether the
pair (w, id) has been logically deleted. If AMQ.Lookup outputs false for all tags,

id is added to the search result X (t)
q . However, the search time of s-Laura increases

linearly with the number of deletions, as shown in Table. 1. Hence, s-Laura has
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not been evaluated for implementation in Sec. 6. Efficient construction is a future
work.

We give the pseudo-codes for s-Laura in Appendix A, and provide overviews
of each algorithm below.

Setup: Setup(1κ). The client generates a secret key k := (kske, kprf, krh), where
kske is an SKE secret key and kprf and krh are PRF keys used to compute
addresses and tags, respectively. The client initializes three counters fcw, scw,
and dcw, an array Index, and an AMQ data structure T (along with its auxiliary
information aux). The client sets the state information σ(0) := (fcw, scw, dcw),

and sends EDB(0) := (IndexT , aux) to the server.

Addition: Update(k, add, (w, id), σ(t);EDB(t)). First, the client retrieves the file
counter fcw and the search counter scw in σ(t) and increments fcw. The client
next derives a PRF key K

(scw)
w,0 from the PRF key kprf using the keyword w to

calculate an address addr. Also, the client computes a persistent tag τ , which
will be used to derive an ephemeral tag τi during the deletion operation, of the
pair (w, id) from the PRF key krh, and encrypts τ∥id with the SKE secret key

kske. The server adds the ciphertext to Index[addr] in EDB(t).

Deletion: Update(k, del, (w, id), σ(t);EDB(t)). First, the client retrieves the dele-
tion counter dcw and increments it. The client computes the persistent tag τ as

in the addition operation. Then, the client derives a key K
(scw)
w,1 from the PRF

key kprf using the keyword w and generates an ephemeral tag τdcw from the de-

rived key K
(scw)
w,1 , the persistent tag τ , and the counter dcw. The server executes

AMQ.Insert to insert τ into the data structure T in EDB(t).

Search: Search(k, q, σ(t);EDB(t)). First, the client creates the PRF key K
(scw)
q,0

for the search keyword q and sends it together with fcq to the server. For every i =

1, . . . , fcq, the server computes an address g(K
(scw)
w,0 , i) and adds its stored value

val to the set C(t)
q . The server sends C(t)

q and a copy of the data structure T to the
client and frees the memory of all the addresses accessed. For every value val ∈
C(t)
q , the client checks whether it has been deleted as follows. The client decrypts

val and obtains τ∥id. The client then computes ephemeral tags τ1, . . . , τdcq from
τ and dcq, and executes AMQ.Lookup with τi for every i ∈ [dcq] to check whether
the pair (w, id) has been logically deleted. If AMQ.Lookup outputs false for all

ephemeral tags, id is added to the search result X (t)
q . Next, the client re-adds

the pairs (w, id) except for the deleted ones. The client increments scq, and adds
the pairs in the same way to the above addition procedure. The server updates

EDB(t) as in the addition procedure and also receives a set D(t)
q of the ephemeral

tags of the deleted entry. For every ephemeral tag τi ∈ D(t)
q , the server executes

AMQ.Delete to remove the tags from the data structure T . This re-addition
procedure is important to provide forward privacy and reduce the size of T .

s-Laura also satisfies Theorem 1. The proof is shown in full version.
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6 Experiments

Implementation. We implemented the proposed protocols Laura and v-Laura
in C++ and evaluated their performance comparatively.5 We compare them
with Aura [25] implemented in C++ [1] for each protocol. For instances and
technical details of Aura, please refer to [25, 1]. These experiments were done in
an Ubuntu 18.04 LTS server with 756GB RAM, using Docker (version 24.0.4) [3].
We used AES-GCM for the instantiation of SKE Πske. The PRFs π, g, and the
random oracle h are realized with AES-GCM and GMAC, respectively. They are
implemented using the EVP functions API on the open SSL library (version 3.0.2
15 Mar 2022), and AES-GCM is accelerated by the Intel AES-NI instruction set.
For the instance of the AMQ data structure of Laura and v-Laura, we choose the
cuckoo filter [15] implemented in [2].

The sizes of keys and outputs of AES and PRF are 128 bits, respectively. The
identifier id and each counter (i.e. fcw, scw) are 32-bit integers. For experiments
on search, we measure the time it takes the server to get all the decrypted
identifiers in the search results. Note that both the client and server run locally
and communication costs are not taken into account.

Parameter Setting. Throughout the experiments, we set the false-positive
probability p = 10−4, which was also considered practically acceptable in the
Aura paper [25]. To ensure that false-positive probability, we need to set the max-
imum number dw of elements inserted into the AMQ data structure in Laura and
v-Laura (resp., the Bloom filter in Aura) at the beginning of the protocol. To be
precise, Aura and v-Laura prepares a filter per keyword, while Laura employ only
one AMQ structure for the whole system. Therefore, unless otherwise stated, we
set dw = 1,000 for Aura and v-Laura and dΛ = 10,000,000 for Laura, where dw
and dΛ =

∑
w∈Λ dw.

Addition Cost. We give the addition costs of Aura, Laura, and v-Laura in
Fig. 6. This results surprisingly show a marked performance difference between

5 We did not implement sOurs since we want to compare dynamic SSE schemes with
the same security level. Note that s-Laura is secure even if deleted entries are re-
added.
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ours and Aura. Specifically, Laura and v-Laura takes less than 1.0 s to add 200,000
keyword-identifier pairs, whereas Aura takes 59.5 s. This is due to the concrete
construction of the underlying SRE scheme, which requires many resources for
the addition.

Search Cost without Deletion. Fig. 7 compares the search costs of Aura,
Laura, and v-Laura when no entries on w have been deleted. The search costs of
the three schemes increase linearly with the number of pairs. When the search
results is 200,000 pairs, Laura, v-Laura, and Aura take 1.05 s, 0.75 s and 1.18 s
respectively.

Deletion Cost. As can be seen in Fig. 8, the deletion costs for Aura, Laura, and
v-Laura are remarkably fast since the deletion procedures of these schemes only
require the calculation of the tag corresponding to the pair to be deleted and the
insertion to the filter. Specifically, for 1,000 deleted entries, Laura, v-Laura and
Aura take 0.68ms, 0.67ms and 0.52ms respectively. The Laura and v-Laura are
slightly slower since the cuckoo filter [15] has the property that as more items
are inserted to the filter, the frequency of kicked out an item in the insertion
also increases.

Search Cost with Deletion. We show the effect of deletion on search costs in
Fig. 9. After adding 2,000 pairs of (w, id), we delete pairs and then search for w.
Fig. 9 shows the search time with the range of the number of the deleted pairs
from 0 to 1,000. The Laura and v-Laura are remarkably faster than Aura. Specif-
ically, when deleting 1,000 entries (i.e., 1,000 results of 2,000 entries), Laura,
v-Laura and Aura take 0.61ms, 0.41ms and 169.0ms respectively. Compared
Aura with v-Laura, it is clear that the computational complexity of SRE is dom-
inant. More interestingly, Aura takes longer when no deletion occurred due to
the underlying SRE construction.
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Algorithm: s-Laura

Setup(1κ)

Client:

1: kprf, krh, kske
$← {0, 1}κ

2: (T , aux) ← AMQ.Gen({0, 1}λ, par)
3: fcw, scw, dcw, Index[] := ε // ε is an empty value

4: return
(
k := (kprf, krh, kske), σ

(0) := (scw, fcw, dcw),EDB
(0) := (Index, T , aux)

)

Update(k, add, (w, id), σ(t);EDB(t))

Client:
1: τ ← π(krh, w∥id)
2: if scw is undefined then
3: (scw, fcw, dcw) := (0, 0, 0)
4: fcw := fcw + 1 // increment fcw
5: K

(scw)
w,0 := g(kprf, w∥scw∥0) // generate the PRF key for address

6: addr ← h(K
(scw)
w,0 , fcw)

7: val ← E(kske, τ∥id)
8: Send trans

(t)
1 := (addr, val) to the server

9: return σ(t+1) := (scw, fcw, dcw)w∈W(t+1)

Server:

10: Index[addr] := val

11: return EDB(t+1) := (Index, T , aux)

Update(k, del, (w, id), σ(t);EDB(t))

Client:
1: if dcw is defined then
2: dcw := dcw + 1
3: τ ← π(krh, w∥id)
4: K

(scw)
w,1 := g(kprf, w∥scw∥1)

5: τdcw ← π(K
(scw)
w,1 , τ ||dcw)

6: Send trans
(t)
1 := τdcw to the server

7: return σ(t+1) := (scw, fcw, dcw)w∈W(t+1)

Server:

8: T ′ ← AMQ.Insert(T , τdcw , aux)
9: return EDB(t+1) := (Index, T ′, aux)

Fig. 10: Setup and Update of our dynamic SSE scheme s-Laura.
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Algorithm: s-Laura

Search(k, q, σ(t);EDB(t))

Client:
1: K

(scw)
q,0 := g(kprf, q∥scw∥0)

2: Send trans
(t)
1 := (K

(scw)
q,0 , fcq) to the server

Server:

3: for i = 1 to fcq do

4: addr ← h(K
(scw)
q,0 , i), C(t)

q ← Index[addr]
5: Index[addr] := NULL // delete old addresses

6: Send trans
(t)
2 := (C(t)

q , T , aux) to the client // Send copy of T
Client:

7: K
(scw)
q,1 := g(kprf, q∥scq∥1)

8: for ∀c ∈ C(t)
q do // define Loop1 for Jump

9: τ∥id ← D(kske, c) // the first λ MSBs of val is tag
10: for i = 1 to dcq do

11: τi ← π(K
(scw)
q,1 , τ∥i)

12: if AMQ.Lookup(T , τi, aux) = true then

13: D(t)
q ← τi

14: Jump Loop1 and next element
15: X (t)

q ← id, Y(t)
q ← (id, τ)

16: scq := scq + 1, fcq := |X (t)
q |, dcq := 0 // update state

17: K̂
(scq,0)
q,0 := g(kprf, q∥scq∥0) // generate new keys

18: ctr := 1
19: for ∀(τ, id) ∈ Y(t)

q do

20: R(t)
q ← (h(K̂

(scq,0)
q,0 , ctr),E(kske, τ∥id)) // new (âddr, v̂al) pair

21: ctr := ctr + 1
22: Send trans

(t)
3 := (D(t)

w ,R(t)
q ) to the server

23: return (X (t)
q , σ(t+1) := (scw, fcq, dcq)q∈W(t+1))

Server:

24: for ∀(âddr, v̂al) ∈ R(t)
q do

25: Index[âddr] := v̂al // set new addresses and value

26: for ∀τi ∈ D(t)
q do

27: T ′ ← AMQ.Delete(T , τi, aux), T := T ′

28: return EDB(t+1) := (Index, T , aux)

Fig. 11: Search of our dynamic SSE scheme s-Laura.

Session 7 - 1 The 26th Annual International Conference on Information Security and Cryptology

ICISC 2023 417



Finsler Encryption⋆

Tetsuya Nagano1 and Hiroaki Anada2

University of Nagasaki, Nagasaki 851-2195, Japan
hnagano@sun.ac.jp

Aomori University, Tokyo 134-0087, Japan
anada@aomori-u.ac.jp

Abstract. Inspired by previous work with the first example proposed
at SecITC 2020, we give a general description of Finsler encryption that
is based on a Finsler space, which uses a kind of a differentiable geome-
try on a smooth manifold, with appropriate quantization as the security
parameter. Key generation, encryption and decryption algorithms are
introduced in detail, and a further example is presented. Then we anal-
yse security properties of Finsler encryption. First, as the dimension (as
another security parameter) increases, the length of the secret key also
increases, and hence the computational hardness becomes stronger. Sec-
ond, we prove indistinguishability against chosen-plaintext attacks.

Keywords: Finsler geometry · Differential geometry · Linear parallel
displacement problem · Underdetermined systems of equations · Mapping-
decomposition problem

1 Introduction

Finsler encryption is a new cryptographic system that has recently been studied.
In previous work[10] proposed at SecITC 2020, an example was given in the case
of dimension 2. To capture the intuition, we first state the outline of this system
briefly. First of all, we choose a Finsler space with the asymmetric property (See
Appendix (2)). Next, the geodesics and the linear parallel displacement must be
decided. Both of these are defined by certain differential equations system. And
the equation of the energy of a vector is calculated. The key generation is per-
formed using linear parallel displacement of vectors and preserved norms. The
obtained key is an n + 1-dimensional vector consisting of rational expressions
with several parameters as components. The n is the dimension of Finsler space.
The encryption algorithm generates the ciphertext by calculating several sums
of vectors obtained by substituting several given parameter values. On the other
hand, the decryption algorithm is performed based on the value of parameter τ
obtained from a system of simultaneous linear equations with unknown plain-
text components and homogeneous quadratic equations involving the squared
⋆ This work was supported by Institute of Mathematics for Industry, Joint

Usage/Research Center in Kyushu University. (FY2022 Workshop(II)
“CRISMATH2022” (2022c006).).
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norms of vectors. In the next section, we will present a detailed explanation of
the Finsler space used to generate Finsler encryption and its key generation,
encryption and decryption. In the following section, we will explain in detail the
strength of Finsler encryption, but the intuitive outline is as follows.

If an attacker attempts to decrypt a ciphertext that is encrypted with a pub-
lic key, he must solve a system of underdetermined equations. This is because, by
setting k to be greater than or equal to n+1, the number of unknown variables
becomes greater than the number of equations that can be obtained from the
ciphertext and the public key. Generally, solutions to underdetermined systems
of equations can only be obtained in the form that includes unknown constants,
which we call “the property of SUS”. Therefore, determining one plaintext from
countless solutions is impossible. Next, finding a “linear parallel displacement” is
an assumably computationally hard problem, which we call the Linear Parallel
Displacement problem (LPD problem). We emphasize that the problem arises
from the structure of asymmetric Finsler spaces, and currently no algorithm to
solve it known. The last one is the difficulty of solving the composite mapping
problem, which we call Mapping-decomposition problem. That is, the en-
ergy expression is a product of five regular matrices. It is difficult to decompose
the energy function, which is a product of five regular matrices, to obtain the
five regular matrices.

In this paper, we formalize Finsler encryption in the case of general dimension
n. Then we study the strength of our Finsler encryption. Note that we implicitly
use the general theory on Finsler geometry and linear parallel displacement, that
can be seen in previous publications.

2 Preliminaries

2.1 Public-Key Encryption

A public-key encryption scheme PKE consists three probabilistic polynomial-
time (ppt) algorithms; PKE = (KeyGen,Enc,Dec).
• KeyGen(1λ) → (PK,SK). On input the security parameter 1λ, this ppt al-
gorithm generates a secret key SK and the corresponding public key PK. It
returns (PK,SK).
• Enc(PK,m) → ct. On input the public key PK and a message m, this ppt
algorithm generates a ciphertext ct. It returns ct.
• Dec(SK, ct) → m̂. On input the secret key SK and a ciphertext ct, this
deterministic polynomial-time algorithm generates a decrypted message m̂. It
returns m̂.

Correctness should hold for PKE. That is; for any 1λ and any m,

Pr[m = m̂ | KeyGen(1λ) → (SK,PK);Enc(PK,m) → ct;Dec(SK, ct) → m̂] = 1.

(cf. [19–21])
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2.2 IND-CPA Security of PKE

We prove here the security of indistinguishability against chosen-plaintext at-
tacks is defined by the following experimental algorithm Expind-cpa

PKE,A , where A is
any given ppt algorithm.

Expind-cpa
PKE,A (1λ)

(SK,PK) ← KeyGen(1λ)); (m0,m1) ← A(PK)

b ∈R {0, 1}; ct ← Enc(PK,mb); b′ ← A(ct)

If b = b′ then return 1 else return 0

The advantage of A over PKE is defined as

Advind-cpa
PKE,A (λ)

def
= |Pr[Expind-cpa

PKE,A (1λ) = 1]− (1/2)|.

PKE is said to be IND-CPA secure if, for any ppt algorithm A, Advind-cpa
PKE,A (λ)

is negligible in λ(cf. [18, 19]).

3 Finsler encryption

3.1 Finsler space

Generally, Finsler space (M,F ) over the set of real numbers R is defined as a
pair consisting of a smooth n-dimensional manifold M and a scalar function F
on its tangent bundle TM([1–6]). Let x = (x1, · · · , xn) be the coordinate of the
base manifold M and y = (y1, · · · , yn) the coordinate of a tangent vector y on
TxM . F = F (x, y) is called the Finsler metric or the fundamental function and
plays role giving the norm ||y|| of a tangent vector y. The Finsler metric F (x, y)
determines everything in the space. The metric tensor gij(x, y) which is very
important quantity is calculated from F (x, y) as follows:

gij(x, y) :=
1

2

∂2F 2

∂yi∂yj
,

||y||x = F (x, y) =

√∑
i,j

gij(x, y)yiyj , (i, j = 1, · · · , n).

We use the asymmetric property of linear parallel displacement of tangent
vectors to construct a new public key encryption.

Necessary objects(See Appendix (2),(3),(4))
(1) Metric tensor field gij(x, y),
(2) Nonlinear connection N i

j(x, y),
(3) Horizontal connection F i

rj(x, y),
(where the indices i, j, r = 1, 2, · · · , n = dimM)
(4) Geodesic c = c(t)

Session 7 - 2 The 26th Annual International Conference on Information Security and Cryptology

ICISC 2023420



4 T. Nagano et al.

(5) Linear parallel displacement (LPD) Πc on c is constructed by the solution
of the following differential equations:

(⋆)
dvi

dt
+
∑
j,r

F i
jr(c, ċ)v

j ċr = 0 (ċr =
dcr

dt
),

and we call the linear map Πc : v(t0) ∈ TpM −→ v(t1) ∈ TqM a linear
parallel displacement along c([7, 14–17]).
(6) The energy E(v) of a vector v = (v1, · · · , vn) on c:

E(v) :=
∑
i,j

gij(c, ċ)v
ivj

Example.
We introduce 2-dimensional Finsler space as follows (i.e. the case n = 2)(cf.
[8–10]):

M := R2

(⋆⋆) F (x, y, ẋ, ẏ) =
√

a2ẋ2 + b2ẏ2−h1xẋ−h2yẏ (a, b, h1, h2 : positive constant),

where (x, y) is the coordinate of the base manifold M , and (ẋ, ẏ) is the coordi-
nate of T(x,y)M , namely, x = x1, y = x2, ẋ = y1, ẏ = y2.

Geodesics in this Finsler space are any straight lines. So we choose a geodesic
as follows

cm(t) = (c1(t), c2(t)) = (
1

a
√
1 +m2

t,
m

b
√
1 +m2

t) (y =
am

b
x).

And the linear transformation C(τ) on TpM(p : start point) is

C(τ) :=

(
τ −1
1 τ

)
.

Then we have 7 parameters (a, b, h1, h2,m, t0, t1), where t0, t1 mean the start
point and the end point of the linear parallel displacement on the geodesic c,
respectively. In this case the linear parallel displacement Πcm(t) is the solution
of (⋆) as follows

Πcm(t) =

(
B1

1 B1
2

B2
1 B2

2

)
(See Appendix (5)),

and the energy equation E(v1) is

E(v1) :=< v1, v1 >ċ=
∑
i,j

gij(c, ċ)v
i
1v

j
1 = tv1Gv1,
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where G =

(
g11 g12

g21 g22

)
,

g11 =
1

a2b2 (m2 + 1)
2 (b

2m4a4 + b2a4 + 2b2m2a4

− (h2m
4a4 + 3b2h1m

2a2 + 2b2h1a
2)t+ (b2h2

1 + b2h2
1m

2)t2),

g12 = −
(
h2a

2m+ b2h1m
3
)
t−

(
h1h2m

3 + h1h2m
)
t2

ab (m2 + 1)
2 ,

g21 = g12,

g22 =
1

a2b2 (m2 + 1)
2 (a

2m4b4 + a2b4 + 2a2m2b4

− (h1b
4 + 2a2h2m

4b2 + 3a2h2m
2b2)t+ (a2h2

2m
4 + a2h2

2m
2)t2).

However, the components B1
1 , B

1
2 , B

2
1 , B

2
2 are expressed by rationalization as fol-

lows:
Rationalization of Forms: For new parameters l and τ or t2, they are changing
as follows:.

l2 := a2b2(1 +m2)− (b2h1 + a2h2m
2)t0,

τ2(or t22) := l2 − (b2h1 + a2h2m
2)t,

where l must be elected as t0 is a rational number. The methods of Rationaliza-
tion, however, are many(See §3.5, 2).

3.2 KeyGen, Enc and Dec of Finsler Encryption

The description hereafter is under the assumption that a real number is ap-
proximately represented with a rational number that is a ratio of the form
(a λ-bit integer)/(a λ-bit integer). Our Finsler encryption scheme FE consists
of three polynomial-time (in λ) algorithms KeyGen, Enc and Dec(cf. [11–13]).
KeyGen(1λ)
Step1. c(t): a geodesic, p(t0): start point, q(t1): end point
Step2. v: a vector in Zn

+(a plaintext), dv: a positive difference vector , v0 =
(vi0) = v + dv
Step3. v1 = C(τ)v0 (C(τ) is a regular matrix)
Step4. v2 = Πc(t2)v1 (Πc(t2) is the matrix of LPD)
Step5.E(v1) = E(v2) =

∑n
i=0 Ei where E1, . . . , En ∈R Q[v0, τ, t2], E0 := E(v1)−∑n

i=1 Ei (because E(v1) is preserved by LPD)
Step6.E(v1) = E(v2) =

∑n
i=0

Ei

fivi
0
fiv

i
0 where f0, . . . , fn ∈R Q+; v00 = 1

Step 7. V3 = Πc(τ)
t( E1

f1v1
0
, · · · , En

fnvn
0
) = t(V 1

3 , · · · , V n
3 )

Step 8. (E0

f0
, V 1

3 , · · · , V n
3 ): an encryption key

PK := (E0

f0
, V 1

3 , · · · , V n
3 ), SK := {(f0, · · · , fn), Πc(t2), E(v1)}

Return (PK,SK).
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Note that, for the above PK and SK, the set of plaintexts should be Zn
+ and

the set of ciphertexts should be a certain subset Cy of Q(n+1)2 .

Next, we obtain the ciphertext ct of a plaintext v = (vi) by using 1+(n+1)k
parameters, where k > n as follows:

Enc(PK, v) //PK = (E0

f0
, V 1

3 , · · · , V n
3 )

Step1. k: Choose a natural number k which is above n.
Step2. α, β1, · · · , β(n+1)k: Each other different rational numbers
Step3. {v, τ ← α, t2 ← β1} → e1 = 1

k (
E0

f0
, v13 , · · · , vn3 )

...
...

{v, τ ← α, t2 ← β(n+1)k} → e(n+1)k = 1
k (

E0

f0
, v13 , · · · , vn3 )

Step4. ct1 :=
k

i=1 ei, ct2 :=
2k

i=k+1 ei, · · · , ctn+1 :=
(n+1)k

i=nk+1 ei
Step5. ct = {ct1, · · · , ctn+1}: a ciphertext
Return ct.

Finally, we can decrypt ct and recover the plaintext v by using the secret
key SK = {(f0, · · · , fn), Πc(t2), E(v1)} as follows:

Dec(SK, ct) //SK := {(f0, · · · , fn), Πc(t2), E(v1)}
Step1. (f0, f1, · · · , fn) → sx := (f0, f1X1, · · · , fnXn)
Step2. c̄t1 := (ct1[[1]], Π

−1
c (τ) t(ct1[[2]], · · · , ct1[[n+ 1]]))

...
...

...
c̄tn+1 := (ctn+1[[1]], Π

−1
c (τ) t(ctn+1[[2]], · · · , ctn+1[[n+ 1]]))

Step3. EX1 :=< sx, c̄t1 >, · · · , EXn+1 :=< sx, c̄tn+1 >
Step4.

(I)




EX1 = EXn+1

...
...

...
EXn = EXn+1

(System of simultaneous linear equations with X1, · · · , Xn)
Step5. X̄1, · · · , X̄n: formal solution of simultaneous linear equations (I) with
unknown τ
Step6. EX1|X1←X̄1,··· ,Xn←X̄n

− E(v1)|v1
0←X̄1,··· ,vn

0 ←X̄n
= 0

(algebraic equation of τ)
Step7. Solve the rational number solution τ = α and substitute them for
X̄1, · · · , X̄n

v0 = (v10 , · · · , vn0 ) = (X̄1|τ←α, · · · , X̄n|τ←α)

Step8. Finally, obtain the plaintext v as follows

v = v0 − dv.

Return v.
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Example
In the Finsler space (⋆⋆) in p.4, we put (a, b, h1, h2,m, t0, t1) = (1, 1, 1, 1, 1, 1

2 , 1),
then

SK:
(f0, f1, f2) := (mh1, at0h2, bt1h

2
2) = (1,

1

2
, 1)

Πcm(τ) =

(
τ+1
2τ2 − τ−1

2τ2

− τ−1
2τ2

τ+1
2τ2

)
.

E(v1) = G(v1, v1) =
tv2Gv2 = tv1

tΠcGΠcv1 = tv0
tC tΠcGΠcCv0

=
1

8
(3τ2 − 2τ + 3)(v10)

2 +
1

4
(1− τ2)v10v

2
0 +

1

8
(3τ2 + 2τ + 3)(v20)

2

PK:

PK = (
E0

f0
, V 1

3 , V
2
3 ) (See Appendix (6)).

From E(v1) = (E0

f0
)f0 + ( E1

f1v1
0
)f1v

1
0 + ( E2

f2v2
0
)f2v

2
0 → V = ( E1

f1v1
0
, E2

f2v2
0
),

(V 1
3 , V

2
3 ) = V3 = Πc(τ)V . Then, PK is obtained.

4 Security Analysis

4.1 Strength of SK

In this section, the strength of each secret key (f0, · · · , fn), Πc(t2) and E(v1) is
stated about the security from a viewpoint of a calculation amount.

1. (f0, · · · , fn): Each component is arbitrary rational number.
2. Πc(t2): The regular matrix Πc(t2) is derived from a certain simultaneous
differential equations. The differential equations are made by the Finsler metric
function F . Therefore nobody knows the equations without F (LPD problem,
see Appendix (1)). Further, in general, the linear parallel displacement of a
Finsler space satisfying asymmetric property is asymmetric, namely,

Π−1
c ̸= Πc−1

is satisfied. This means that any informations of Π−1
c used in the algorithm of

decryption are not obtained from Πc−1 , where c−1 is the inverse curve of c. Πc

is an one-way function(cf.[8, 9]).
3. E(v1): The energy of the vector v1. This equation is directly affected by the
matrix C(τ). If you replace C(τ) for the following matrix

(
τ 1

τ − 1 1

)
,
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then the expression of E(v1) is changed as follows

E(v1) =
1

8
(4τ2 − 4τ + 3)(v10)

2 +
1

2
(2τ − 1)v10v

2
0 +

1

2
(v20)

2.

Therefore nobody knows three coefficients
1

8
(4τ2 − 4τ + 3),

1

2
(2τ − 1) and

1

2
without recognition of C(τ). C(τ) is completely arbitrary regular matrix.
On the other hand, the matrix E is composed by three regular matrixes C(τ), Πc(τ)
and G, namely,

E = tC tΠcGΠcC, (E(v1) =
tv0Ev0),

where G is called the Finsler metric tensor field. If E can be decomposed, then
the attacker can get C(τ), Πc(τ) and G. Then the attacker can decrypt any ci-
phertext. However, to decompose E to 5-pieces regular matrix tC, tΠc, G,Πc, C
is computationally hard under the assumption of Mapping-Decomposition Prob-
lem(cf.[12, 13]).

4.2 Strength of PK

In the encryption algorithm, the ciphertext ct is made from (1+(n+1)k) param-
eters βi at Step3. Each component cti(i = 1, · · · , n+ 1) of ct = {ct1, · · · , ctn+1}
is made by k-pieces parameters βj (j = (i − 1)k + 1, · · · , ik). Thus, algebraic
equations made by the public key PK and ct have the property that the number
of its unknown variables is more than ones of equations. For example, in the
former case PK = (E0

f0
, V 1

3 , V
2
3 ), if k = 2, we have the following equation:

If a ciphertext ct = (ct1, ct2, ct3) = (ct11, ct12, ct13, ct21, ct22, ct23, ct31, ct32, ct33),
ct1 = (ct11, ct12, ct13) ← 1

2
(E1
f0

, V 1
3 , V

2
3 )|t2←β1 + 1

2
(E1
f0

, V 1
3 , V

2
3 )|t2←β2

ct2 = (ct21, ct22, ct23) ← 1
2
(E1
f0

, V 1
3 , V

2
3 )|t2←β3 + 1

2
(E1
f0

, V 1
3 , V

2
3 )|t2←β4

ct3 = (ct31, ct32, ct33) ← 1
2
(E1
f0

, V 1
3 , V

2
3 )|t2←β5 + 1

2
(E1
f0

, V 1
3 , V

2
3 )|t2←β6

for example, from ct1, we have following three equations
ct11 = 1

2
E1

f0
|t2←β1

+ 1
2
E1

f0
|t2←β2

, ct12 = 1
2V

1
3 |t2←β1

+ 1
2V

1
3 |t2←β2

, ct13 = 1
2V

2
3 |t2←β1

+
1
2V

2
3 |t2←β2

.
From ct2,
ct21 = 1

2
E1

f0
|t2←β3

+ 1
2
E1

f0
|t2←β4

, ct22 = 1
2V

1
3 |t2←β3

+ 1
2V

1
3 |t2←β4

, ct23 = 1
2V

2
3 |t2←β3

+
1
2V

2
3 |t2←β4

From ct3,
ct31 = 1

2
E1

f0
|t2←β5

+ 1
2
E1

f0
|t2←β6

, ct32 = 1
2V

1
3 |t2←β5

+ 1
2V

1
3 |t2←β6

, ct33 = 1
2V

2
3 |t2←β5

+
1
2V

2
3 |t2←β6

Thus, in total, we have 9-pieces unknown variables v10 , v
2
0 , τ, β1, · · · , β6 and

9-pieces equations. Here k is known, however. In general, for ct11, the attacker
must solve the following equation.

1

k

E1

f0
|t2←β1 + · · ·+ 1

k

E1

f0
|t2←βk

= ct11
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is satisfied. Namely, let (v10 , v20 , τ, k, t21, · · · , t2k) be unknown variables, then the
attacker must solve the following equation with (4+k)-pieces unknowm variables

1

64kt421
×

(
t621

(
3τ2(v10)

2 − 6τ(v10)
2 + 3(v10)

2 − 6τ2v10v
2
0 + 6v10v

2
0 + 3τ2(v20)

2

+6τ(v20)
2 + 3(v20)

2)

+ t521
(
−8τ2(v10)

2 − 8τ(v10)
2 + 16(v10)

2 − 8τ2v10v
2
0 + 48τv10v

2
0

+8v10v
2
0 + 16τ2(v20)

2 + 8τ(v20)
2 − 8(v20)

2)

+ t421
(
−2τ2(v10)

2 + 28τ(v10)
2 + 10(v10)

2 + 28τ2v10v
2
0 + 24τv10v

2
0

−28v10v
2
0 + 10τ2(v20)

2 − 28τ(v20)
2 − 2(v20)

2)

+ t321
(
16τ2(v10)

2 + 16τ(v10)
2 − 32(v10)

2 + 16τ2v10v
2
0 − 96τv10v

2
0

−16v10v
2
0 − 32τ2(v20)

2 − 16τ(v20)
2 + 16(v20)

2)

+ t221
(
44τ2(v10)

2 − 40τ(v10)
2 + 68(v10)

2 − 40τ2v10v
2
0 + 48τv10v

2
0

+40v10v
2
0 + 68τ2(v20)

2 + 40τ(v20)
2 + 44(v20)

2)

+ 24τ2(v10)
2 − 48τ(v10)

2 + 24(v10)
2 − 48τ2v10v

2
0 + 48v10v

2
0

+ 24τ2(v20)
2 + 48τ(v20)

2 + 24(v20)
2
)
+

+ · · · · · · (sum of k-terms) · · · · · ·+

+
1

64kt42k
×

(
t62k

(
3τ2(v10)

2 − 6τ(v10)
2 + 3(v10)

2 − 6τ2v10v
2
0 + 6v10v

2
0 + 3τ2(v20)

2

+6τ(v20)
2 + 3(v20)

2)

+ t52k
(
−8τ2(v10)

2 − 8τ(v10)
2 + 16(v10)

2 − 8τ2v10v
2
0 + 48τv10v

2
0

+8v10v
2
0 + 16τ2(v20)

2 + 8τ(v20)
2 − 8(v20)

2)

+ t42k
(
−2τ2(v10)

2 + 28τ(v10)
2 + 10(v10)

2 + 28τ2v10v
2
0 + 24τv10v

2
0

−28v10v
2
0 + 10τ2(v20)

2 − 28τ(v20)
2 − 2(v20)

2)

+ t32k
(
16τ2(v10)

2 + 16τ(v10)
2 − 32(v10)

2 + 16τ2v10v
2
0 − 96τv10v

2
0

−16v10v
2
0 − 32τ2(v20)

2 − 16τ(v20)
2 + 16(v20)

2)

+ t22k
(
44τ2(v10)

2 − 40τ(v10)
2 + 68(v10)

2 − 40τ2v10v
2
0 + 48τv10v

2
0

+40v10v
2
0 + 68τ2(v20)

2 + 40τ(v20)
2 + 44(v20)

2)

+ 24τ2(v10)
2 − 48τ(v10)

2 + 24(v10)
2 − 48τ2v10v

2
0 + 48v10v

2
0

+ 24τ2(v20)
2 + 48τ(v20)

2 + 24(v20)
2
)

= ct11.

Further, from ct12 and ct13,

1

k
V 1
3 |t2←β1 + · · ·+ 1

k
V 1
3 |t2←βk

= ct12,
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10 T. Nagano et al.

1

k
V 2
3 |t2←β1 + · · ·+ 1

k
V 2
3 |t2←βk

= ct13

are satisfied. After all, (4+ k)-pieces (v10 , v20 , τ, k, t21, · · · , t2k) are unknown vari-
ables. Next, from ct2 = (ct21, ct22, ct23), according to the same manner, we have
(4+k)-pieces (v10 , v20 , τ, k, t2(k+1), · · · , t2(2k)) unknown variables and, further from
ct3 = (ct31, ct32, ct33), we have (4+k)-pieces (v10 , v20 , τ, k, t2(2k+1), · · · , t2(3k)) un-
known variables. Totally, we have (4 + 3k)-pieces (v10 , v

2
0 , τ, k, t1, · · · , t2(3k)) un-

known variables. 3k ≥ 6 is true if k ≥ 2, so unknown variables number satisfies
4 + 3k ≥ 10 if k ≥ 2. The other side, equation’s number is 9, obviously. This
means that the simultaneous equations made by 9-pieces algebraic equations are
not able to be solved because these are underdetermined on rational numbers
(SUS problem). In general, if an n-dimensional vector v is a plaintext, then
the unknown variables are n + 2 + (n + 1)k-pieces because the components of
v is n-pieces and other parameters are (2 + 3k)-pieces


k, τ, β1, · · · , β(n+1)k


.

Therefore the equation’s number is (n + 1)2 and if k ≥ n + 1 is satisfied then
n+ 2 + (n+ 1)k > (n+ 1)2 is true(Underdetermined system)([13]).

4.3 Length of SK

Finally, we remark the length of the secret key SK= {(f0, · · · , fn), Πc(τ), E(v1)}.
The length depend on the dimension n.
(f0, · · · , fn): n+ 1-pieces arbitrary rational numbers.

Πc(τ) =




a11(τ)

b11(τ)
· · · a1n(τ)

b1n(τ)
...

. . .
...

an1(τ)

bn1(τ)
· · · ann(τ)

bnn(τ)




E(v1) =
n

i=1

ai(τ)

bi(τ)
(vi0)

2 +


i<j,i=1,··· ,n−1,j=2,··· ,n

cij(τ)

dij(τ)
vi0v

j
0,

where aij(τ) and bij(τ) are polynomials of τ of degree p and q and ai(τ), bi(τ), cij(τ)
and dij(τ) are polynomials of τ of degree r, s, t and w. Therefore all of integer as
coefficients of all polynomial aij , bij , ai, bi, cij , dij is 2n+ (p+1)n2 + (q+1)n2 +
rn+sn+ t nC2+w nC2 ≈ αn2+βn+γ(α, β, γ : certain natural numbers). Thus
we can recognize that the length of the secret key increases linearly to square of
the dimension n (i.e. O(n2)).

4.4 IND-CPA Security

We prove here the IND-CPA security of FE under the LPD assumption.
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To construct the public key PK and the secret key SK of FE needs some pa-
rameters. In the case of the example of Appendix, the values (a, b, h1, h2,m, t0, t1, α, f0, f1, f2)
and the matrix C(α), Πc(α) are needed. In addition the energy form E(v1) is also
needed. Especially, for PK, certain methods of rationalization and splitting are
essentially needed. The values (a, b, h1, h2,m, t0, t1, α, f0, f1, f2, C(α)) and the
method of splitting of E(v1) decides PK, and the values (a, b, h1, h2,m, t0, t1, α)
and the method of rationalization of t2 decides Πc(α).

Here, we state the LPD assumption([8–10]).
Computational problem of linear parallel displacement (LPD Problem)
Suppose that each variable is quantized with λ-bit uniformly. (Note that λ is the secu-
rity parameter. ) Let (M,F ) be a Finsler space and p, q be points on M . For a geodesic
c from p to q, the problem is stated as the computational problem to find values of the
parameters of linear parallel displacement along c from TpM to TqM , where TpM,TqM
are tangent spaces at p, q respectively. Formally,
• Input: (p, q, c)
• Output: A matrix Πc(α) of linear parallel displacement along c from TpM to TqM .
LPD Assumption
For a fixed Finsler space with Hi

j ̸= 0(See Appendix (2)), there exists no polynomial
time algorithm to solve a random instance of LPD problem.

We will prove the following theorem.

Theorem 41 FE has the IND-CPA security under LPD assumption.

Propositions for Theorem. First we consider the following problem;
Problem Let Πc(α) and Πc(α

′) be the matrices of the linear parallel displacement
made by the values (a, b, h1, h2,m, t0, t1, α) and (a, b, h1, h2,m, t0, t1, α

′), respectively.
Then we distinguish Πc(α) and Πc(α

′), where the method of rationalization is un-
known and (a, b, h1, h2,m, t0, t1) are same values.

We can state the two matrices in the Problem are indistinguishable under LPD
assumption.

Proposition 41 The two matrices in the above Problem are indistinguishable un-
der LPD assumption.

Proof We assume that the two matrices in Problem are capable of being identified.
This assumption means that m-pieces matrices Πc(α1), · · · , Πc(αm) which are corre-
spondent to the different m values α1, · · · , αm are distinguishable.
Now, we have no information of the method of the rationalization of t2. Then the
general form of Πc(α) is put by

Πc(α) =




a11(α)

b11(α)

a12(α)

b12(α)
a21(α)

b21(α)

a22(α)

b22(α)


 ,

where the forms a11(α), a12(α), a21(α), a22(α), b11(α), b12(α), b21(α), b22(α) are polyno-
mials with respect to unknown value α. If the amount of unknown coefficients of α of
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all forms aij(α), bij(α)(i, j = 1, 2) are m, then all coefficients are solvable under infor-
mations of distinguished m-pieces matrices Πc(α1), · · · , Πc(αm). Namely, the general
form of Πc(α) is obtained. That means that LPD assumption is broken. Therefore this
proposition’s assertion is true. □

Further, we have the following proposition.

Proposition 42 In FE, if parameter values (a, b, h1, h2,m, t0, t1, f0, f1, f2, α) and
the values of entries of the matrix of linear parallel displacement Πc(α) are known,
then any ciphertext ct = {ct1, ct2, ct3} is solvable. Namely, to decrypt any ciphertext is
no need of E(v1).

Proof Let ct1 = (ct11, ct12, ct13), ct2 = (ct21, ct22, ct23), ct3 = (ct31, ct32, ct33) be the
components of the ciphertext ct, where all ctij(i, j = 1, 2) are rational numbers.
First, respectively, we can obtain ct12, ct13, ct22, ct23, ct32, ct33 from ct1, ct2, ct3 and
Πc(α) as follows;(
ct12
ct13

)
= Π−1

c (α)

(
ct12
ct13

)
,

(
ct22
ct23

)
= Π−1

c (α)

(
ct22
ct23

)
,

(
ct32
ct33

)
= Π−1

c (α)

(
ct32
ct33

)
.

Next, we can construct the following simultaneous linear equations of X1, X2;
{
ct11f0 + ct12f1X1 + ct13f2X2 = ct31f0 + ct32f1X1 + ct33f2X2

ct21f0 + ct22f1X1 + ct23f2X2 = ct31f0 + ct32f1X1 + ct33f2X2.

Finally, the solution X1, X2 of the above system leads to the plain text v = (v1, v2).
In this algorithm, there is no using of E(v1).□

Proof of Theorem We consider the following game of any given ppt attacker A
and our FE, (1) to (5), that is in accordance with the experiment Expind-cpa

FE,A (1λ).
(1) The challenger sends the public key PK of FE to the attacker.
(2) The attacker gives two plaintext m0,m1 ∈ Z2

+ to the challenger (We denote a mes-
sage as mi instead of vi to avoid confusion).
(3) The challenger selects b = 0 or b = 1 at random.
(4) The challenger selects α ∈ Q+ at random and sends the ciphertext ctb(α) (that is
encryption of mb with Πc(α)) to the attacker.
(5) The attacker returns a guess b′ to the challenger.

Now we consider another game that is the same as the above procedure (1) to (5)
except that a simulated ctb(α, α

′) is used, which is generated using Πc(α
′) where a

random α′ is sampled independently of α, while E0/f0 is dependent of α. (This is an
analogy of the security proof of IND-CPA security of the El Gamal encryption [18, 19].
) Then Πc(α) and Πc(α

′) are indistinguishable under the LPD assumption because of
Proposition 41. Therefore the following relation holds.

∣∣∣Pr[b′ = b | Πc(α)]− Pr[b′ = b | Πc(α
′)]
∣∣∣ < ε (1)

On the other hand, ctb(α, α′) is actually a one-time pad because α′ is sampled uniformly
at random and independently of α, and the components of a ciphtertext, except the

E0/f0, is obtained by multiplying Πc(α
′). Therefore Pr[b′ = b|Πc(α

′)] =
1

2
is true.

Thus, the following holds.

Advind-cpa
FE,A (λ) =

∣∣∣Pr[b′ = b | Πc(α)]−
1

2

∣∣∣ < ε (2)

Session 7 - 2 The 26th Annual International Conference on Information Security and Cryptology

ICISC 2023 429
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Therefore, the theorem holds. □

Remark 41 In the case of the example in Appendix, the determined differen-
tial equations(Appendix (4)) is completely solved and the general solution Πc(t) is ob-
tained(Appendix (5)).
Therefore there is the polynomial time algorithm to generate key (PK,SK).

4.5 Remarks
In this section, we state other strength, for example, splitting method of E(v1) and
transforming method to rational form for parameter t2. And any other issues requiring
special attention are stated.

1. In Step5 of KeyGen, we treat the splitting E(v1) =
∑n

i=0 Ei. We first use different
parameters t2, t3 and make the matrix

Ẽ = tC(τ) tΠc(t3)G(t2)Πc(t3)C(τ)

because of E = tC tΠcGΠcC. Next Ẽ(v1) =
tv0Ẽv0 is calculated and is splitted to

Ẽ(v1) =
∑n

i=0 Ẽi. And last, parameter t3 of each component Ẽi is change to t2. In
this way, we have the splitting of E(v1) =

∑n
i=0 Ei. Therefore, by different splitting of

Ẽ(v1) we have other splitting of E(v1). The splitting method is arbitrary.

2. In §2.1, we use the following transformation because of obtaining rational forms
of formations in G,Πc

t22 := l2 − (b2h1 + a2h2m
2)t.

However, many other transformations exist, for example,

t42 := l2 − (b2h1 + a2h2m
2)t,

(t2 + 1)2 := l2 − (b2h1 + a2h2m
2)t,

(
t2 + 1

t2
)2 := l2 − (b2h1 + a2h2m

2)t,

...

The transforming method of the parameter t in the solution(B1
1 , B

1
2 , B

1
2 , B

2
2) of the

differential equation (⋆) is arbitrary. By using above transformations, all equations in
PK and SK come to algebraic (or rational), fortunately. However, such thing will not
always happen to us. Further, the differential equations(which give geodesics in Ap-
pendix (4)) which we must solve and its solutions are always complex.

3. Next, we state the regularity of the simultaneous linear equation (I). In Step4
of Dec(SK, ct), for the ciphertext ct = (ct1, · · · , ctn+1), each inner product EX1 :=<
sx, c̄t1 >, · · · , EXn+1 :=< sx, c̄tn+1 > is expressed as follows:

EX1 = ct11f0 + c̄t12f1X1 + · · ·+ c̄t1(n+1)fnXn

...
...

EXn+1 = ct(n+1)1f0 + c̄t(n+1)2f1X1 + · · ·+ c̄t(n+1)(n+1)fnXn
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14 T. Nagano et al.

Then, the determinant Det of (I)

Det =

∣∣∣∣∣∣∣

f1(c̄t12 − c̄t(n+1)2) · · · fn(c̄t1(n+1) − c̄t(n+1)(n+1))
...

. . .
...

f1(c̄tn2 − c̄t(n+1)2) · · · fn(c̄tn(n+1) − c̄t(n+1)(n+1))

∣∣∣∣∣∣∣

For example, in the case n = 2 in p.7,
Det = 1

2
(ct12ct23 − ct12ct33 + ct13ct32 − ct13ct22 + ct22ct33 − ct23ct32)τ

3

is satisfied. If Det = 0, then we can change βi so that Det ̸= 0 is satisfied. Therefore
the regularity of (I) is recognized from the ciphertext ct only.

4. The encryption map PKα,β1,··· ,β(n+1)k
: Z2

+ → Q9 defined by parameters (α, β1, · · · , β(n+1)k)
is one to one if Det ̸= 0 of (I) is satisfied.Namely, different plaintexts v, v̄( ̸= v)
don’t have the same ciphertext ct = PKα,β1,··· ,β(n+1)k

(v) = PKα,β1,··· ,β(n+1)k
(v̄). On

the other hand, if (α, β1, · · · , β(n+1)k) ̸= (ᾱ, β̄1, · · · , β(n+1)k), PKα,β1,··· ,β(n+1)k
(v) ̸=

PKᾱ,β̄1,··· ,β(n+1)k
(v) will happen for a plaintext v.

5. We state the solution of the energy equation

EX1|X1←X̄1,··· ,Xn←X̄n
− E(v1)|v1

0←X̄1,··· ,vn
0 ←X̄n

= 0.

This equation is an algebraic equation of a certain degree in τ . Further the real so-
lution’s number is two only. In addition, true solution is rational number. Indeed, in
Decryption of the case n = 2 in p.7, this is an algebraic equation of degree 4 in τ . How
to solve this equation? It, however, is no problem because we have known the method
of finding rational solutions, for example, Newton-Raphson method for an algebraic
equation.
The next problem is particularly important.

6. Does the energy equation

EX1|X1←X̄1,··· ,Xn←X̄n
− E(v1)|v1

0←X̄1,··· ,vn
0 ←X̄n

= 0

have two rational solutions α1 and α2? Further, do α1 and α2 yield two integer plaintext
v, v̄? This means that different plaintext v, v̄ have the same ciphertext with different
parameters (α, β1, · · · , β(n+1)k) ̸= (ᾱ, β̄1, · · · , β(n+1)k). This is an open problem.

7. In 2 above, we state the transformations about t. This is called “coordinate
transformation” in differential geometry, in general. Then, the transformation t = ϕ(t2)
must satisfy

dt

dt2
= ϕ′(t2) ̸= 0.

If there exist a certain t̃ which satisfies ϕ′(t̃) = 0, then we omit such t̃.

5 Conclusion

Based on a Finsler space, we formalized Finsler encryption.
1. We must choose a Finsler space with the asymmetry property(See Appendix (2)).
2. We must choose a geodesic on the Finsler space.
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3. We must obtain the linear parallel displacement on the geodesic.
4. The strength is based on the three following open problems (i),(ii),(iii):
(i). LPD problem(See Appendix (1)),
(ii). Mapping-decomposition problem: To decompose the matrix E = tC tΠcGΠcC is
computationally hard (See §4.1, 3),
(iii). SUS problem: To solve underdetermined system of equations is very hard(See
§4.2),
and further, it owes of arbitrariness of C(τ), splitting of E and the method of ratio-
nalization of forms.
5. In Example(p.4), Finsler space is defined as a single (a, b, h1, h2), namely, the form
(⋆⋆) expresses the family of Finsler spaces, its amount is about 104λ(λ is a security
parameter). The parameter m expresses a geodesic, and t0, t1 express the start point
and the end point. Therefore the amount of (PK,SK) is about at least 107λ.
6. In our Finsler encryption scheme FE, all calculations are over rational number
field Q with λ-bit quantization.

Key generation, encryption and decryption were given in detail. For intuitive un-
derstanding, an example was presented. Then we analyzed the strength of Finsler
encryption. Future direction would be a digital signature scheme on a Finsler space.

Appendix

(1) LPD problem and LPD assumption

Computational problem for linear parallel displacement (LPD problem)
Suppose that each variable is quantized with λ-bit, uniformly. Let (M,F ) be a Finsler
space and p, q be points on M . For a geodesic c from p to q, the problem is stated as the
computational problem to find values of the parameters of linear parallel displacement
along c from TpM to TqM , where TpM,TqM are tangent spaces at p, q respectively.

LPD assumption
For a fixed Finsler space with Hi

j ̸= 0, there exists no polynomial time algorithm to
solve a random instance of LPD problem.

(2) Let M be an n-dimensional differentiable real manifold. Let (M,F ) be a Finsler
space with the metric function F which is 2n-variable real-valued function on the
tangent bundle TM . F plays very important role of which geodesic, linear parallel
displacement and norm are determined. Further, we assume that

Hi
j(x, y) :=

∑
r

F i
rj(x, y)y

r +
∑
r

F i
rj(x,−y)(−yr) ̸= 0

where

F i
rj :=

1

2

∑
k

gik(
δgrk
δxj

+
δgkj
δxr

− δgjr
δxk

) ((gij) = (gij)
−1),

δ

δxi
:=

∂

∂xi
−

∑
r,j

Nr
i (x, y)

∂

∂yr
.
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Hereafter the indices h, i, j, · · · , p, q, r, · · · of
∑

run from 1 to n(= dimM).

(3)

N i
j (x, y) =

∑
r

γi
rj(x, y)y

r −
∑
p,q,r

Ci
jr(x, y)γ

r
pq(x, y)y

pyq,

where

γi
pq(x, y) =

∑
h

1

2
ghi

(
∂gph
∂xq

+
∂ghq
∂xp

− ∂gpq
∂xh

)
,

Ci
jr(x, y) =

∑
h

1

2
ghi

∂gjh
∂yr

.

(4) Geodesic is the curve which is minimizing of the distance between two points locally.
Then, a geodesic c(t) = (ci(t)) satisfies the following equation

d2ci

dt2
+

∑
j,r

F i
jr(c, ċ)ċ

j ċr = 0 (ċ = (ċi), ċi =
dci

dt
),

where t is an affine parameter.

(5)

B1
1 = − 1

(a2 (b2 (m2 + 1)− h2m2(t+ t0))− b2h1(t+ t0))
3/2

×
(
a2

(
h2m

2(t+ t0)
√

a2 (b2 (m2 + 1)− h2m2t0)− b2h1t0

− b2
(√

a2 (b2 (m2 + 1)− h2m2(t+ t0))− b2h1(t+ t0)

+m2
√

a2 (b2 (m2 + 1)− h2m2t0)− b2h1t0
))

+b2h1t0
√

a2 (b2 (m2 + 1)− h2m2(t+ t0))− b2h1(t+ t0)
)

B1
2 =

1

(a2 (b2 (m2 + 1)− h2m2(t+ t0))− b2h1(t+ t0))
3/2

×
(
abm

(
b2

(√
a2 (b2 (m2 + 1)− h2m2(t+ t0))− b2h1(t+ t0)

−
√

a2 (b2 (m2 + 1)− h2m2t0)− b2h1t0
)

+ h2

(
t
√

a2 (b2 (m2 + 1)− h2m2t0)− b2h1t0

+ t0
√

a2 (b2 (m2 + 1)− h2m2t0)− b2h1t0

−t0
√

a2 (b2 (m2 + 1)− h2m2(t+ t0))− b2h1(t+ t0)
)))
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B2
1 =

1

(a2 (b2 (m2 + 1)− h2m2(t+ t0))− b2h1(t+ t0))
3/2

×
(
abm

(
a2

(√
a2 (b2 (m2 + 1)− h2m2(t+ t0))− b2h1(t+ t0)

−
√

a2 (b2 (m2 + 1)− h2m2t0)− b2h1t0
)

+ h1

(
t
√

a2 (b2 (m2 + 1)− h2m2t0)− b2h1t0

+ t0
√

a2 (b2 (m2 + 1)− h2m2t0)− b2h1t0

−t0
√

a2 (b2 (m2 + 1)− h2m2(t+ t0))− b2h1(t+ t0)
)))

B2
2 = − 1

(a2 (b2 (m2 + 1)− h2m2(t+ t0))− b2h1(t+ t0))
3/2

×
(
−a2b2

(
m2

√
a2 (b2 (m2 + 1)− h2m2(t+ t0))− b2h1(t+ t0)

+
√

a2 (b2 (m2 + 1)− h2m2t0)− b2h1t0
)

+ b2h1(t+ t0)
√

a2 (b2 (m2 + 1)− h2m2t0)− b2h1t0

+a2h2m
2t0

√
a2 (b2 (m2 + 1)− h2m2(t+ t0))− b2h1(t+ t0)

)

(6)

E0

f0
=

1

64t42
×

(
t62

(
3τ2(v10)

2 − 6τ(v10)
2 + 3(v10)

2 − 6τ2v10v
2
0 + 6v10v

2
0 + 3τ2(v20)

2 +6τ(v20)
2 + 3(v20)

2)

+ t52
(
−8τ2(v10)

2 − 8τ(v10)
2 + 16(v10)

2 − 8τ2v10v
2
0 + 48τv10v

2
0

+8v10v
2
0 + 16τ2(v20)

2 + 8τ(v20)
2 − 8(v20)

2)

+ t42
(
−2τ2(v10)

2 + 28τ(v10)
2 + 10(v10)

2 + 28τ2v10v
2
0 + 24τv10v

2
0

−28v10v
2
0 + 10τ2(v20)

2 − 28τ(v20)
2 − 2(v20)

2)

+ t32
(
16τ2(v10)

2 + 16τ(v10)
2 − 32(v10)

2 + 16τ2v10v
2
0 − 96τv10v

2
0

−16v10v
2
0 − 32τ2(v20)

2 − 16τ(v20)
2 + 16(v20)

2)

+ t22
(
44τ2(v10)

2 − 40τ(v10)
2 + 68(v10)

2 − 40τ2v10v
2
0 + 48τv10v

2
0

+40v10v
2
0 + 68τ2(v20)

2 + 40τ(v20)
2 + 44(v20)

2)

+ 24τ2(v10)
2 − 48τ(v10)

2 + 24(v10)
2 − 48τ2v10v

2
0 + 48v10v

2
0 + 24τ2(v20)

2 + 48τ(v20)
2 + 24(v20)

2
)
,
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Abstract. Shor’s algorithm on actual quantum computers has succeeded
only in factoring small composite numbers such as 15 and 21, and sim-
plified quantum circuits to factor the specific integers are used in these
experiments. In this paper, we factor 96 RSA-type composite numbers
up to 9-bit using a quantum computer simulator. The largest composite
number N = 511 was factored in approximately 2 hours on the simula-
tor. In our experiments, we implement Shor’s algorithm with basic circuit
construction, which does not require complex tricks to reduce the number
of qubits, and we give some improvements to reduce the number of gates,
including MIX-ADD method. This is a flexible method for selecting the
optimal ADD circuit which minimizes the number of gates from the ex-
isting ADD circuits for each of the many ADD circuits required in Shor’s
algorithm. Based on our experiments, we estimate the resources required
to factor 2048-bit integers. We estimate that the Shor’s basic circuit re-
quires 2.19 × 1012 gates and 1.76 × 1012 depth when 10241 qubits are
available, and 2.37× 1014 gates and 2.00× 1014 depth when 8194 qubits
are available.

Keywords: Shor’s algorithm · integer factorization · quantum computer
· quantum computer simulator.

1 Introduction

The security of RSA, one of the standardized public key cryptosystems, is based
on the difficulty of the integer factorization problem of large composite numbers.
The current factorization record by a classical computer is the factorization of
an 829-bit integer [6], so that RSA with larger than 2048-bit integer is consid-
ered to be secure for the time being. On the other hand, it is known that the
integer factorization problem can be solved in polynomial time by Shor’s algo-
rithm by using an ideal quantum computer [18]. Some factorization experiments
on quantum computers by using Shor’s algorithm have been reported only for
N = 15 and 21 [1,13,14,15,16,17] because of the difficulty of realizing ideal quan-
tum computers – quantum computers free from the limitation of the number of
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quantum bits (qubits) and the noise on the qubits 3. To make matters worse,
these experiments used the simplified Shor’s circuits in which qubits and gates
are reduced as much as possible by using the properties of the integers to be
factored and their factors to be found. Since such experiments do not lead to
accurate quantum resource estimation, the implementation of Shor’s algorithm
which can factor general composite numbers and its resource evaluation based
on factoring experiments are required.

Various quantum circuits of Shor’s algorithm for general composite numbers
have been proposed. Kunihiro summarized basic circuits [12], which use 2n con-
trolling qubits as a 1st qubit sequence for an n-bit composite number. On the
other hand, advanced circuits have also been proposed [4,8]. These circuits use a
technique to reduce the qubits of the 1st sequence from 2n to 1, which requires a
complex quantum operation, repeatedly performing observations and quantum
gate operations depending on the observation results.

Despite some efforts to estimate circuit resources for factoring 2048-bit inte-
gers with noisy qubits [8,9], it is too difficult to give exact estimates for factoring
such large integers.

There are two major problems to break the situation. The first problem is the
lack of computational resources, specifically, the number of qubits available on
quantum computers. Although IBM has recently developed a 433-qubit processor
[10], because of the effects of the noise, it is still difficult to process Shor’s
algorithm even on such computers. The second problem to be solved is the lack
of experimental results for Shor’s algorithm. To estimate the circuit resources
for factoring 2048-bit integers, more experimental results on the same computing
environments are needed.

Contribution of This Paper

This paper has three contributions. First, we implemented the basic circuits
of Shor’s algorithm applicable to general composite numbers, and succeeded in
factoring 96 RSA-type composite numbers up to 9-bit on a quantum computer
simulator running on a supercomputer. The largest composite number N = 511
was factorized in 2 hours on the simulator. We used the simulator mpiQulacs
developed by Fujitsu [11], a State Vector (SV) type simulator that records all
qubit states in memory with no noise and allows to simulate an ideal quantum
computation [11]. This paper focuses on the basic circuits because the current
large scale quantum simulator cannot handle the advanced circuit due to its
complexity. Our implementations are based on the well-known techniques [4,12],
but we provide some bug-fixes, improvements (including the second contribution)
and comparisons of required resource.

Second, we propose a flexible ADD method, MIX-ADD, to reduce the ele-
mentary gates and the depth of the basic circuit. The dominant circuit in Shor
3 Very recently, Yan et al. proposed a new quantum factoring algorithm which requires

a fewer number of qubits [21] and gave a new estimation for factoring 2048-bit
integers. However, the validity of the algorithm and the correctness of the estimation
are under the analysis.
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is Mod-EXP which computes a modular exponentiation fa,N (x) = ax mod N .
Mod-EXP can be constructed from ADD circuits, and there are three well-known
ADD circuits: R-ADD, GT-ADD, and Q-ADD [12]. The basic circuit requires
5n + 1 qubits for R-ADD, and 4n + 2 qubits for GT/Q/MIX-ADD for n-bit
composite numbers to be factored. MIX-ADD reduces the gates and the depth
by selecting the optimal ADD circuit which minimizes the number of gates from
R/GT/Q-ADD for each ADD circuit called multiple times in Mod-EXP. Our
analysis shows that R/MIX/Q/GT-ADD require more gates in this order for
larger n. MIX-ADD can factor larger composite numbers more efficiently in an
environment where the number of available qubits is limited like the present.

Finally, we gave estimations of the number of gates and the depth for the
Shor’s basic circuits. We generated some quantum circuits for n = 8, . . . , 24,
and evaluated the resources of the circuit. Based on these data, we estimated
the circuit resources required to factor 2048-bit integers. In our estimation, the
basic circuit requires 10241 qubits, 2.19 × 1012 gates and 1.76 × 1012 depth for
R-ADD, and 8194 qubits, 2.37×1014 gates and 2.00×1014 depth for MIX-ADD.

The rest of the paper is organized as follows: Section 2 describes the construc-
tion of Shor’s quantum circuit, in particular the modular exponentiation circuit
Mod-EXP using ADD circuits. Then, in Section 3, concrete constructions of
Mod-EXP from R-ADD, GT-ADD, Q-ADD and MIX-ADD are explained. Sec-
tion 4 summarizes factoring experiments by Shor’s quantum circuit using the
quantum computer simulator including the estimation for 2048-bit integers.

2 Quantum Circuit of Shor’s algorithm

This section describes quantum circuits of Shor’s algorithm for general compos-
ite numbers based on known techniques [4,12]. In this paper, we consider the
following quantum gates as the elementary gates for evaluating the number of
gates and the depth: 1-qubit gates including the Hadamard gate, NOT gate,
the rotation gate and the phase-shift gate, Controlled NOT (C-NOT) gate, and
Toffoli (C2-NOT) gate.

2.1 Shor’s algorithm and Factorization

Suppose we want to factor an n-bit composite number N . For an integer a
coprime to N , the order of a with regard to N is defined as the smallest positive
integer r such that ar ≡ 1 mod N . In 1994, Shor proposed a quantum algorithm
to compute the order r of a with regard to N in polynomial time [18]. The
integer N can be factored by using Shor’s algorithm in the following way:

i) Choose an integer a from {2, . . . , N − 1}. If gcd(a,N) ̸= 1 then output
gcd(a,N) and terminate (since a factor of N larger than 1 is found).

ii) Compute the order r from a and N by quantum order finding algorithm.
iii) If r is even, ar/2+1 ̸≡ 0 mod N and gcd(ar/2±1, N) ̸= 1, output gcd(ar/2±

1, N) and terminates. Otherwise, return step i).
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Note that step i) and iii) can be proceeded by classical computers. On the other
hand, step ii) can be computed by the quantum order finding algorithm on a
quantum computer in the following way:

1. Generate an initial state |ϕ0⟩ = |0 . . . 0⟩ |0 . . . 01⟩, where the 1st qubit se-
quence has m qubits, while the 2nd qubit sequence has n qubits.

2. Apply the Hadamard operation Hm to the 1st sequence:

|ϕ1⟩ = Hm(|ϕ0⟩) =
1√
2m

2m−1∑
x=0

|x⟩ |0 . . . 01⟩ .

3. Apply the operation Ufa,N
which corresponds to a modular exponentiation

fa,N (x) = ax mod N , to the 2nd sequence:

|ϕ2⟩ = Ufa,N
(|ϕ1⟩) =

1√
2m

2m−1∑
x=0

|x⟩ |fa,N (x)⟩ .

4. Apply the Inverse Quantum Fourier Transform to the 1st sequence.
5. Observe the 1st sequence, an approximation of a multiple of 2m/r is obtained.
6. Repeat Step 1–5 until r can be estimated.

The parameter m is determined from the approximation precision in Step 5,
m = 2n is used usually and in this paper.

2.2 Construction of Mod-EXP from ADD

Above steps except Step 3 can be easily realized by elementary gates. On the
other hand, Step 3 requires complex circuits called Mod-EXP [12]. This subsec-
tion describes how to realize Mod-EXP from elementary gates. In fact, Mod-
EXP can be constructed from ADD circuits, by transforming Mod-EXP to the
following circuits step-by-step:

– Mod-EXP(a) : |x⟩ |1⟩ → |x⟩ |ax mod N⟩
– Mod-MUL(d) : |y⟩ → |dy mod N⟩
– Mod-PS(d) : |y⟩ |t⟩ → |y⟩ |t+ dy mod N⟩
– Mod-ADD(d) : |y⟩ → |y + d mod N⟩
– ADD(d) : |y⟩ → |y + d⟩

Construction of Mod-EXP from Mod-MUL For an exponent x represented
in binary, namely, x =

∑m−1
i=0 2ixi, a modular exponentiation Mod-EXP(a) is

computed by a repetition of multiplying di = a2
i

mod N and taking modulus by
N , since ax mod N = a

∑m−1
i=0 2ixi mod N =

∏m−1
i=0 a2

ixi mod N . In other words,
Mod-EXP(a) can be computed by a repetition of the modular multiplication
Mod-MUL(di) controlled by |xi⟩, so that Mod-EXP(a) requires m controlled-
Mod-MULs, which is denoted by C(xi)-Mod-MUL.

Session 7 - 3 The 26th Annual International Conference on Information Security and Cryptology

ICISC 2023 441



Shor’s Factorization Using a Quantum Simulator 5

Construction of Mod-MUL from Mod-PS The modular multiplication
Mod-MUL(d) for an integer 0 ≤ d < N and an n-bit integer y can be computed
by using modular product-sums Mod-PSs in the following way:

|y⟩ |0 . . . 0︸ ︷︷ ︸
n

⟩ Mod-PS(d)→ |y⟩ |0 + dy mod N⟩ SWAP→ |dy mod N⟩ |y⟩

Mod-PS(−d−1)→ |dy mod N⟩ |y + (−d−1)(dy mod N) mod N⟩
= |dy mod N⟩ |0⟩ .

Since di = a2
i

mod N and gcd(a,N) = 1, there always exists the inverse d−1 mod
N . Thus, Mod-MUL can be computed by two Mod-PSs and one n-qubit SWAP
with n auxiliary qubits |R2⟩ = |0 . . . 0⟩. Especially, C(xi)-Mod-MUL requires
two C(xi)-Mod-PSs and one n-qubit C-SWAP. Moreover, an n-qubit C-SWAP
can be realized by n 1-qubit C-SWAPs, and one 1-qubit C-SWAP can be realized
by two C-NOTs and one Toffoli gate.

Construction of Mod-PS from Mod-ADD When the 2nd sequence is repre-
sented as |y⟩ = |yn−1 . . . y0⟩, for an integer 0 ≤ d < N , we have dy =

∑n−1
j=0 d2jyj .

Thus, a modular product-sum Mod-PS(d) on a bit sequence |R2⟩ can be com-
puted by a repetition R2 ← R2 + d2j mod N if yj = 1 for j = 0, 1, . . . , n − 1,
which is equivalent to C(yj)-Mod-ADD(d2j mod N). That is, Mod-PS can be
realized by n 1-controlled Mod-ADDs, and C(xi)-Mod-PS can be realized by n
2-controlled Mod-ADDs, namely, C(xi, yj)-Mod-ADDs.

Construction of Mod-ADD from ADD There are two constructions, Type
1 and Type 2 for realizing C(xi, yj)-Mod-ADD [12]. From the efficiency point
of view, Type 2 is optimal for R-ADD and Q-ADD, while Type 1 for GT-ADD.
Due to space limitation, we omit describing the details.

2.3 Construction of ADD

This subsection describes how to construct ADD circuits from the elementary
gates in three ways: R-ADD, GT-ADD, and Q-ADD. Here, we consider the
circuit to add an n-bit integer p = pn−1 . . . p0 to an n-qubit register |R2⟩ =
|R2,n−1 . . . R2,0⟩. Considering the carry-over, the result is represented by |R1R2⟩
with 1-qubit register |R1⟩. All ADD circuits use another 1-qubit register |R3⟩,
and R-ADD uses further (n − 1)-qubit sequence |c⟩. In total, GT-ADD and Q-
ADD require m + n + 1 + n + 1 = m + 2n + 2 = 4n + 2 qubits, while R-ADD
requires m+2n+2+ (n− 1) = m+3n+1 = 5n+1 qubits. On the other hand,
the number of elementary gates is estimated by 270n3 for R-ADD, 16/3n5 for
GT-ADD, and 97n4 for Q-ADD [12].
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|ck⟩ •
|R2,k⟩ •
|ck+1⟩

(a) pk = 0

|ck⟩ •
|R2,k⟩ • •
|ck+1⟩

(b) pk = 1

Fig. 1: CARRY Circuit

|ck⟩ •
|R2,k⟩

(a) pk = 0

|ck⟩ •
|R2,k⟩

(b) pk = 1

Fig. 2: SUM Circuit

Construction of R-ADD R-ADD is a ripple carry adder [5,20], which com-
putes R2 + p by using the following addition table:

cn−1 cn−2 . . . c1
R2,n−1 R2,n−2 . . . R2,1 R2,0

+) pn−1 pn−2 . . . p1 p0
R1 R2,n−1 R2,n−2 . . . R2,1 R2,0

Here, c = cn−1 . . . c1 is an auxiliary (n − 1)-bit register with initial value 0,
which is used for storing carry-overs. R-ADD consists of three circuits, CARRY
(for computing carry bits), SUM (for computing additions), and CARRY−1 (for
resetting carry bits). As in Figure 2 of Vedral, Barenco and Ekert’s paper [20],
R-ADD firstly computes all carry-overs by using CARRY circuit described in
Figure 1 for k = 0, 1, . . . , n− 1 (set cn = R1 when k = n− 1). When pn−1 = 1,
apply the NOT gate to R2,n−1. Finally, for k = n−1, . . . , 0, update R2,k by using
SUM circuit described in Figure 2 and reset ck by using CARRY−1 circuit, which
is reverse circuit of CARRY. When k = 0, CARRY−1 is omitted. Thus, R-ADD
can be constructed from Toffoli gates, C-NOT gates, and NOT gates.

Type 2 Mod-ADD requires 1-controlled R-ADD and 2-controlled R-ADD,
which require not only C-NOT gate and Toffoli gate, but 3-controlled NOT and
4-controlled NOT gates. Barenco et al. showed two conversions from a Ck-NOT
gate to Toffoli gates [3]. The first conversion converts a Ck-NOT gate to 2k − 3
Toffoli gates by using k−2 clean auxiliary qubits (qubits with their state known
to be |0⟩). The second converts a Ck-NOT gate to 4k − 8 Toffoli gates by using
k−2 dirty (unclean) auxiliary qubits. Both auxiliary qubits return to their initial
state after the usage. According to Kunihiro’s paper [12], the first conversion is
used for all Ck-NOT gates.

Construction of GT-ADD For k = 0, 1, . . . , n − 1, GT-ADD adds p by re-
peatedly computing R2 ← R2 + 2k when pk = 1. An addition by 2k can be
realized by Cℓ-NOT gates (1 ≤ ℓ ≤ n − k) and one NOT gate as in Figure
3. Type 1 Mod-ADD requires, in addition to GT-ADD, 1/2/3-controlled GT-
ADD, which consists of NOT gates, C-NOT gates, Toffoli gates, and Cℓ-NOT
gates (3 ≤ ℓ ≤ n+ 3). Both conversions described in Section 2.3 can be used in
GT-ADD, however, since it is difficult to allocate clean qubits, Kunihiro used
the second conversion for all Cℓ-NOT gates [12].

Construction of Q-ADD Q-ADD is an adder using the Quantum Fourier
Transform (QFT) [4,7]. For simplicity, we set |R2,n⟩ := |R1⟩ and assume that
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|R2,k⟩ • • · · · •
|R2,k+1⟩ • • · · ·

... • • · · ·
|R2,n−2⟩ • • · · ·
|R2,n−1⟩ • · · ·

|R1⟩ · · ·

Fig. 3: Adder 2k to |R2⟩

•
= E • •

W A B C

Fig. 4: Conversion of 1-controlled Rk

|R2⟩ has n + 1 qubits in this subsection. Also set pn = 0. Unlike R/GT-ADD,
Q-ADD computes |R2⟩ ← |R2 + p mod 2n+1⟩. Denote the state after applying
QFT to the register |R2⟩ (Figure 9 in [4]) as ϕ(|R2⟩). Then, Q-ADD computes
in the following way: for j = n, n − 1, . . . , 0, and for k = 1, 2, . . . , j + 1, apply
the Z-rotation gate Rk = (1, 0; 0, e2πi/2

k

) to ϕ(|R2,j⟩) when pj−k+1 = 1. Inverse
QFT (QFT−1) is required to obtain the result of the addition. Thus, Q-ADD
can be realized by rotation gates except QFT/QFT−1.

Type 2 Mod-Add requires 1/2-controlled Q-ADDs, that is, 1/2-controlled Rk

gates are required. Here, 1-controlled Rk gate can be realized by 2 C-NOTs and
4 1-qubit gates, and 2-controlled Rk gate can be realized by 6 C-NOTs and 8
1-qubit gates [3].

Construction of 1/2-controlled Rk is as follows. Arbitrary unitary matrix W
can be represented by

W = Φ(δ)Rz(α)Ry(θ)Rz(β) (1)

for parameters α, β, θ, δ ∈ [0, 2π], where

Φ(x) =

(
eix 0
0 eix

)
, Ry(x) =

(
cosx/2 sinx/2
− sinx/2 cosx/2

)
, Rz(x) =

(
eix/2 0
0 e−ix/2

)
.

Then 1-controlled W gate can be represented as in Figure 4, where

A = Rz(α)Ry(θ/2), B = Ry(−θ/2)Rz(−(α+ β)/2),

C = Rz((β − α)/2), E = Rz(−δ)Φ(δ/2).

Thus, 1-controlled Rk can be realized by 2 C-NOTs and 4 1-qubit gates as in
Figure 4 by determining parameters α, β, θ, δ. Similarly, 2-controlled Rk gate can
be realized by 6 C-NOTs and 8 1-qubit gates from Lemma 6.1 in [3].

2.4 Required Resources

This section summarizes the resources required in Shor’s circuit to factor an
n-bit integer.

Shor’s circuit has three main circuits, Hadamard, Mod-EXP, and QFT−1.
Required number of gates for each of Hadamard and QFT−1 is O(n2), while Mod-
EXP requires GModEXP(R-ADD) = 270n3 with R-ADD, GModEXP(GT-ADD) =
16/3n5 with GT-ADD, and GModEXP(Q-ADD) = 97n4 with Q-ADD. Therefore,
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required number of gates for Shor’s circuit can be identified by these numbers:
GShor(R-ADD) = 270n3, GShor(GT-ADD) = 16/3n5, and GShor(Q-ADD) =
97n4. Unfortunately, no estimation for the depth is known. Required numbers
of qubits are QShor(R-ADD) = 5n + 1 with R-ADD, and QShor(GT-ADD) =
QShor(Q-ADD) = 4n+ 2 with GT-ADD and Q-ADD.

3 Implementation of Shor’s Quantum Circuit

This section describes how to implement Mod-EXP with each of R-ADD, GT-
ADD, and Q-ADD, respectively, based on Kunihiro’s paper [12]. We also show
bug-fixes and improvements from them. Moreover, we propose Mod-EXP with
MIX-ADD method. This requires 4n+2 qubits same as the case of GT/Q-ADD,
but consists of fewer gates compared with GT/Q-ADD.

3.1 Mod-EXP with R-ADD

We use Type 2 Mod-ADD in order to minimize the number of gates. We also
apply the following bug-fixes and improvements.

Bug-fix on Converting C3-NOT, C4-NOT to Toffoli Gate The first con-
version described in Section 2.3 is used in [12] for all Ck-NOT (k = 3, 4) gates
in 1/2-controlled R-ADD, however, k − 2 clean qubits are not available in some
cases. In such cases we propose to take the following procedures. When k = 3
and no clean qubit is available, then use the second conversion described in Sec-
tion 2.3. When k = 4, use the second conversion if no qubit is available, and
use the conversion described in Figure 6 if 1-qubit is available, which is given by
greedy method described later. Compared to the first conversion, 1 Toffoli gate
is increased when k = 3, and 3/1 Toffoli gates are increased when k = 4 with
0/1 clean qubit. Though this increases the number of gates in Mod-EXP, it does
not affect the order since it is at most O(n) (explained later).

Greedy Method Suppose 1 ≤ c ≤ k−3 clean qubits and sufficient dirty qubits
are available. Our greedy method converts a Ck-NOT to Toffoli gates as follows.

1. Generate a null circuit circ.
2. Let X be a set of indices of k control qubits.
3. Select two indices from X, and delete these indices from X.
4. Select one clean qubit with changing its status as ‘dirty’ in clean qubit man-

agement, and add its index to X.
5. Generate a Toffoli gate, controlled by selected indexed-qubits and targeted

to the selected clean qubit.
6. Add the generated Toffoli gate to circ.
7. Repeat Step 2–6 c times.

Session 7 - 3 The 26th Annual International Conference on Information Security and Cryptology

ICISC 2023 445



Shor’s Factorization Using a Quantum Simulator 9

8. Generate a Ck−c-NOT gate controlled by (k− c) indices in X, and targeted
to the same qubit as the original Ck-NOT gate, and convert to 4(k − c)− 8
Toffoli gates by using the 2nd conversion, and add to circ.

9. Add all Toffoli gates generated in Step 2–7 in the reversed order to circ.
10. Output circ.

The number of Toffoli gates generated by the greedy method is c+4(k−c)−8+c =
4k − 8− 2c. See Appendix 1 and 2 for examples of our greedy method.

Clean Qubits Management It is difficult to figure out which qubit is clean
or not manually when Ck-NOT conversion is required. So we implemented the
management function to automatically list the status of auxiliary qubits.

– When a quantum gate is added to the circuit, set the status of the target
qubit of the gate as ‘dirty’ (not clean). If the gate makes the status clean
(such as CARRY−1), set ‘clean’.

– Use ‘clean’ qubits in Ck-NOT conversion.

This management minimizes the number of gates of Mod-EXP.

The Number of Gates after Bug-fix In Step 2 of Shor’s algorithm, we
apply the Hadamard gate to the m-qubit sequence. By changing this opera-
tion to applying the Hadamard gate to xi just before each C(xi)-Mod-MUL,
xi+1, . . . , xm−1 can be used as clean qubits in C(xi)-Mod-MUL. Thus, for i =
0, . . . ,m− 3, xi+1, xi+2 can be used as clean qubits and there is no increase on
the number of gates because the first conversion can be applied same as in the
Kunihiro’s paper [12]. On the other hand, when i = m−2,m−1, available clean
qubits are less than 2, and additional circuits are required.

The number of gates for Bug-fix Mod-EXP with R-ADD is given as follows.
C(xi, yj)-Mod-ADD in Mod-EXP consists of 3 C2-R-ADDs, 1 C-R-ADD, 1 C2-
NOT, 2 C-NOTs and 3 NOTs. In the case for i = 0, . . . ,m − 3, C4/C3-NOT
is converted to 5/3 Toffoli gates because two clean qubits are available. Hence,
C(xi, yj)-Mod-ADD consists of 135/2n − 155/2 elementary gates. For i = m −
2,m − 1, we count the number of gates to be added from this number. For
i = m−2, there is no additional gates in the first and last C2-R-ADD(d) in Type
1 C(xi, yj)-Mod-ADD, because two clean qubits (xm−1 and R3) are available.
On the other hand, additional gates are required in C2-R-ADD(2n − d) due to
lack of clean qubits. Specifically, two clean qubits xm−1 and cn−1 are available
in C2-CARRY for cj and C2-CARRY−1 for cj for j = 1, . . . , n− 2, but just one
in C2-CARRY for cn−1, cn and C2-CARRY−1 for cn−1. Each C4-NOT gate in
these three CARRYs is converted to 6 Toffoli gates by the greedy method for
k = 4, c = 1. This leads to the addition of 3 elementary gates compared to the
case for i = 0, . . . ,m− 3. Hence, C(xi, yj)-Mod-ADD consists of 135/2n− 149/2
elementary gates. For i = m−1, additional gates are required as shown in Table
1, then C(xi, yj)-Mod-ADD consists of 135/2n−55 elementary gates. Therefore,
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C2-ADD(d) at Step 1-1 and 7 C-ADD at Step 3 C2-ADD(2n − d) at Step 5
required available #gates required available #gates required available #gates

CARRY cn−2 2 R3, cn−1 +0 1 cn−1 +0 2 cn−1 +1
CARRY cn−1 2 R3 +1 1 – +1 2 – +7/2

CARRY R1 2 R3 +1 1 – +1 2 – +7/2
SUM R2,n−1 2 R3 +0 0 – +0 1 – +1

CARRY−1 cn−1 2 R3 +1 1 – +1 2 – +7/2
CARRY−1 cn−2 2 R3, cn−1 +0 1 cn−1 +0 2 cn−1 +1

Table 1: The number of required clean qubits, available clean qubits and the
number of additional gates in each controlled ADD in Mod-ADD Type-2 [12]
with R-ADD for i = m− 1

Bug-fix Mod-EXP with R-ADD consists of

GModEXP(R-ADD) = 2n(m− 2)(135/2n− 155/2) + 2n(135/2n− 149/2)

+ 2n(135/2n− 55) + 3mn

= 270n3 − 304n2 + 51n

elementary gates, where 3mn is the number of elementary gates for C-SWAPs
in Mod-MUL. The gates increased by the lack of clean qubits is at most O(n).

3.2 Mod-EXP with GT-ADD

For implementing Mod-EXP with GT-ADD, Type 1 Mod-ADD is used to min-
imize the number of gates. Kunihiro used the second conversion described in
Section 2.3 for converting Ck-NOT gates (for 3 ≤ k ≤ n + 3) to Toffoli gates.
This paper proposes to use clean qubits as much as possible by the greedy method
to decrease the number of gates.

Greedy Method in Mod-EXP For all conversions from Ck-NOT gates (3 ≤
k ≤ n+3) to Toffoli gates appeared in Mod-EXP with GT-ADD, we use the 1st
conversion described in Section 2.3 when more than or equal to k−2 clean qubits
are available, the greedy method when 1 to k− 3 clean qubits are available, and
the 2nd conversion when no clean qubit is available. We also use the clean qubit
management in the greedy method.

The Number of Gates with Greedy Method The number of gates for
Mod-EXP with GT-ADD with the greedy method is given as follows. Type
1 C(xi, yj)-Mod-ADD consists of the following four gates. Each gate can be
converted to elementary gates as shown in Case 1–4.

1. C3-GT-ADD with m− i− 1 cleans,
2. 2 C3-GT-ADDs with m− i cleans,
3. C2-GT-ADD with m− i− 1 cleans,
4. 2 C3-NOTs and 4 C2-NOTs.
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Case 1. C3-GT-ADD consists of (n−k+4)/2 Ck-NOTs (4 ≤ k ≤ n+3) and n/2
C3-NOTs on average. In the case for 0 ≤ i ≤ n−2, all Ck-NOTs can be converted
to Toffoli gates by the 1st conversion because n + 1 clean qubits are available.
Hence, the number of gates is given as n1(i) = 1/2

∑n+3
k=4(n−k+4)(2k−3)+3/2n.

For n−1 ≤ i ≤ m−2, we convert Ck-NOT to Toffoli gates by the 1st conversion
for 3 ≤ k ≤ m− i+ 1 and the greedy method for m− i+ 2 ≤ k ≤ n+ 3. Hence,
the number of gates is n1(i) = 1/2

∑n+3
k=m−i+2(n−k+4)(4k−8−2(m− i−1))+

1/2
∑m−i+1

k=4 (n−k+4)(2k−3)+3/2n. For i = m−1, we use the 2nd conversion,
then the number of gates is n1(i) = 1/2

∑n+3
k=4(n− k + 4)(4k − 8) + 3/2n.

Case 2. In the same way as Case 1, the number of gates is n2(i) = 1/2
∑n+2

k=3(n−
k + 3)(2k − 3) + n/2 for 0 ≤ i ≤ n, n2(i) = 1/2

∑n+2
k=m−i+3(n− k + 3)(4k − 8−

2(m− i)) + 1/2
∑m−i+2

k=3 (n− k + 3)(2k − 3) + n/2 for n+ 1 ≤ i ≤ m− 1.

Case 3. In the same way as Case 1, the number of gates is n3(i) = 1/2
∑n+2

k=3(n−
k + 3)(2k − 3) + n/2 for 0 ≤ i ≤ n− 1, n3(i) = 1/2

∑n+2
k=m−i+2(n− k + 3)(4k −

8− 2(m− i− 1))+ 1/2
∑m−i+1

k=3 (n− k+3)(2k− 3)+n/2 for n ≤ i ≤ m− 2, and
n3(i) = 1/2

∑n+2
k=3(n− k + 3)(4k − 8) + n/2 for i = m− 1.

Case 4. Each C3-NOT can be converted to 3 Toffoli gates for 0 ≤ i ≤ m − 2,
and 4 for i = m− 1.

Mod-EXP with GT-ADD with the greedy method consists of

GModEXP(GT-ADD) = 2n

{
m−1∑
i=0

(n1(i)+n2(i)+n3(i)+4)+6(2n− 1)+8

}
+ 3mn

= 3n5 + 15n4 +
51

2
n3 +

103

2
n2 + 8n

elementary gates. The greedy method reduces the fifth-order coefficient from
16/3 to 3.

3.3 Mod-EXP with Q-ADD

This subsection describes how to implement Mod-EXP with Q-ADD.

Bug-fix in Q-ADD Since Q-ADD requires to apply QFT to the registers
|R1R2⟩, QFT just before C(x0)-Mod-MUL in Q-ADD (Figure 2 in [4]), and
QFT−1 just before C-SWAP and QFT just before C-SWAP in C(xi)-Mod-MUL
should be added. Thus the number of gates are increased to 4n + 2 QFTs for
Mod-EXP from the original [12]. Furthermore, the original number of gates did
not consider C-SWAP, so that mn Toffoli gates and 2mn C-NOTs should be
added. However, since these increase is at most O(n3), it does not effect on the
total number of Mod-EXP at all.
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• • • • •
• = E • E† • E

Rk A B B† B

Fig. 5: Conversion of 2-controlled Rotation Gate

Change of Mod-ADD When Type 2 Mod-ADD is used for Q-ADD, 4 QFTs
and 4 QFT−1s are required, and the number of gates of Mod-EXP will be in-
creased (the order is same, but the coefficient becomes larger). So, we propose
to use Beauregard’s Mod-ADD which requires 2 QFTs and 2 QFT−1s [4].

Gate Reduction of Controlled Rotation Gate Conversion When 1/2-
controlled Rk gates are converted to elementary gates, one 1-qubit gate can be
reduced by setting parameters properly. In fact, set α = β = −π/2k, θ = 0, δ =
π/2k in (1) for W = Rk, then C becomes an identity matrix and can be omitted.
Similarly, setting α = β = −π/2k−1, θ = 0, δ = π/2k−1 for 2-controlled Rk gates
reduces one 1-qubit gate as in Figure 5, where † denotes an inversion.

The Number of Gates after Bug-fix Mod-EXP consists of 2mn Beaure-
gard’s Mod-ADDs, 2m + 2 QFTs (or QFT−1) and mn C-SWAPs. Mod-ADD
also consists of as follows.

– 3 C2-Q-ADDs, each of which consists of (n+2−k)/2 C2-Rk for 1 ≤ k ≤ n+1,
– C-Q-ADD, which consists of (n+ 2− k)/2 of C-Rk for 1 ≤ k ≤ n+ 1,
– Q-ADD, which consists of (n+ 2− k)/2 of Rk for 1 ≤ k ≤ k,
– 4 QFTs, each QFT consists of n+1 H gates and n+2−k C-Rk for 2≤k≤n+1,
– 2 C-NOTs and 2 NOTs.

Hence, Mod-ADD consists of GModADD(Q-ADD) = 21n2/4 + 47n/4 + 21/2 ele-
mentary gates because C2/C-Rk can be converted to 13/5 elementary gates. And
QFT consists of GQFT(n+ 1) = 5/2n2 + 7n/2 + 1 elementary gates. Therefore,
Mod-EXP with Q-ADD consists of

GModEXP(Q-ADD) = 2mn×GModADD(Q-ADD)+(2m+2)×GQFT(n+1)+3mn

= 85n4 + 201n3 + 147n2 + 11n+ 2

elementary gates. The fourth-order coefficient is reduced from 97 to 85 by the
gate reduction.

3.4 Mod-EXP with MIX-ADD

This subsection proposes a MIX-ADD method, which uses different ADD meth-
ods in Mod-EXP depending on the number of available clean qubits to minimize
the number of elementary gates.
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Definition of MIX-ADD The original Mod-EXP uses just one ADD circuit
such as R/GT/Q-ADD, but in the case of 4n + 2 qubits circuit, the number of
gates for Mod-EXP can be reduced by selecting the optimal ADD for each ADD
in Mod-EXP. We call this construction Mod-EXP with MIX-ADD. Considering
the order of the number of gates for each ADD, R-ADD is top priority, next Q-
ADD, then GT-ADD. However, R-ADD is available only if n− 1 clean auxiliary
qubits are available as carry qubits. In C(xi)-Mod-MUL in Mod-EXP, we can
use R-ADD for 0 ≤ i ≤ n because m − i + 1 clean qubits (xi+1, . . . , xm−1) are
available. On the other hand, we use Q-ADD for n+1 ≤ i ≤ m− 1 to minimize
the number of gates. In applying Q-ADD from the middle of Mod-EXP, QFT
is added in the following three points. The first is after C(xn−2)-Mod-MUL, the
second is QFT−1 before C-SWAP and QFT after C-SWAP in Mod-MUL for
n+ 1 ≤ i ≤ m− 1, and the third is after C(xm−1)-Mod-MUL.

The Number of Gates The number of gates for Mod-EXP with MIX-ADD is
computed in the same way as in Section 3.1 and Section 3.3. Therefore, we have

GModEXP(MIX-ADD) = 2n(n− 1)(135/2n− 155/2) + 2n(135/2n− 149/2)

+ 2n(135/2n− 55) + 2n(n− 1)×GModADD(Q-ADD)

+ 2n×GQFT(n+ 1) + 3mn

=
85

2
n4 + 193n3 − 83

2
n2 − 163n,

which is about half the number of gates for Mod-EXP with Q-ADD.

4 Experimental Results

This section reports our factorization results based on our implementation de-
scribed in Section 3 by using the quantum computer simulator mpiQulacs [11],
a distributed version of the quantum simulator Qulacs [19]. We used an A64FX-
based cluster system similar to Todoroki [11] with 512 nodes, which enables
39-qubit operations. A64FX is an ARM-based CPU that is also equipped in the
world’s top Fugaku supercomputer.

The experiments were conducted by the following steps:

1. For an n-bit RSA-type composite number (a product of two different odd
primes) N , choose a which induces the factorization (for efficiency reason).

2. Generate the quantum circuit for factoring N by Shor’s algorithm. Here we
have four choices for ADD circuit.

3. Input the quantum circuit to the simulator.
4. Observe the 1st bit sequence 10,000 times to estimate the order r.
5. Output gcd(ar/2 ± 1, N).

Note that, since the observation in Step 4 does not destroy the quantum state,
it is sufficient to run each quantum circuit once in the experiments.
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R-ADD GT-ADD Q-ADD MIX-ADD
N n a Q G D T Q G D T Q G D T Q G D T
15 4 2 21 12937 10507 2.4 18 12595 9838 0.91 18 38967 20208 3.5 18 22815 14273 1.6
21 5 2 26 26155 20779 89.9 22 25325 18824 5.2 22 78334 40409 18 22 47273 28866 10.4
33 6 5 31 46935 36870 – 26 44461 31436 92 26 145620 76578 404 26 87251 53343 228
35 6 2 31 47662 37775 – 26 55387 38869 115 26 155329 79693 426 26 93174 55541 241
39 6 2 31 47843 38214 – 26 61941 43483 129 26 160315 81152 441 26 95233 56408 246
51 6 2 31 46991 37413 – 26 55755 39348 116 26 152468 78285 421 26 90995 54677 237
55 6 2 31 47845 38513 – 26 61899 43507 129 26 160613 80877 441 26 95368 56384 246
57 6 5 31 47555 38028 – 26 51360 36346 107 26 154085 78686 431 26 91616 55062 238
65 7 3 36 76341 59902 – 30 82676 56199 2430 30 251424 132329 10545 30 150521 90940 5915
69 7 2 36 78035 61939 – 30 98774 66690 2866 30 271832 138888 11329 30 162705 95730 6362
77 7 2 36 77066 61391 – 30 104285 70616 3033 30 267042 135177 11125 30 159450 93522 6275
85 7 2 36 75704 60041 – 30 99407 67570 2906 30 256625 132179 10719 30 153316 91241 6011
87 7 2 36 78196 62751 – 30 120027 80999 3485 30 284083 142164 11792 30 167554 97300 6524
91 7 2 36 77819 62369 – 30 116234 78729 3369 30 279204 141000 11594 30 165151 96642 6435
93 7 2 36 77659 62319 – 30 108070 73227 3150 30 276912 140313 11516 30 163710 96243 6380
95 7 2 36 78550 63480 – 30 125960 85061 3664 30 289797 144364 12098 30 169991 98446 6610

111 7 2 36 78692 63633 – 30 124959 84533 3646 30 289793 144261 12020 30 170163 98552 6648
115 7 2 36 78591 63151 – 30 109922 74503 3188 30 282238 141557 11809 30 168210 97753 6568
119 7 2 36 78563 63477 – 30 122960 83264 3577 30 287020 142555 11978 30 170386 98332 6620
123 7 2 36 78691 63672 – 30 118337 80519 3452 30 286730 143475 11899 30 170798 99083 6643

Table 2: Factorization of N up to 7-bit (with 1-node).

4.1 Naive Circuit

Firstly, we factored small RSA-type composite numbers up to 7-bit with 1-node
by using Shor’s quantum circuits generated by our implementation. Table 2
shows the required resources and timings for factorization, where Q, G, D, T
denote the number of required qubits, the number of elementary gates, the depth
of Shor’s circuit, and the timing data in seconds. Since we used 1-node only, 30
qubits are available for factorization. Thus, circuits with R-ADD for 6-bit and
7-bit integers cannot be proceeded (denoted by ‘–’ in the table).

As in the table, required resources depend on the parameters N and n, but
on n mainly. The ratio D/G seems to be a constant depending on the features
of R-ADD, GT-ADD, Q-ADD, and MIX-ADD. Since Q-ADD has many 1-qubit
operations and is easy to parallelize, so that the ratio D/G is smaller (0.50-
0.53 for Q-ADD and 0.57-0.63 for MIX-ADD) compared to other ADDs (0.79
to 0.81 for R-ADD, 0.68-0.79 for GT-ADD). Though G and D are expected in
the following order, O(n3) for R-ADD, O(n4) for Q-ADD and MIX-ADD, and
O(n5) for GT-ADD, the results differ from expected ones. The reason is that
the composite numbers are so small that other terms rather than the dominant
term affect. The difference may be smaller for larger parameters.

4.2 Optimized Circuit

Then, we factor 8-bit and 9-bit integers with 512-nodes. GT-ADD is used for
the experiment because it requires less number of qubits and gates compared to
other ADDs in the case of these small integers. In order to decrease the number
of gates and the depth as much as possible, we used optimize_light option of
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N n a Q G D T N n a Q G D T N n a Q G D T
129 8 7 34 152780 100141 256 259 9 2 38 288684 183065 6143 395 9 2 38 319088 203494 7307
133 8 2 34 169108 111205 247 265 9 6 38 272685 173346 5620 403 9 2 38 307506 195485 6271
141 8 2 34 183453 120170 287 267 9 2 38 309270 196137 6572 407 9 2 38 338095 214301 7907
143 8 2 34 207514 135907 311 287 9 2 38 359003 228259 7511 411 9 2 38 335319 214006 7404
145 8 6 34 158918 105271 262 291 9 2 38 308155 195603 6542 413 9 2 38 327370 208569 6648
155 8 2 34 198473 130150 311 295 9 2 38 334848 212590 6370 415 9 2 38 359587 228199 7723
159 8 2 34 217743 142924 335 299 9 2 38 321523 204402 7094 417 9 5 38 267426 171328 5940
161 8 3 34 155238 103030 238 301 9 2 38 317493 202575 6461 427 9 2 38 324243 207582 6862
177 8 5 34 168876 111997 259 303 9 2 38 353151 224856 7559 437 9 2 38 314856 200771 5925
183 8 2 34 207468 136410 297 305 9 3 38 285798 182560 6350 445 9 2 38 339458 216426 6572
185 8 3 34 180752 119593 282 309 9 2 38 309354 196737 6358 447 9 2 38 373035 237421 7448
187 8 2 34 208281 137192 328 319 9 2 38 367923 233944 7419 451 9 2 38 306484 195876 5999
201 8 7 34 170050 112064 244 321 9 7 38 260877 166496 5899 453 9 2 38 286538 183164 6146
203 8 2 34 193163 126762 285 323 9 2 38 304490 193554 5956 469 9 2 38 303229 193946 6246
205 8 3 34 178117 117326 276 327 9 2 38 322336 204745 6115 471 9 2 38 343707 219148 7473
209 8 3 34 165014 109327 243 329 9 3 38 285506 182113 6099 473 9 3 38 303975 194528 6933
213 8 2 34 184210 121450 272 335 9 2 38 349246 222013 8104 481 9 3 38 281077 180267 6815
215 8 2 34 204621 134697 327 339 9 2 38 317273 201779 7109 485 9 2 38 305606 195586 6502
217 8 5 34 178741 118044 255 341 9 2 38 291468 186213 6363 489 9 7 38 302012 193333 7218
219 8 2 34 204160 134522 299 355 9 2 38 310783 197410 7491 493 9 2 38 329162 210756 6188
221 8 2 34 200121 131790 283 365 9 2 38 322926 206125 6346 497 9 3 38 296472 189877 5750
235 8 2 34 198443 130597 285 371 9 2 38 324641 206674 6287 501 9 2 38 322414 207063 6335
237 8 2 34 193348 127347 286 377 9 3 38 316691 202612 6676 505 9 6 38 313370 200596 6811
247 8 2 34 208086 136900 289 381 9 2 38 321134 204686 5860 511 9 3 38 395310 252188 8226
249 8 11 34 186487 123502 292 391 9 2 38 326281 207709 6697
253 8 2 34 202159 133987 306 393 9 5 38 281956 179878 6014

Table 3: Factorization of N up to 9-bit with GT-ADD (with 512-nodes).

Qulacs which unifies successive 1-qubit gates to one gate. However, the effect
was very limited: it reduce the number of gates by only 1 percent.

Since factorization of 9-bit integers require 38-qubits, and 256-nodes are suf-
ficient for the computation, other 256-nodes can be used for the speed-up. To
do so, we used the fused_swap_option option of mpiQulacs which enables to
distribute tasks to identified nodes for efficient computation.

Table 3 summarizes the factorization results. As in the table, we have suc-
ceeded factoring all RSA-type integers up to 9-bit. The largest integer we fac-
tored here was N = 511, which requires 8226 seconds (2.3 hours). On the other
hand, optimize_light option works very well for Q-ADD, since Q-ADD uses
a lot of successive 1-qubit gates. In fact, the optimized quantum circuit for fac-
toring N = 511 with Q-ADD requires 225523 gates and 187618 depth, and it
factors N = 511 in 7050 seconds (1.96 hours) in the experiment.

4.3 Resource Estimation of Basic Circuit

Finally, we estimated the quantum circuit resources for factoring 1024-bit and
2048-bit integers. For each 8 ≤ n ≤ 24, we generated 10 composite numbers N
randomly (170 composite numbers in total). Then, we generated the quantum
circuit for each N with the optimize_light option, and evaluated the number
of elementary gates and the depth. Here, we used R-ADD since resources become
smaller than others for larger N ’s. Next, we computed the average of resources
for each n. See Appendix 3 for the detailed values from this experiment.
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n = 1024 n = 2048
qubits gates depth qubits gates depth

Kunihiro [12] 3074 2.90× 1011 – 6146 2.32× 1012 –
R-ADD 5121 2.74× 1011 2.20× 1011 10241 2.19× 1012 1.76× 1012

GT-ADD 4098 3.33× 1015 1.02× 1015 8194 1.07× 1017 3.23× 1016

Q-ADD 4098 2.87× 1013 2.43× 1013 8194 4.58× 1014 3.88× 1014

MIX-ADD 4098 1.49× 1013 1.26× 1013 8194 2.37× 1014 2.00× 1014

Table 4: Circuit estimation for factoring 1024/2048-bit integers

From average values for 8 ≤ n ≤ 24, we obtain approximation polynomials

GR-ADD(n) = 254.84981n3 − 338.63513n2 − 177.31878n+ 3112.36316,

DR-ADD(n) = 204.72160n3 − 265.74807n2 − 515.61678n+ 5232.47162,

using least squares method with assuming that G(n) = O(n3) and D(n) =
O(n3). Then, by substituting n = 1024 and n = 2048 to these polynomials,
we obtain approximations as in Table 4. Compared to the estimation by Kuni-
hiro, our estimation decreases by about 5.6% for the number of gates. We do
not discuss the feasibility of such a huge quantum computer, however, if the
quantum circuit for factoring a 2048-bit integer is proceeded by an ideal quan-
tum computer which can proceed the operation in the same speed as Google’s
Sycamore [2], that took 200 seconds to sample 106 times with a circuit with
depth 40, factoring requires about 101.70 days, which seems infeasible by the
current quantum technology.

As in the R-ADD case, we obtain the approximation polynomials for GT-
ADD, Q-ADD and MIX-ADD

GGT-ADD(n) = 2.931n5 + 20.169n4, DGT-ADD(n) = 0.883n5 + 21.875n4,

GQ-ADD(n) = 25.983n4 + 59.060n3, DQ-ADD(n) = 21.993n4 + 44.503n3,

GMIX-ADD(n) = 13.378n4 + 136.287n3, DMIX-ADD(n) = 11.309n4 + 107.630n3,

with assuming that G(n) = O(nk) and D(n) = O(nk) for k = 5, 4, 4, respectively.
Since k is large, we compute the approximation polynomials only in the upper
two degrees. We obtain approximations for n = 1024 and 2048 as in Table 4.
Factoring a 2048-bit composite number requires about 5107, 61.4 and 31.7 years
(GT, Q and MIX-ADD, respectively). MIX-ADD requires less time than GT/Q-
ADD, but more time than R-ADD. However, MIX-ADD is useful in environments
where the number of available qubits is limited since MIX-ADD requires fewer
qubits than R-ADD.

5 Concluding Remarks

In this paper, we have proposed the MIX-ADD method that can flexibly select
the optimal ADD circuit for each of the ADD circuits in the Mod-EXP.
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This method reduces the number of elementary gates and the depth in Shor’s
quantum circuit while maintaining a lower qubit requirement compared to R-
ADD. Next, we have implemented Shor’s algorithm for factoring general compos-
ite numbers using 4 different ADD (R-ADD, GT-ADD, Q-ADD and MIX-ADD),
and successfully factored 96 RSA-type composite numbers up to 9-bit using the
quantum computer simulator developed by Fujitsu. Finally, we have estimated
the number of gates and depth required of Shor’s quantum circuit for larger com-
posite numbers by actually generating quantum circuits, and gave the estimation
for 1024 and 2048-bit integers.

A new finding obtained from our experiments is that the required resources
related to Shor’s algorithm can be evaluated based on actual implementation
rather than theoretical analysis, at least for small parameters, by using the
quantum simulator. The effectiveness of improvements can be assessed through
actual implementation and experiments on quantum simulators.

Our implementations are based on the basic construction of Shor’s quantum
circuit. Future work will involve experiments and resource estimation using ad-
vanced circuits that apply complex techniques to reduce the number of qubits,
as well as under noisy conditions.

Appendix 1. Examples of Greedy Method

Figure 6 shows an example of our greedy method for k = 4, c = 1, and Figure
7 for k = 5, c = 1, 2. The number of Toffoli gates is 6 for k = 4, c = 1, 8 for
k = 5, c = 2, and 10 for k = 5, c = 1, which matches 4k − 8− 2c.

Appendix 2. Effectiveness of Greedy Method

In order to show the superiority of our greedy method, we factored RSA-type
composite numbers up to 7-bit with 1-node, without and with the greedy method
for GT-ADD. Results are summarized in Table 5, where results in the ‘Greedy’
column coincide with the results shown at ‘GT-ADD’ column in Table 2. As
shown in the table, the greedy method reduces the number of gates to about
66–71%, and the depth to about 45–56%. Since the generated Toffoli gates by
the greedy method can be parallelized easily, the effect on the depth is much
larger than that on the number of gates. Our analysis in Section 3.2 shows that
the greedy method reduces the number of gates to about 56.25% (calculated as
3/(16/3)× 100) when n is sufficiently large.

Appendix 3. Data for circuit estimation in Section 4.3

Figure 8 shows the average values and the approximation polynomials described
in Section 4.3. Table 6 summarizes the average values, lowest values, and highest
values for the R-ADD case. There is virtually no difference between them.
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|c1⟩ • • •
|c2⟩ • • • • •
|c3⟩ • • •
|c4⟩ • = • •
|0⟩ • •
|t⟩

Fig. 6: Conversion from a C4-NOT to C2-NOTs with 1 clean qubit

|c1⟩ • • • • •
|c2⟩ • • • • • • •
|c3⟩ • • •
|c4⟩ • = • • • •
|c5⟩ • • •
|0⟩ • •
|t⟩

(a) With 1 clean qubit

|c1⟩ • • •
|c2⟩ • • •
|c3⟩ • • •
|c4⟩ • • • • •
|c5⟩ • = • •
|0⟩ • •
|0⟩ • •
|t⟩

(b) With 2 clean qubits

Fig. 7: Conversion from a C5-NOT to C2-NOTs
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Fig. 8: Average values of the number of gates and the depth of Shor’s circuit for
n-bit integers. The dashed lines represent approximation polynomials.
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Abstract. Along with the possibility of accelerated polynomial multiplication, the Toom-
Cook 𝑘𝑘−way multiplication technique has drawn significant interest in the field of post-
quantum cryptography due to its ability to serve as a part of the lattice-based algorithm.
In contrast, the growing likelihood of attacks based on multiplication, specifically correlation
power analysis attacks, has heightened vulnerability and emphasized the need to examine
the feasibility of employing the polynomial multiplication method as a potential alterna-
tive in the era of post-quantum. This study examines thoroughly an elaborate mathematical
procedure designated as high-degree and half-multiplication, focusing on the design of an
efficient multiplication technique. The proposed polynomial multiplication is intended to be
enhanced in terms of asymptotic performance analysis and quantum resource utilization.
Through the utilization of the Toom-Cook 8.5-way method, we reach the lowest asymp-
totic performance and quantum resources usage for multiplication operation in comparison
to the existing Toom-Cook-based multiplication designs with 186𝑛𝑛log9 17 − 202𝑛𝑛 Toffoli count

and 𝑛𝑛( 179 )1− log 17(2 log 17−log 9) log9 𝑛𝑛 ≈ 𝑛𝑛1.053 Toffoli depth. The designed multiplication yields a qubit count

of 𝑛𝑛( 179 ) log 17(2 log 17−log 9) log9 𝑛𝑛, or approximately 𝑛𝑛1.236. We further compare its asymptotic performance
and quantum resource efficiency to other Toom-Cook-based multiplications to determine its
efficacy.

Keywords: High-degree and half-multiplication · Toom-Cook · Post-Quantum Cryptogra-
phy · Correlation Power Analysis · Quantum

1 Introduction

The Toom-Cook, a method based on [34], [11], is widely acknowledged as an effective approach
for solving large number multiplication algorithms. The approach being referred to is a math-
ematical method employed for the efficient multiplication of polynomials. This method involves
breaking down the multiplication process into smaller multiplications (sub-multiplications) and

⋆ This research was supported by the MSIT (Ministry of Science and ICT), Korea, under the Convergence
Security Core Talent Training Business (Pusan National University), support program (IITP-2023-2022-
0-01201) supervised by the IITP (Institute for Information & Communications Technology Planning
& Evaluation, 50%) and by the Institute for Information & Communications Technology Planning &
Evaluation (IITP) grant funded by the Korea government (MSIT) (No.2019-0-00033, Study on Quantum
Security Evaluation of Cryptography based on Computational Quantum Complexity, 50%)
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additions, thereby minimizing the overall computing complexity. The use of this technique is preva-
lent throughout diverse domains, including computer algebra systems, cryptography, and signal
processing, with the aim of enhancing the efficiency of polynomial multiplication processes.

Besides the number theoretic transform (NTT)-based polynomial multiplication, the Toom-
Cook-based or Karatsuba-based polynomial multiplication algorithms have experienced a resurgence
in popularity after the commencement of the National Institute of Standards and Technology’s
(NIST) post-quantum standardization program [26], [23]. Several studies (i.e., [14], [23], and [26])
have put forth a new approach to Toom-Cook multiplication, taking into account the NIST adoption
of the module learning with errors (MLWE) algorithm, which forms the basis of many lattice-based
cryptography schemes, as the forthcoming standard.

In terms of Toom-Cook multiplication implementation, to optimize performance and reduce im-
plementation costs, Putranto et al. [32] propose employing a Toom-Cook-based multiplier based on
several Toom-Cook calculation strategies, including [7], [35], [13], [21]. The analysis of the asymp-
totic performance of multiplication algorithms and the corresponding costs associated with their
quantum implementation offers effectiveness in multiplication operations and valuable perspectives
on the importance of multiplication algorithms within the realm of post-quantum cryptography
(PQC) and mitigating the risk of side-channel attacks (SCA). Meanwhile, Mera et al. [26], provide
a proposition consisting of two innovative strategies aimed at enhancing the efficiency of polynomial
multiplications based on the Toom-Cook algorithm. These techniques are then implemented within
the Saber post-quantum key encapsulation mechanism.

Recently, the present study [23] investigates the vulnerabilities of the Toom-Cook algorithm in
the reference implementation of the Saber cryptographic scheme. It introduces a novel approach
by conducting a single-trace attack on Toom-Cook, utilizing the soft-analytical side-channel attack
technique. In accordance with this, Mujdei et al. [28] undertook a comparative examination of the
complexity associated with attacking various multiplication schemes, multiplication algorithms, and
parameter selections. This study utilized the correlation power analysis (CPA) technique, which was
first introduced by Brier et al. in their influential paper released in 2004 [10], to prove the existing
Toom-Cook vulnerability, particularly the Toom-Cook 4-way PQC algorithm, against the attacks.

The examination of the feasibility of polynomial multiplication as a prospective alternative
within the context of PQC holds significant importance. Lattice-based cryptographic systems com-
monly employ either the NTT with time complexity of ((𝑛𝑛 log 𝑛𝑛)) [30] or the Toom-Cook/Karatsuba
algorithm with time complexity of ((𝑛𝑛1+𝜖𝜖), where 0 < 𝜖𝜖 < 1), [34], [11], [17], to achieve efficient
polynomial multiplication involving 𝑛𝑛 coefficients [28]. In this paper, we will explore the utilization
of a new and advantageous multiplication operation derived from Toom’s approach, considering
that Toom-Cook-based multiplication, especially degrees up to 4, is part of the lattice-based post-
quantum algorithm approach, which is also associated with attacks. Further, the proposed multipli-
cation is intended to be integrated into a quantum cryptanalysis circuit with the aim of facilitating
an evaluation of post-quantum security.

In this study, we refer to Bodrato’s research on high-degree Toom’n’half balanced and unbalanced
multiplication [8] to elucidate the functioning of Toom’s method for polynomials. To the best of
our knowledge, this study is the first to utilize high-degree and half-multiplication compounds in
quantum circuits, specifically Toom-Cook-based multiplication exceeding 8 degrees. The primary
objective in the design of high-degree and half-multiplication quantum circuits is to reach lower
asymptotic performance analyses and minimize the utilization of quantum resources during the
execution of multiplication operations. The contributions of this paper can be succinctly summarized
as follows:
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1. We elaborate a comprehensive analysis of multiplication strategies (i.e., [35], [22], and [32]), with
a specific emphasis on the high-degree and half-multiplication technique, the Toom-Cook 8.5-
way method. Referring to [8], we conduct computation steps like splitting, evaluation, recursive
multiplication, interpolation, and recomposition in a certain order, to reach the goal of yielding
the best asymptotic performance analysis and the lowest amount of quantum resource use.

2. We design the Toom-Cook 8.5-way multiplier in a quantum environment, yielding the lowest
asymptotic performance analysis for the multiplier and the minimum quantum resource utiliza-

tion with qubit count 𝑛𝑛( 179 ) log 17(2 log 17−log 9) log9 𝑛𝑛 ≈ 𝑛𝑛1.236, 186𝑛𝑛log9 17−202𝑛𝑛 Toffoli count, and 𝑛𝑛( 179 )1− log 17(2 log 17−log 9) log9 𝑛𝑛 ≈𝑛𝑛1.053 Toffoli depth.
3. We then investigate the asymptotic performance and quantum resource use of various multipli-

cation algorithms, namely the näıve schoolbook method, the Karatsuba algorithm, and existing
Toom-Cook-based multiplication up to 8.5 degrees. Additionally, we provide a thorough analysis
and evaluation of various factors, including qubit count, Toffoli count, and Toffoli depth, for the
purpose of assessing the space-time complexity and drawing up a comprehensive comparison
metric to the multiplication operation.

The organization of the paper is as follows: Section 1 provides an overview of the background in-
sights relevant to our work. Section 2 provides a brief overview of high-degree and half-multiplication,
particularly in the context of Toom-Cook-based multiplication. Section 3 outlines a detailed proce-
dure for designing the proposed high-degree and half-multiplication, the Toom-Cook 8.5-way. In Sec-
tion 4, we provide a concise insight into the utilization and underlying principles of multiplication-
based attacks with CPA and address multiplication usage in cryptanalysis circuits that led to a
post-quantum security evaluation. In Section 5, we analyze and compare the computational com-
plexity in terms of space and time for designs involving proposed multiplication. Future work
discussion and conclusions are formulated in Section 6 and Section 7.

2 High-degree and half-Multiplication

The Schoolbook Multiplication algorithm, which has a time complexity of (𝑛𝑛2), is considered
the most basic and straightforward approach for multiplying polynomials of degree 𝑛𝑛, which is
equivalent to a variant of the Toom-Cook 1-way algorithm. Meanwhile, the Karatsuba algorithm can
be considered a variant of the Toom-Cook 2-way algorithm, in which the original number is divided
into two smaller sub-numbers. The reduction of four multiplications to three results in the Karatsuba
method yield efficiency compared to naive with a complexity value of (𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙(3)/𝑙𝑙𝑙𝑙𝑙𝑙(2)) ≡ (𝑛𝑛1.58).

The Toom-Cook algorithm, specifically the Toom-Cook 𝑘𝑘-way algorithm for multiplication, is a
divide-and-conquer approach that bears resemblance to Karatsuba multiplication. However, unlike
Karatsuba multiplication which divides each polynomial into two equal parts during each recursive
step, the Toom-Cook 𝑘𝑘-way multiplication divides two large integers 𝑓𝑓 and 𝑙𝑙 into 𝑘𝑘 smaller parts,
each with a length of 𝑙𝑙. In general, the time complexity of the Toom-Cook 𝑘𝑘−way algorithm can be
expressed as (𝑐𝑐(𝑘𝑘)𝑛𝑛𝑒𝑒), where 𝑒𝑒 is calculated as the logarithm of (2𝑘𝑘 − 1) divided by the logarithm
of 𝑘𝑘. The term 𝑛𝑛𝑒𝑒 represents the time spent on sub-multiplications, while 𝑐𝑐 denotes the time spent
on additions and multiplication by small constants.

The computational procedures encompass many steps such as splitting, evaluation, recursive
multiplication, interpolation, and recomposition, which have already received extensive study in
other works ( [8, 13, 21, 32, 35]). This study concentrates its attention on effective multiplication,
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specifically exploring its complexity before delving into the realm of quantum circuits for high-degree
and half-multiplication in quantum architecture.

In the first step in Toom’s splitting step, in order to divide a given quantity into 𝑘𝑘 segments
using Toom’s 𝑘𝑘−way algorithm, it is necessary to choose a base 𝐵𝐵 = 𝑏𝑏𝑖𝑖 that satisfies the condition
where the number of integer digits both 𝑚𝑚 and 𝑛𝑛 when expressed in base 𝐵𝐵 does not exceed 𝑘𝑘. A
commonly selected option for the variable 𝑖𝑖 is provided by Equation 1, then, the variables 𝑚𝑚 and 𝑛𝑛
are partitioned into their respective base 𝐵𝐵 digits, denoted as 𝑚𝑚𝑖𝑖 and 𝑛𝑛𝑖𝑖.

𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚{⌊⌈log𝑏𝑏 𝑚𝑚⌉𝑘𝑘𝑚𝑚 ⌋, ⌊⌈log𝑏𝑏 𝑛𝑛⌉𝑘𝑘𝑛𝑛 ⌋}+1 (1)

Subsequently, the aforementioned digits are employed as coefficients in polynomials 𝑝𝑝 and 𝑞𝑞
of degree (𝑘𝑘 − 1), satisfying the condition that 𝑝𝑝(𝐵𝐵) equals 𝑚𝑚 and 𝑞𝑞(𝐵𝐵) equals 𝑛𝑛. The rationale for
the defining of these polynomials lies in the fact that by calculating their product, denoted as𝑟𝑟(𝑚𝑚) = 𝑝𝑝(𝑚𝑚)𝑞𝑞(𝑚𝑚), the resulting value 𝑟𝑟(𝐵𝐵) will correspond to the multiplication of 𝑚𝑚 x 𝑛𝑛.

In the case where the multiplicands have different magnitudes, it is advantageous to employ
different values of 𝑘𝑘 for 𝑚𝑚 and 𝑛𝑛, denoted as 𝑘𝑘𝑚𝑚 and 𝑘𝑘𝑛𝑛. An instance in this condition is the high-
degree and half-multiplication Toom-Cook 𝑘𝑘−way ; for example (using terminology, high-degree
and half-multiplication), Toom-Cook 8.5-way corresponds to the Toom-Cook algorithm with the
specific values of 𝑘𝑘𝑚𝑚 = 9 and 𝑘𝑘𝑛𝑛 = 8. In this particular scenario, the selection of the variable 𝑖𝑖 in the
equation 𝐵𝐵 = 𝑏𝑏𝑖𝑖 is commonly determined by Equation 1.

3 Quantum Toom-Cook 8.5-way Multiplier Design

Zanoni et al. [35] introduce a conventional computational implementation of a balanced Toom-Cook
8-way algorithm for the purpose of integer multiplication and squaring. The authors successfully
achieved a degree of 7 in their Toom-Cook-based multiplication version. In their comprehensive
study, Dutta et al. [13] provide an in-depth elucidation of the Toom-Cook 2.5-way technique em-
ployed in the realm of quantum computing. The authors primarily concentrate on the identification
of the maximum count of Toffoli gates and qubits attainable by means of a rigorous examination
of the recursive tree inherent to the algorithm.

The research undertaken by Larasati et al. [21] shows findings that demonstrate the possibility
of the 𝑘𝑘−way Toom-Cook method, which employs higher-order polynomial interpolation, to exhibit
lower asymptotic complexity in comparison to alternative approaches such as Toom-Cook 2.5-way.
In their study, Larasati et al. [21] expound upon the Toom-Cook 3-way algorithm by incorporating
the division gate. They augment their analysis by drawing upon the research conducted by Bodrato
et al. [7], resulting in a singular instance of accurate division by three circuits in every iteration.
Moreover, the cost related to the remaining division was reduced by the usage of the circuit’s
unique properties. The aforementioned accomplishment was attained through the use of a circuit
that employs a constant multiplication by reciprocal technique, complemented with the requisite
swap operations [21].

Referring to [32], the following part provides a detailed description of the sequential procedure for
implementing our quantum Toom-Cook 8.5-way Multiplication algorithm, while also highlighting
the distinctions between this approach and the Toom-Cook 8-way multiplication method for the
purpose of clarification. The comparison between the recursion tree structures of Toom-Cook 8-
way and Toom-Cook 8.5-way is depicted in Figure 1. In the present context, Figure 2 draws a
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Fig. 1: The Toom-Cook 8-way and 8.5-way Multiplication Recursion Tree Structure, where 𝑇𝑇 rep-
resents the Toom-Cook 𝑘𝑘−way Multiplication and 𝑛𝑛 and 𝑁𝑁 represent the bit length for each level
and the overall depth of the tree, respectively.

comparative analysis of quantum circuits pertaining to the multiplications of Toom-Cook 8-way
and Toom-Cook 8.5-way.

3.1 Computation Steps

Focusing on the Toom-Cook 8.5-way strategy design, this work explains and undertakes a thorough
investigation of high-degree and half-multiplication methods based on the Toom-Cook algorithm
within the context of polynomial multiplication. We incorporate several prior research findings,
including [32], and [8]. The processes of computation include splitting, evaluation, recursive multi-
plication, interpolation, and recomposition, as discussed in previous studies [35], [8], [22], [32]. To
offer a succinct explanation of the approach, the quantities to be multiplied, referred to as the input
operands, are represented by the variables 𝑥𝑥 and 𝑦𝑦. The variable 𝑥𝑥 is used to represent the complete
numerical input. The subscripts 𝑥𝑥0, 𝑥𝑥1, 𝑥𝑥−1, 𝑥𝑥−2,… are used to signify the individual components of
the input. On the other hand, the notations 𝑥𝑥(0), 𝑥𝑥(1), 𝑥𝑥(−1), 𝑥𝑥(−2),… are employed to indicate the
results obtained by evaluating the variable 𝑥𝑥 at certain places.

Splitting. As shown by Equations 2 and 3, the specified inputs, denoted as 𝑥𝑥 and 𝑦𝑦, are divided
into eight smaller pieces of length 𝑛𝑛8 . The radix 𝑗𝑗 in the equations can be determined in advance
through the calculation of Equation 4.𝑥𝑥 = 𝑥𝑥7𝑠𝑠7𝑗𝑗 + 𝑥𝑥6𝑠𝑠6𝑗𝑗 + 𝑥𝑥5𝑠𝑠5𝑗𝑗 + 𝑥𝑥4𝑠𝑠4𝑗𝑗 + 𝑥𝑥3𝑠𝑠3𝑗𝑗 + 𝑥𝑥2𝑠𝑠2𝑗𝑗 + 𝑥𝑥1𝑠𝑠𝑗𝑗 + 𝑥𝑥0 (2)

𝑦𝑦 = 𝑦𝑦8𝑠𝑠8𝑗𝑗 + 𝑦𝑦7𝑠𝑠7𝑗𝑗 + 𝑦𝑦6𝑠𝑠6𝑗𝑗 + 𝑦𝑦5𝑠𝑠5𝑗𝑗 + 𝑦𝑦4𝑠𝑠4𝑗𝑗 + 𝑦𝑦3𝑠𝑠3𝑗𝑗 + 𝑦𝑦2𝑠𝑠2𝑗𝑗 + 𝑦𝑦1𝑠𝑠𝑗𝑗 + 𝑦𝑦0 (3)

𝑗𝑗 = 𝑚𝑚𝑚𝑚𝑥𝑥{⌊⌈log2 𝑥𝑥⌉9 ⌋, ⌊⌈log2 𝑦𝑦⌉8 ⌋}+1 (4)
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Fig. 2: Quantum Circuits Comparison for the Toom-Cook 8-way and Toom-Cook 8.5-way Multipli-
cation Algorithms. The function block boxes serve as representations of the individual steps involved
in constructing the Toom-Cook quantum circuit. The quantum circuit utilized in the multiplication
algorithm uses red triangles to denote the input and output of each respective operation within the
function blocks. A notation symbol is employed to denote the quantum state of the input, with each
line representing a required register in the quantum circuit. The presence of triangles positioned on
the left side of a block serves to highlight the location of its input entry point. The output location
on the right side is symbolized by triangles. To maintain simplicity, the ancilla registers are omitted
from the display.
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𝐹𝐹 = 𝑥𝑥0𝑦𝑦0𝐺𝐺 = (𝑥𝑥7 + 𝑥𝑥6 + 𝑥𝑥5 + 𝑥𝑥4 + 𝑥𝑥3 + 𝑥𝑥2 + 𝑥𝑥1 + 𝑥𝑥0)(𝑦𝑦8 + 𝑦𝑦7 + 𝑦𝑦6 + 𝑦𝑦5 + 𝑦𝑦4 + 𝑦𝑦3 + 𝑦𝑦2 + 𝑦𝑦1 + 𝑦𝑦0)𝐻𝐻 = (−𝑥𝑥7 + 𝑥𝑥6 − 𝑥𝑥5 + 𝑥𝑥4 − 𝑥𝑥3 + 𝑥𝑥2 − 𝑥𝑥1 + 𝑥𝑥0)(𝑦𝑦8 + −𝑦𝑦7 + 𝑦𝑦6 − 𝑦𝑦5 + 𝑦𝑦4 − 𝑦𝑦3 + 𝑦𝑦2 − 𝑦𝑦1 + 𝑦𝑦0)𝐼𝐼 = (128𝑥𝑥7 + 64𝑥𝑥6 + 32𝑥𝑥5 + 16𝑥𝑥4 + 8𝑥𝑥3 + 4𝑥𝑥2 + 2𝑥𝑥1 + 𝑥𝑥0)(256𝑦𝑦8 + 128𝑦𝑦7 + 64𝑦𝑦6 + 32𝑦𝑦5 + 16𝑦𝑦4 + 8𝑦𝑦3 + 4𝑦𝑦2 + 2𝑦𝑦1 + 𝑦𝑦0)𝐽𝐽 = (−128𝑥𝑥7 + 64𝑥𝑥6 − 32𝑥𝑥5 + 16𝑥𝑥4 − 8𝑥𝑥3 + 4𝑥𝑥2 − 2𝑥𝑥1 + 𝑥𝑥0)(256𝑦𝑦8 + −128𝑦𝑦7 + 64𝑦𝑦6 − 32𝑦𝑦5 + 16𝑦𝑦4 − 8𝑦𝑦3 + 4𝑦𝑦2 − 2𝑦𝑦1 + 𝑦𝑦0)𝐾𝐾 = (16384𝑥𝑥7 + 4096𝑥𝑥6 + 1024𝑥𝑥5 + 256𝑥𝑥4 + 64𝑥𝑥3 + 16𝑥𝑥2 + 4𝑥𝑥1 + 𝑥𝑥0)(65536𝑦𝑦8 + 16384𝑦𝑦7 + 4096𝑦𝑦6 + 1024𝑦𝑦5 + 256𝑦𝑦4 + 64𝑦𝑦3 + 16𝑦𝑦2 + 4𝑦𝑦1 + 𝑥𝑥0)𝐿𝐿 = (−16384𝑥𝑥7 + 4096𝑥𝑥6 − 1024𝑥𝑥5 + 256𝑥𝑥4 − 64𝑥𝑥3 + 16𝑥𝑥2 − 4𝑥𝑥1 + 𝑥𝑥0)(65536𝑦𝑦8 − 16384𝑦𝑦7 + 4096𝑦𝑦6 − 1024𝑦𝑦5 + 256𝑦𝑦4 − 64𝑦𝑦3 + 16𝑦𝑦2 − 4𝑦𝑦1 + 𝑥𝑥0)𝑀𝑀 = (2097152𝑥𝑥7 + 262144𝑥𝑥6 + 32768𝑥𝑥5 + 4096𝑥𝑥4 + 512𝑥𝑥3 + 64𝑥𝑥2 + 8𝑥𝑥1 + 𝑥𝑥0)(16777216𝑦𝑦8 + 2097152𝑦𝑦7 + 262144𝑦𝑦6 + 32768𝑦𝑦5 + 4096𝑦𝑦4 + 512𝑦𝑦3 + 64𝑦𝑦2 + 8𝑦𝑦1 + 𝑦𝑦0)𝑁𝑁 = (−2097152𝑥𝑥7 + 262144𝑥𝑥6 − 32768𝑥𝑥5 + 4096𝑥𝑥4 − 512𝑥𝑥3 + 64𝑥𝑥2 − 8𝑥𝑥1 + 𝑥𝑥0)(16777216𝑦𝑦8 + −2097152𝑦𝑦7 + 262144𝑦𝑦6 − 32768𝑦𝑦5 + 4096𝑦𝑦4 − 512𝑦𝑦3 + 64𝑦𝑦2 − 8𝑦𝑦1 + 𝑦𝑦0)𝑂𝑂 = (268435456𝑥𝑥7 + 16777216𝑥𝑥6 + 1048576𝑥𝑥5 + 65536𝑥𝑥4 + 4096𝑥𝑥3 + 256𝑥𝑥2 + 16𝑥𝑥1 + 𝑥𝑥0)(4294967296𝑦𝑦8 + 268435456𝑦𝑦7 + 16777216𝑦𝑦6 + 1048576𝑦𝑦5 + 65536𝑦𝑦4 + 4096𝑦𝑦3 + 256𝑦𝑦2 + 16𝑦𝑦1 + 𝑦𝑦0)𝑃𝑃 = (−268435456𝑥𝑥7 + 16777216𝑥𝑥6 − 1048576𝑥𝑥5 + 65536𝑥𝑥4 − 4096𝑥𝑥3 + 256𝑥𝑥2 − 16𝑥𝑥1 + 𝑥𝑥0)(4294967296𝑦𝑦8 − 268435456𝑦𝑦7 + 16777216𝑦𝑦6 − 1048576𝑦𝑦5 + 65536𝑦𝑦4 − 4096𝑦𝑦3 + 256𝑦𝑦2 − 16𝑦𝑦1 + 𝑦𝑦0)𝑄𝑄 = (0.0078125𝑥𝑥7 + 0.015625𝑥𝑥6 + 0.03125𝑥𝑥5 + 0.0625𝑥𝑥4 + 0.125𝑥𝑥3 + 0.25𝑥𝑥2 + 0.5𝑥𝑥1 + 𝑥𝑥0)(0.00390625𝑦𝑦8 + 0.0078125𝑦𝑦7 + 0.015625𝑦𝑦6 + 0.03125𝑦𝑦5 + 0.0625𝑦𝑦4 + 0.125𝑦𝑦3 + 0.25𝑦𝑦2 + 0.5𝑦𝑦1 + 𝑦𝑦0)𝑅𝑅 = (−0.0078125𝑥𝑥7 + 0.015625𝑥𝑥6 − 0.03125𝑥𝑥5 + 0.0625𝑥𝑥4 − 0.125𝑥𝑥3 + 0.25𝑥𝑥2 − 0.5𝑥𝑥1 + 𝑥𝑥0)(0.00390625𝑦𝑦8 − 0.0078125𝑦𝑦7 + 0.015625𝑦𝑦6 − 0.03125𝑦𝑦5 + 0.0625𝑦𝑦4 − 0.125𝑦𝑦3 + 0.25𝑦𝑦2 − 0.5𝑦𝑦1 + 𝑦𝑦0)𝑆𝑆 = (0.00006103515625𝑥𝑥7 + 0.000244140625𝑥𝑥6 + 0.0009765625𝑥𝑥5 + 0.00390625𝑥𝑥4 + 0.015625𝑥𝑥3 + 0.0625𝑥𝑥2 + 0.25𝑥𝑥1 + 𝑥𝑥0)(0.0000152587890625𝑦𝑦8 + 0.00006103515625𝑦𝑦7 + 0.000244140625𝑦𝑦6 + 0.0009765625𝑦𝑦5 + 0.00390625𝑦𝑦4 + 0.015625𝑦𝑦3 + 0.0625𝑦𝑦2+ 0.25𝑦𝑦1 + 𝑦𝑦0)𝑇𝑇 = (−0.00006103515625𝑥𝑥7 + 0.000244140625𝑥𝑥6 − 0.0009765625𝑥𝑥5 + 0.00390625𝑥𝑥4 − 0.015625𝑥𝑥3 + 0.0625𝑥𝑥2 − 0.25𝑥𝑥1 + 𝑥𝑥0)(0.0000152587890625𝑦𝑦8 − 0.00006103515625𝑦𝑦7 + 0.000244140625𝑦𝑦6 − 0.0009765625𝑦𝑦5 + 0.00390625𝑦𝑦4 − 0.015625𝑦𝑦3 + 0.0625𝑦𝑦2− 0.25𝑦𝑦1 + 𝑦𝑦0)𝑈𝑈 = (0.000000476837158203125𝑥𝑥7 + 0.000003814697265625𝑥𝑥6 + 0.000030517578125𝑥𝑥5 + 0.000244140625𝑥𝑥4 + 0.001953125𝑥𝑥3+ 0.015625𝑥𝑥2 + 0.125𝑥𝑥1 + 𝑥𝑥0)(0.0000000596046447753906𝑦𝑦8 + 0.000000476837158203125𝑦𝑦7 + 0.000003814697265625𝑦𝑦6+ 0.000030517578125𝑦𝑦5 + 0.000244140625𝑦𝑦4 + 0.001953125𝑦𝑦3 + 0.015625𝑦𝑦2 + 0.125𝑦𝑦1 + 𝑦𝑦0)𝑉𝑉 = (−0.000000476837158203125𝑥𝑥7 + 0.000003814697265625𝑥𝑥6 − 0.000030517578125𝑥𝑥5 + 0.000244140625𝑥𝑥4 − 0.001953125𝑥𝑥3+ 0.015625𝑥𝑥2 − 0.125𝑥𝑥1 + 𝑥𝑥0)(0.0000000596046447753906𝑦𝑦8 − 0.000000476837158203125𝑦𝑦7 + 0.000003814697265625𝑦𝑦6− 0.000030517578125𝑦𝑦5 + 0.000244140625𝑦𝑦4 − 0.001953125𝑦𝑦3 + 0.015625𝑦𝑦2 − 0.125𝑦𝑦1 + 𝑦𝑦0)
(5)

Evaluation. We employ 𝑥𝑥1 = 0, 𝑥𝑥2 = 1, 𝑥𝑥3 = −1, 𝑥𝑥4 = 2, 𝑥𝑥5 = −2, 𝑥𝑥6 = 4, 𝑥𝑥7 = −4, 𝑥𝑥8 = 8,𝑥𝑥9 = −8, 𝑥𝑥10 = 16, 𝑥𝑥11 = −16, 𝑥𝑥12 = 0.5, 𝑥𝑥13 = −0.5, 𝑥𝑥14 = 0.25, 𝑥𝑥15 = −0.25, 𝑥𝑥16 = −0.125, and
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𝑥𝑥17 = −0.125 to obtain 𝑥𝑥(0), 𝑥𝑥(1), 𝑥𝑥(−1), 𝑥𝑥(2), 𝑥𝑥(−2), 𝑥𝑥(4), 𝑥𝑥(−4), 𝑥𝑥(8), 𝑥𝑥(−8), 𝑥𝑥(16), 𝑥𝑥(−16), 𝑥𝑥(0.5),𝑥𝑥(−0.5), 𝑥𝑥(0.25), 𝑥𝑥(−0.25), 𝑥𝑥(0.125) and 𝑥𝑥(−0.125) for the evaluating points 𝑥𝑥 and 𝑦𝑦, each of the 17
predefined evaluation points. Figure 3 and Figure 4 illustrate the evaluation points x and y for
the evaluation stage in the Toom-Cook 8.5-way multiplications design. The exact equation for the
evaluation points 𝑥𝑥(0), 𝑥𝑥(1), 𝑥𝑥(−1), 𝑥𝑥(2), 𝑥𝑥(−2), 𝑥𝑥(4), 𝑥𝑥(−4), 𝑥𝑥(8), 𝑥𝑥(−8), 𝑥𝑥(16), 𝑥𝑥(−16), 𝑥𝑥(0.5), 𝑥𝑥(−0.5),𝑥𝑥(0.25), 𝑥𝑥(−0.25), 𝑥𝑥(0.125) and 𝑥𝑥(−0.125) is not included in this work. However, it can be inferred
from the evaluation multiplication equation, Equation 5.

Recursive Multiplication. A single iteration of non-recursive point-wise multiplication for Toom-
Cook 8.5-way multiplication utilizes a total of 17 multiplications, each with smaller bit lengths. To
multiply each component of 𝑥𝑥(0), 𝑥𝑥(1), 𝑥𝑥(−1), 𝑥𝑥(2), 𝑥𝑥(−2), 𝑥𝑥(4), 𝑥𝑥(−4), 𝑥𝑥(8), 𝑥𝑥(−8), 𝑥𝑥(16), 𝑥𝑥(−16),𝑥𝑥(0.5), 𝑥𝑥(−0.5), 𝑥𝑥(0.25), 𝑥𝑥(−0.25), 𝑥𝑥(0.125) and 𝑥𝑥(−0.125), the result is expressed in Equation 5, denoted
as 𝐹𝐹 , 𝐺𝐺, 𝐻𝐻 , 𝐼𝐼 , 𝐽𝐽 , 𝐾𝐾 , 𝐿𝐿, 𝑀𝑀, 𝑁𝑁 , 𝑂𝑂, 𝑃𝑃 , 𝑄𝑄, 𝑅𝑅, 𝑆𝑆, 𝑇𝑇 , 𝑈𝑈 , and 𝑉𝑉 , respectively.
Interpolation. The process of interpolation can be represented mathematically using a matrix,
which is the opposite process of multiplying a point, as demonstrated in Equation 6. It needs to be
noticed that, in the aforementioned procedure, an inverse matrix derived from the sub-multiplication
of coefficients (𝑘𝑘0 … 𝑘𝑘16) in Equation 5 is employed. To facilitate comprehension, the inverse matrix
is represented as described in Equation 6.

Recomposition The recomposition from the interpolation result is indicated as 𝑉𝑉𝑉𝑉 , 𝑈𝑈𝑈𝑈 , 𝑇𝑇 𝑇𝑇 , 𝑆𝑆𝑆𝑆,𝑅𝑅𝑅𝑅, 𝑄𝑄𝑄𝑄, 𝑃𝑃𝑃𝑃 , 𝑂𝑂𝑂𝑂, 𝑁𝑁𝑁𝑁 , 𝑀𝑀𝑀𝑀, 𝐿𝐿𝐿𝐿, 𝐾𝐾𝐾𝐾 , 𝐽𝐽 𝐽𝐽 , 𝐼𝐼 𝐼𝐼 , 𝐻𝐻𝐻𝐻 , 𝐺𝐺𝐺𝐺, and 𝐹𝐹𝐹𝐹 in Equation 7 below. The final product
of Toom-Cook 8.5-way multiplication is the 𝑥𝑥𝑦𝑦 Equation.⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑉𝑉𝑉𝑉𝑇𝑇 𝑇𝑇𝑆𝑆𝑆𝑆𝑅𝑅𝑅𝑅𝑄𝑄𝑄𝑄𝑃𝑃𝑃𝑃𝑂𝑂𝑂𝑂𝑁𝑁𝑁𝑁𝑀𝑀𝑀𝑀𝐿𝐿𝐿𝐿𝐾𝐾𝐾𝐾𝐽𝐽 𝐽𝐽𝐼𝐼 𝐼𝐼𝐻𝐻𝐻𝐻𝐺𝐺𝐺𝐺𝐹𝐹𝐹𝐹

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 ⋯ 0 0⋮ ⋯ ⋯ ⋯ ⋮⋮ ⋱ ⋱ ⋱ ⋮⋮ ⋱ ⋱ ⋱ ⋮⋮ ⋱ ⋱ ⋱ ⋮⋮ ⋱ ⋱ ⋱ ⋮⋮ ⋱ ⋱ ⋱ ⋮⋮ ⋱ ⋱ ⋱ ⋮⋮ ⋯ ⋯ ⋯ ⋮0 0 ⋯ 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐹𝐹𝐺𝐺𝐻𝐻𝐼𝐼𝐽𝐽𝐾𝐾𝐿𝐿𝑀𝑀𝑁𝑁𝑂𝑂𝑃𝑃𝑄𝑄𝑅𝑅𝑆𝑆𝑇𝑇𝑈𝑈

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6)

𝑥𝑥𝑦𝑦 = 𝐹𝐹𝐹𝐹216𝑗𝑗 + 𝐺𝐺𝐺𝐺215𝑗𝑗 + 𝐻𝐻𝐻𝐻214𝑗𝑗 + 𝐼𝐼 𝐼𝐼213𝑗𝑗 + 𝐽𝐽 𝐽𝐽212𝑗𝑗 + 𝐾𝐾𝐾𝐾211𝑗𝑗 + 𝐿𝐿𝐿𝐿210𝑗𝑗 +𝑀𝑀𝑀𝑀29𝑗𝑗+ 𝑁𝑁𝑁𝑁28𝑗𝑗 + 𝑂𝑂𝑂𝑂27𝑗𝑗 + 𝑃𝑃𝑃𝑃26𝑗𝑗 + 𝑄𝑄𝑄𝑄25𝑗𝑗 + 𝑅𝑅𝑅𝑅24𝑗𝑗 + 𝑆𝑆𝑆𝑆23𝑗𝑗 + 𝑇𝑇 𝑇𝑇 22𝑗𝑗 + 𝑈𝑈𝑈𝑈2𝑗𝑗 + 𝑉𝑉𝑉𝑉 (7)
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4 Toom-Cook-Based Polynomial Multiplication in the Post-Quantum

Numerous investigations have been conducted pertaining to the enhancement of public-key cryp-
tosystems, aiming to protect against potential attacks deriving from both classical and quantum
computing paradigms. The period characterized by the need for quantum-resistant encryption is
commonly denoted as the PQC era, as elucidated in [1]. According to the NIST PQC standard-
ization process, the two main algorithms that are suggested for a range of applications, including
digital signatures, are Crystals-Kyber [9] for public-key setup and Crystals-Dilithium [25] Lattice-
based encryption is expected to exhibit optimal efficiency and resilience against quantum attacks,
rendering it a feasible solution within the domain of PQC and appears to be the most rapid im-
plementation as in [27] [24] [6] [5]. Dilithium, Falcon, FrodoKEM, Kyber, NTRU, NTRU Prime,
and Saber are seven of the fifteen candidates in the NIST third round that use lattice-based cryp-
tography [1]. In this subsection, we present a brief example of the usage and implementation of
Toom-Cook-based multiplication in the Saber and Kyber PQC algorithm, as well as the potential
vulnerability that arises from the utilization of lower-degree multiplication.

The primary focus of public key cryptography (PKC) implementation is on compactness, power
efficiency, and energy consumption, with a secondary consideration given to throughput or de-
lay [14]. This is due to its main purpose of generating shared secret keys. While the majority
of other research concentrates on optimizing NTT-based multiplications, [14] research optimizes
a Toom-Cook-based multiplier to an exceptional degree. A memory-efficient striding Toom-Cook
with delayed interpolation yields a highly compact, low-power implementation that allows for a
very regular memory access scheme. They demonstrate the multiplier’s effectiveness and integrate
it into one of the four NIST finalists, the Saber post-quantum accelerator. The results of the runtime
analysis for a post-quantum lattice-based cryptographic algorithm, specifically a key encapsulation
mechanism, are displayed in Figure 5. In this figure, our focus is solely on the Kyber algorithm.
The analysis is conducted by comparing the algorithm’s runtime behavior and memory consumption
statistics, as documented in the work by Mujdei et al. [28].

Polynomial multiplications, such as Toom-Cook and NTT, play a crucial role in lattice-based
post-quantum encryption by serving as the essential constituents. Lattice-based cryptographic sys-
tems commonly employ either the NTT with time complexity of ((𝑛𝑛 log 𝑛𝑛)) [30] or the Toom-
Cook/Karatsuba algorithm with time complexity of ((𝑛𝑛1+𝜖𝜖), where 0 < 𝜖𝜖 < 1), [34] [11] [17], to
achieve efficient polynomial multiplication involving 𝑛𝑛 coefficients [28]. These multiplications fa-
cilitate the division of the resultant sub-polynomial, as highlighted in [28]. The Saber algorithm
employs an additional division of the resultant sub-polynomials into two Karatsuba layers, followed
by the execution of a 16-coefficient schoolbook operation [28]. Figure 6 displays an image that por-
trays an occurrence of Toom-Cook-based multiplication executed within the Saber structures. We
redraw from the work of Mera et al. [26] to demonstrate the application of the Toom-Cook 4-way
method in the implementation of the Saber post-quantum cryptography algorithm.

The exploitation of side-channel information, such as power consumption, electromagnetic ra-
diation, and execution time, has been shown to be a method for gaining unauthorized access to
sensitive data [19]. CPA is widely recognized as a very effective technique that leverages the corre-
lation between a device’s power consumption and the data it is processing. This approach exploits
power fluctuations that are caused by mathematical processes such as multiplication. Hence, the
evaluation of potential risks associated with multiplication exploitation in side-channel analysis
attacks, particularly when utilizing the CPA approach, is crucial during the construction of cryp-
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Fig. 5: Runtime analysis of Open Quantum Safe Lattice-based Cryptographic algorithms (Key
Encapsulation Mechanisms)

Fig. 6: The Toom-Cook 4-way and Karatsuba Multiplication used in Saber Post-Quantum Cryp-
tography Algorithm
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tographic algorithms. This concern arises due to the frequent use of arithmetic multiplication as a
sub-operation multiplier in real implementations.

The architectural design of all NTRU versions exhibits a common structure, characterized by the
presence of four Karatsuba layers, with the exception of 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2048509, which features three lay-
ers [28]. Further, variations in the schoolbook thresholds are observed [28]. Mujdei et al. conducted
an experimental analysis to investigate the potential occurrence of CPA peaks when employing the
schoolbook sub-operation in the processing of 3-way and 4-way Toom-Cook within the lattice-based
PQC algorithm. The post-quantum algorithm 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛4096821 elaborated in [28], can be subjected
to a multiplication-based attack utilizing side-channel measurements. Mujdei et al. study encom-
passes an examination of the variance plot of 500 instances of schoolbook multiplication, wherein
a comprehensive analysis reveals the identification of a total of 72 apparent peaks. These peaks are
specifically associated with the targeted algorithm as described in the work by [28].

PQC refers to a collection of cryptographic methods, specifically algorithms developed for the
purpose of public key encapsulation, that are widely acknowledged for their ability to withstand
possible attacks from quantum computers. The main goal of PQC is to strengthen and optimize
mathematical methods and standards in anticipation of the emergence of quantum computing.
Proficiency in mathematical approaches is essential for the development of PQC algorithms that
can effectively withstand SCA. Furthermore, the utilization of effective mathematical techniques
is imperative in the construction of quantum circuits, which can be employed for the creation
of cryptanalysis circuits. The primary function of these cryptanalysis circuits is to evaluate the
resilience of a method.

Efficient arithmetic operations, particularly multiplication, play a vital role in conducting com-
prehensive investigations within the domain of quantum-based cryptanalysis. According to Roche
[33], Parent et al. [29], Gidney [15], Banegas et al. [3], and Putranto et al. [32], [31], the develop-
ment of a fundamental arithmetic constructor that demonstrates efficiency in terms of space use
and time consumption is crucial for expediting the cryptanalysis process. The primary objective of
these investigations is to reduce the complexity that is typically encountered during the execution
of quantum cryptanalysis. The efficacy of basic mathematical operations, particularly multiplica-
tion, can significantly impact the predictive analysis of the utilization of multiplication inside the
lattice-based PQC algorithm, as well as the quantum computer’s ability to solve conventional public
key cryptography through cryptanalysis, which further leads to post-quantum security evaluation.

5 Complexity Analysis of High-degree and half-Multiplication

5.1 Toffoli Gate Count

The variable 𝑇𝑇𝑛𝑛 is used to represent the cost incurred when performing multiplication on two larger𝑛𝑛-bit quantities utilizing the Toom-Cook multiplier. Thus, 𝐴𝐴𝑛𝑛 denotes the cost associated with the
addition or substracting of 𝑛𝑛 bits. To implement a 𝑛𝑛-bit Toom-Cook 8.5-way multiplication, it is
necessary to perform a total of 17 operations involving 𝑛𝑛9 submultiplications and three types of
adders with different lengths. These adders consist of 46 operations for 𝑛𝑛9 -bit adders, 272 operations
for 2𝑛𝑛9 -bit adders. The Toffoli cost of an n-bit Toom-Cook 8.5-way multiplication can be determined
by employing the equation referenced as Equation 8. Furthermore, the cost increases to 9 for
recursive implementations, and Equation 10 becomes equivalent when the Toffoli cost of 𝐴𝐴𝑛𝑛 = 2𝑛𝑛 is
substituted. 𝑇𝑇𝑛𝑛 = 17𝑇𝑇 𝑛𝑛9 + 46𝐴𝐴𝑛𝑛9 + 272𝐴𝐴𝑛𝑛9 (8)
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𝑇𝑇𝑛𝑛 = 17log9 𝑛𝑛𝑇𝑇1 + 46(𝐴𝐴𝑛𝑛9 + 23𝐴𝐴 𝑛𝑛81 +⋯ + 23log9(𝑛𝑛)−1𝐴𝐴1)+ 272(𝐴𝐴2𝑛𝑛9 + 136𝐴𝐴2𝑛𝑛81 +⋯ + 95log9(𝑛𝑛)−1𝐴𝐴2) (9)

𝑇𝑇𝑛𝑛 = 17log9 𝑛𝑛 + log9(𝑛𝑛)−1∑𝑖𝑖=0 [92𝑛𝑛(179 )𝑖𝑖] (10)

By utilizing the geometric series calculation ∑𝑚𝑚−1𝑖𝑖=0 𝑟𝑟 𝑖𝑖 = 1−𝑟𝑟𝑚𝑚1−𝑟𝑟 , it is possible to determine the Toffoli
cost of a recursive implementation, as denoted by Equation 11. The result obtained from Equation 11
does not consider the typical uncomputation procedure carried out in a quantum environment. The
strategy mentioned in this study is also discussed in previous research conducted by [29], [13], [21],
and Putranto et al [32]. Equation 12 in this study incorporates the concept of uncomputed process to
prevent a significant increase in the previously determined cost. It is important to acknowledge that
the definition of ”clean cost” used in the subsequent equation aligns with Larasati et al.’s [21]and
Putranto et al.’s [32] definitions.

𝑇𝑇𝑛𝑛 = 17log9 𝑛𝑛 + 92𝑛𝑛(1 − ( 179 )log9 𝑛𝑛1 − ( 179 ) )
= 𝑛𝑛log9 17 + 92𝑛𝑛(1 − 𝑛𝑛log9( 179 )1 − ( 179 ) )= 93𝑛𝑛log9 17 − 101𝑛𝑛

(11)

𝑇𝑇𝑛𝑛(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛) = 186𝑛𝑛log9 17 − 202𝑛𝑛 (12)

5.2 Space-Time Complexity Analysis

Bennett in [4] introduced the technique for measuring asymptotic performance improvements in
the context of space consumption in the context of space-time complexity analysis. This technique
is utilized extensively in reversible computing, which makes time and space complexity analysis
possible and enables time-efficient finite-space computing [20]. This method will allow us to evaluate
the difference in the cost of the successfully optimized multiplication and compare it to the results
of previous studies. We determined the optimal cost of multiplication by following the procedures
outlined in [29], [13], [21], and [32].

In the Toom-Cook 8.5-way algorithm, 17 simultaneous multiplications were done in a recursive
way to make a quinary eight structure. There are 17𝑐𝑐 nodes of size 9−𝑐𝑐𝑛𝑛 for an input of size 𝑛𝑛 at level𝑐𝑐, and this input has a total circuit cost of 𝑛𝑛( 159 )𝑐𝑐. Equations 13 - 15 depict the total price of the
quinary tree. For determining the optimal tree height 𝑘𝑘 for optimal performance, use Equation 15.

𝑛𝑛 𝑁𝑁∑𝑖𝑖=0(179 )𝑖𝑖, 𝑁𝑁 = log9 𝑛𝑛 (13)
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𝑛𝑛 𝑁𝑁−𝑘𝑘−1∑𝑖𝑖=0 (179 )𝑖𝑖= 19𝑁𝑁−𝑘𝑘 𝑘𝑘−1∑𝑖𝑖=0(179 )𝑖𝑖
(14)

In a pattern similar to Equation 12, the identity of the geometric series enables us to locate
the boundaries indicated by Equation 15. Thus, the space can be reduced, as shown in qubit
count Equation 16. The obtained result from Equation 16, approximately equal to (𝑛𝑛1.245), is
lower than the initially required space assessed with Equation 17, which is confined to the value
(𝑛𝑛log9 15) ≈ (𝑛𝑛𝑛𝑛1.30229 ).

𝑘𝑘 ≤ 𝑁𝑁2 − log 9log 17 ≈ 0.8167𝑁𝑁 (15)

𝑄𝑄𝑄𝑄 = (𝑛𝑛(179 ( log 172 log 17−2 log 9) log9 𝑛𝑛))≈ (𝑛𝑛1.236) (16)

𝑛𝑛 log9 𝑛𝑛−1∑𝑘𝑘=0 (179 )𝑘𝑘= 𝑛𝑛(1 − ( 179 )log9 𝑛𝑛1 − 179 ) (17)

The Toffoli depth of a circuit is a prevalent way to describe its time complexity [13], [2]. It can
be calculated by multiplying the number of subtrees 𝑆𝑆𝑘𝑘 at the 𝑘𝑘 − 𝑡𝑡𝑡 level by the corresponding
depth 𝐷𝐷𝑘𝑘. Consequently, we can express the Toffoli depth 𝑇𝑇𝑑𝑑 as in Equation 18.

𝑆𝑆𝑘𝑘 = 17(1− log 172 log 17−log 9)log9 𝑛𝑛𝐷𝐷𝑘𝑘 = 𝑛𝑛9(1− log 172 log 17−𝑙𝑙𝑙𝑙𝑙𝑙9)log9 𝑛𝑛
𝑇𝑇𝑑𝑑 = 𝑆𝑆𝑘𝑘𝐷𝐷𝑘𝑘 = 𝑛𝑛(179 )(1− log 172 log 15−𝑙𝑙𝑙𝑙𝑙𝑙9)log9 𝑛𝑛≈ 𝑛𝑛1.0530

(18)

5.3 Complexity Analysis Comparison

The näıve multiplication, which is equivalent to the Toom-Cook 1-way, exhibits a time complexity
of (𝑛𝑛2), where 𝑛𝑛 represents the size of the input. The Toffoli depth of Naive is also of the order
(𝑛𝑛 log 𝑛𝑛), according to a more in-depth study done in [12]. In the context of asymptotic performance
analysis in quantum implementation, it is observed that the schoolbook technique necessitates a
qubit count of (𝑛𝑛), as well as a Toffoli count and depth values of (𝑛𝑛2). The costs associated with
quantum multiplication are characterized by a qubit count of (4𝑛𝑛+1), a Toffoli depth of (4𝑛𝑛2−4𝑛𝑛+1),
and a Toffoli count of (4𝑛𝑛2 − 3𝑛𝑛) [13] [21].

Karatsuba multiplication, a multiplication equivalency with the Toom-Cook 2-way approach,
resulted in a qubit count of (𝑛𝑛log2(3)) for both the qubit count and Toffoli count. The improvement
study reveals asymptotic values for qubit count ((𝑛𝑛1.427)), Toffoli count ((𝑛𝑛log2(3))), and Toffoli
depth ((𝑛𝑛1.158)) [29] [13] [21]. Parent et al. [29] determined the values of the qubit count, denoted
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Table 1: Asymptotic Performance and Quantum Implementation Cost Multipliers
Comparison. In order to provide a comprehensive analysis of the advancements in complexity
multiplication research, specifically focusing on the Karatsuba and Toom-Cook-based approaches,
we provide our results pertaining to cost evaluation. This evaluation is conducted utilizing the
Toffoli count, qubit count, and Toffoli depth as metrics to assess the space-time complexity.

No Reference Multiplication Algorithm
Asymptotic Performance Analysis Cost of Quantum Implementation of Multiplication

Qubit Count Toffoli Count Toffoli Depth Qubit Count Toffoli Count Toffoli Depth CNOT

1 Kepley and Steinwandt (2015, [18]) Karatsuba (𝑛𝑛log2 3) (𝑛𝑛log32 ) - - - - (𝑛𝑛log2 3)
2 Parent et al. (2017, [29]) Karatsuba (𝑛𝑛1.427) (𝑛𝑛log2 3) (𝑛𝑛1.158) 𝑛𝑛( 32 ) log 2(2 log 3−log 2) log2 𝑛𝑛 ≈ 𝑛𝑛1.427 42𝑛𝑛log2 3 𝑛𝑛( 32 )1− log 3(2 log 3−log 2) log2 𝑛𝑛 ≈ 𝑛𝑛1.158 -

3 Dutta et al. (2018, [13]) Toom-Cook 2.5-way (𝑛𝑛1.404) (𝑛𝑛log166 ) (𝑛𝑛1.143) 𝑛𝑛( 83 ) log 16(6 log 16−log 6) log6 𝑛𝑛 ≈ 𝑛𝑛1.404 49𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙616 𝑛𝑛( 83 )1− log 16(2 log 16−log 6) log6 𝑛𝑛 ≈ 𝑛𝑛1.143 -

4 Larasati et al.(2021, [21]) Toom-Cook 3-way (𝑛𝑛1.35) 𝑂𝑂(𝑛𝑛2) (𝑛𝑛1.112) 𝑛𝑛( 53 ) log 5(2 log 5−log 3) log3 𝑛𝑛 ≈ 𝑛𝑛1.353 8𝑛𝑛2 + 66𝑛𝑛log3 5 − 72 𝑛𝑛( 53 )1− log 5(2 log 5−log 3) log3 𝑛𝑛 ≈ 𝑛𝑛1.112 -

5 Van Hoof (2020, [16]) Karatsuba 3𝑛𝑛 (𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙23) - - - - (𝑛𝑛2)
6 Putranto et al. (2023), [31]) Karatsuba 3𝑛𝑛 (𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙23) - - - - (𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙23)
7 Putranto et al. (2023, [32]) Toom Cook 2-way (𝑛𝑛1.589) (𝑛𝑛log2 3) (𝑛𝑛1.217) 𝑛𝑛( 32 ) log 3(2 log 3−log 2) log2 𝑛𝑛 ≈ 𝑛𝑛1.589 34𝑛𝑛log2 3 − 32𝑛𝑛 𝑛𝑛( 32 )1− log 3(2 log 3−log 2) log2 𝑛𝑛 ≈ 𝑛𝑛1.217 -

8 Putranto et al. (2023, [32]) Toom Cook 4-way (𝑛𝑛1.313) (𝑛𝑛log4 7) (𝑛𝑛1.09) 𝑛𝑛( 74 ) log 7(2 log 7−log 4) log4 𝑛𝑛 ≈ 𝑛𝑛1.313 122𝑛𝑛log4 7 − 160𝑛𝑛 𝑛𝑛( 74 )1− log 7(2 log 7−log 4) log4 𝑛𝑛 ≈ 𝑛𝑛1.09 -

9 Putranto et al. (2023, [32]) Toom Cook 8-way (𝑛𝑛1.245) (𝑛𝑛log8 15) (𝑛𝑛1.0569) 𝑛𝑛( 158 ) log 15(2 log 15−log 8) log8 𝑛𝑛 ≈ 𝑛𝑛1.245 112𝑛𝑛log8 15 − 128𝑛𝑛 𝑛𝑛( 158 )1− log 15(2 log 15−log 8) log8 𝑛𝑛 ≈ 𝑛𝑛1.0569 -

10 our Toom-Cook 8.5-way (𝑛𝑛1.236) (𝑛𝑛log9 17) (𝑛𝑛1.053) 𝑛𝑛( 179 ) log 17(2 log 17−log 9) log9 𝑛𝑛 ≈ 𝑛𝑛1.236 186𝑛𝑛log9 17 − 202𝑛𝑛 𝑛𝑛( 179 )1− log 17(2 log 17−log 9) log9 𝑛𝑛 ≈ 𝑛𝑛1.053 -

as 𝑛𝑛1.427, the Toffoli count, denoted as (𝑛𝑛log2 3), and the Toffoli depth, denoted as 𝑛𝑛1.158 for Karatsuba.
Recently, the Karatsuba variant proposed by Putranto et al. [31] demonstrates a reduction in CNOT
usage, changing the (𝑛𝑛2) CNOT in the prior work to (𝑛𝑛log2(3)).

According to Dutta et al. [13], the Toom-Cook 2.5-way algorithm offers a potential approach for
reducing the cost of developing quantum systems by achieving the qubit count (𝑛𝑛1.404), Toffoli count
(49𝑛𝑛log6 16), and Toffoli depth (𝑛𝑛1.143). Later, Larasati et al. [21] present a comprehensive examination
of the asymptotic performance metrics for qubit count, Toffoli count, and Toffoli depth. They report
an estimated value of 𝑛𝑛1.353 for the qubit count, (𝑛𝑛2) for the Toffoli count, and 𝑛𝑛1.112 for the Toffoli
depth.

Recently, from Putranto et al. [32] elaboration, they exhibit a better asymptotic performance
analysis in terms of qubit count for the Toom-Cook 8-way approach. Specifically, it is approximated

by qubit count with 𝑛𝑛( 158 ) log 15(2 log 15−log 8) log8 𝑛𝑛, which is of the order (𝑛𝑛1.245). In the context of Toffoli depth,
which is relevant to efficient computation, the Toom-Cook 8-way design results in a lower bound
on logical depth of (𝑛𝑛1.0569) and a Toffoli count of (𝑛𝑛log8 15).

In the present study, as presented in Table 1, a comparative analysis of various multiplication
methods reveals that the Toom-Cook high-degree and half-multiplier, established in this research,
demonstrates the lowest desired asymptotic performance in terms of qubit count, Toffoli count, and
Toffoli depth when compared to other approaches. In terms of cost, the proposed multiplication in
quantum implementation demonstrates lower quantum resources when compared to the alternative
Toom-Cook strategy. The high-degree and half-multiplication, specifically the Toom-Cook 8.5-way

approach, involves a qubit count of (𝑛𝑛1.236), a logical Toffoli depth of 𝑛𝑛( 179 )1− log 17(2 log 17−log 9) log9 𝑛𝑛 ≈ 𝑛𝑛1.053,
and a Toffoli count of 186𝑛𝑛log9 17 − 202𝑛𝑛.
6 Discussion

Empirical research has provided evidence indicating that while higher-order procedures may ex-
hibit superior efficiency, the incorporation of the division operation, a crucial component of the
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𝑘𝑘−way Toom-Cook method, can provide difficulties in terms of identifying an effective strategy. In
the current research, as shown in Table 1, using the Toom-Cook-8.5 approach and yielding com-
plexity analysis ((𝑛𝑛1.236) qubit Count, (𝑛𝑛log9 17) Toffoli Count, and Toffoli Depth of (𝑛𝑛1.053)), we
established the optimal utilization of resources for multiplication operations. Nevertheless, the de-
sign multiplication was not incorporated into the PQC algorithm, and the notable cryptanalysis
using the Shor algorithm technique was also not performed. In later stages, it is imperative to also
enhance the implementation of a higher degree in the PQC algorithm and provide a more compre-
hensive examination of multiplication-based attacks employing SCA, or correlation power analysis,
methodologies.

Further, it should be noted that the efficiency of the recently developed Toom-Cook method
exceeds that of the currently employed Toom-Cook-based multiplication techniques, Karatsuba,
and naive schoolbooks. This demonstrates a higher level of efficiency in comparison to existing
multipliers based on the Toom-Cook method currently utilized as part of the lattice-based algorithm,
the Toom-Cook 4-way approach. In this work, the multiplication is also designed in a quantum
environment, facilitating its integration into quantum circuits for cryptanalysis (e.g., [3], [31]). This
integration will thereafter enable the evaluation of security in the post-quantum era.

7 Conclusions

The present study undertook a thorough examination of high-degree and half-multiplication, focus-
ing particularly on the Toom-Cook 8.5-way algorithm. The study demonstrated the achievement
of the lowest or most optimal multiplication, which is distinguished by its lower asymptotic perfor-
mance and fewer demands on quantum resources compared to other multiplications. The proposed
multiplication was subjected to asymptotic performance analysis, resulting in a qubit count of𝑛𝑛( 179 ) log 17(2 log 17−log 9) log9 𝑛𝑛 ≈ 𝑛𝑛1.236, approximately (𝑛𝑛1.236). Additionaly, the Toom-Cook 8.5-way has a Tof-

foli count of 186𝑛𝑛log9 17 − 202𝑛𝑛 and a Toffoli depth of 𝑛𝑛( 179 )1− log 17(2 log 17−log 9) log9 𝑛𝑛 ≈ 𝑛𝑛1.053 for multiplication.
The alternative methods that have been proposed have the potential to reduce the computa-

tional resources needed and can result in efficient multiplication with high degrees of multiplication.
As part of planned future research, the suggested multiplication operation could be used as an al-
ternative to constructing lattice-based post-quantum algorithms while lowering the risks of attacks
that use multiplication. Furthermore, the multiplication technique is intended to be incorporated
into a quantum cryptanalysis circuit in order to enhance the efficiency of evaluating post-quantum
security.
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Abstract. Since NIST has recently selected FALCON as one of quantum–resistant digital sig-
natures which uses the hash-and-sign paradigm in the style of Gentry–Peikert–Vaikuntanathan
framework and instantiated over NTRU lattices, SOLMAE as a variant of FALCON was
submitted to KpqC standard competition by taking all the pros of FALCON and Mitaka
and reducing their cons as much as possible.
In this paper, we suggest the asymptotic computational complexity of FALCON and SOL-
MAE take Θ(n log n) in their KeyGen, Sign and Verif procedures simultaneously, but our
computer experiments using their Python implementation exhibit empirically that KeyGen
of FALCON–512 takes longer time than that of SOLMAE–512 by about a second while
the other two procedures are running almost the same time. We show a sample execution
of FALCON–512 and SOLMAE–512 with their real value are described in detail for the
educational purpose to understand FALCON and SOLMAE easily. We also checked the
Gaussian randomness of N-Sampler and UnifCrown samplers used in SOLMAE only.

Keywords: Lattice-based cryptography · Hash-and-sign paradigm · NTRU trapdoors ·
Discrete Gaussian sampling · Python implementation

1 Introduction

When Shor [16] has proposed an efficient randomized algorithm on a hypothetical quantum computer
in 1999 to integer factorization and discrete logarithm problems in a polynomial time, it was beyond
our imagination building for the powerful computing environment at that time. Currently the threat
of attacking the current (or classical) secure system by using the quantum computer is expected to
be right at our fingertips due to the aggressive road map by IBM quantum computing. We are very
concerned about so called Harvest now, decrypt later attack [17] which is a surveillance strategy
that relies on the acquisition and long-term storage of currently unreadable encrypted data awaiting
possible breakthroughs in decryption technology that would render it readable in the future.

Due to the substantial amount of research on quantum computers, large-scale quantum computers
if built, can break many public-key cryptosystems based on the number–theoretic hard problems in
use. In 2016, NIST [14] has initiated Post Quantum Cryptography(PQC) project to solicit, evaluate,
and standardize one or more quantum-resistant cryptographic algorithms for Key Encapsulation
Mechanism(KEM) and Digital Signature(DS) worldwide. After several rounds, NIST has finally
selected CRYSTALS-Kyber for KEM and CRYSTALS-Dilithium, FALCON, and SPHINCS+ for
DS in 2022.

Influenced by this NIST PQC project, Korean cryptographic society led by KpqC task force [11]
has called for soliciting Korean PQC standard candidates by the end of Oct. in 2022. By the due of
submission, 7 candidates KEM and 8 candidates DS for KpqC competition were submitted and
their details are available at https://kpqc.or.kr/.

SOLMAE which stands for an acronym of quantum–Secure algOrithm for Long–term Message
Authentication and Encryption was submitted to KpqC Competition as one of DS candidate
algorithms which is a lattice-based signature scheme inspired by several pioneering works based on
the hash-then-sign signature paradigm proposed by Gentry, Peikert and Vaikuntanathan [6].

SOLMAE is inspired from FALCON’s design. Some of the new theoretical foundations were
laid out in the presentation of Mitaka [1] while keeping the security level of FALCON with 5
NIST levels of security I to V. At a high level, SOLMAE removes the inherent technicality of the
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sampling procedure, and most of its induced complexity from an implementation standpoint, for
free, that is with no loss of efficiency. This theoretical simplicity translates into faster operations
while preserving signatures and verification key sizes, on top of allowing for additional features
absent from FALCON, such as enjoying cheaper masking and being parallelizable. We need to
evaluate this features with our Python implementation which all the readers can easily understand
and compare them.

To the best of our knowledge, there is no the open literature to compare FALCON and
SOLMAE directly from the point of their asymptotic complexity and performance. In this paper,
after giving a brief description from the specification of FALCON and SOLMAE, we discuss their
asymptotic computational complexity of KeyGen, Sign and Verif procedures and evaluate their
performance empirically using their Python implementation including Gaussian samplers used in
SOLMAE.

The organization of this paper is as follows: In Section 2, we define our notations and
definition used in this paper. In Sections 3 and 4, we describe how FALCON and SOLMAE
work summarized from their specification, respectively. In Section 5, we discuss the asymptotic
computational complexity of FALCON and SOLMAE. In Section 6, we analyse the N-Sampler
and UnifCrown sampler used in SOLMAE only and verify its function by the experiment. In
Section 7, we suggest the practical execution time of KeyGen, Sign and Verif procedures running
3,000 times for FALCON–512 and SOLMAE–512 by their Python implementation. Finally, we
will give concluding remarks and challenging issues.

2 Notations and Definition

To keep the consistency to understand FALCON and SOLMAE correctly, we will use the following
notations and definitions used their specification throughout this paper.

Matrices, vectors, and scalars

Matrices will usually be in bold uppercase (e.g. B), vectors in bold lowercase (e.g. v), and scalars -
which include polynomials - in italic (e.g. s). We use the row convention for vectors. The transpose
of a matrix B may be noted Bt. It is to be noted that for a polynomial f , we do not use f ′ to
denote its derivative in this document.

Quotient rings

Let Z and N denote a set of integers and a set of all numbers starting from 1, respectively. Q and
R denote a set of rational numbers and a set of real numbers,respectively. For q ∈ N×, we denote
by Zq the quotient ring Z/qZ. In FALCON and SOLMAE, an integer modulus q = 12, 289 is
prime, so Zq is also a finite field. We denote by Z×

q the group of invertible elements of Zq, and
by φ Euler’s totient function: φ(q) = |Z×

q | = q − 1 = 3 · 212 since q is prime. The rings Q[x]/(ϕ),
Z[x]/(ϕ), and R[x]/(ϕ) where ϕ is a monic minimal polynomial will be interchangeably written as
Q, Z, and KR, respectively for the sake of our convenience.

DFT representation

For d = 2n, we use ϕ(x) = xd + 1. It is a monic polynomial of Z[x], irreducible in Q[x] and
with distinct roots over C. Then ζj = exp(i(2j − 1)π/d) for j = 1, 2, · · · d are roots of ϕ(x). For
f = Σfix

i ∈ KR, we define the coefficient representation as f = (f0, f1, · · · fd−1) and Discrete
Fourier Transform(DFT) representation φ(f) = (φ1(f), · · · , φd(f)).

Number fields

Let a =
∑d−1

i=0 aix
i and b =

∑d−1
i=0 bix

i be arbitrary elements of the number field Q = Q[x]/(ϕ).
We note a∗ and call (Hermitian) adjoint of a the unique element of Q such that for any root ζ of

2
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ϕ, a∗(ζ) = a(ζ), where · is the usual complex conjugation over C. For ϕ = xd + 1, the Hermitian
adjoint a∗ can be expressed simply:

a∗ = a0 −
d−1∑
i=1

aix
d−i (1)

We extend this definition to vectors and matrices: the adjoint B∗ of a matrix B ∈ Qn×m (resp. a
vector v) is the component-wise adjoint of the transpose of B (resp. v):

B =
[
a b
c d

]
⇔ B∗ =

[
a∗ c∗

b∗ d∗

]
(2)

Inner product

The inner product ⟨·, ·⟩ over Q and its associated norm ∥ · ∥ are defined as:

⟨a, b⟩ = 1
deg(ϕ)

∑
0<i≤d

φi(a) · φi(b) (3)

∥a∥ =
√

⟨a, a⟩ (4)

These definitions can be extended to vectors: for u = (ui) and v = (vi) in Qm, ⟨u, v⟩ =
∑

i⟨ui, vi⟩.
For our choice of ϕ, the inner product coincides with the usual coefficient-wise inner product:

⟨a, b⟩ =
∑

0≤i<d

aibi; (5)

From an algorithmic point of view, computing the inner product or the norm is most easily done
using Eq.(3) if polynomials are in FFT representation, and using Eq.(5) if they are in coefficient
representation. By substituting b = a in Eqs (3) and (5), we get

∥φ(a)∥ =
√

d · ∥a∥. (6)

where ∥ · ∥ is Euclidean norm. Since we know that

∥φ(a)∥ =
√

2 · ∥(Re(φ1(a)), Im(φ1(a)), · · · Re(φd/2(a)), Im(φd/2(a)))∥, (7)

we get

∥(Re(φ1(a)), Im(φ1(a)), · · · Re(φd/2(a)), Im(φd/2(a)))∥ =
√

d

2 · ∥a∥. (8)

If a ∈ KR follows the d-dimensional standard normal distribution, it is known that

(Re(φ1(a)), Im(φ1(a)), · · · Re(φd/2(a)), Im(φd/2(a))) follows Nd/2, (9)

where Nd/2 denotes continuous Gaussian distribution with zero mean and d
2 ·Id(i.e., Identity matrix)

variance.

Ring lattices

For the rings Q = Q[x]/(ϕ) and Z = Z[x]/(ϕ), positive integers m ≥ n, and a full-rank matrix
B ∈ Qn×m, we denote by Λ(B) and call lattice generated by B, the set Zn · B = {zB | z ∈ Zn}.
By extension, a set Λ is a lattice if there exists a matrix B such that Λ = Λ(B). We may say that
Λ ⊆ Zm is a q-ary lattice if qZm ⊆ Λ.

3
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NTRU lattices

Let q be an integer, and f ∈ Z[x]/(xd + 1) such that f is invertible modulo q (equivalently, det[f ]
is coprime to q). Let h = g/f mod q and consider the NTRU module associated to h:

MNTRU = {(u, v) ∈ K2
R : hu − v = 0 mod q},

and its lattice version

LNTRU = {(u, v) ∈ Z2d : [h]u − v = 0 mod q}.

This lattice has volume qd. Over KR, it is generated by (f, g) and any (F, G) such that fG−gF = q.
For such a pair (f, g), (F, G), this means that LNTRU has a basis of the form

Bf,g =
[
[f ] [F ]
[g] [G]

]
.

One checks that ([h], −Idd) ·Bf,g = 0 mod q, so the verification key is h. The NTRU-search problem
is : given h = g/f mod q, find any (f ′ = xif, g′ = xig). In its decision variant, one must distinguish
h = g/f mod q from a uniformly random h ∈ Rq := Z[x]/(q, xd + 1) = (Z/qZ)[x]/(xd + 1). These
problems are assumed to be intractable for large d.

Discrete Gaussians

For σ, µ ∈ R with σ > 0, we define the Gaussian function ρσ,µ as ρσ,µ(x) = exp(−|x − µ|2/2σ2),
and the discrete Gaussian distribution DZ,σ,µ over the integers as:

DZ,σ,µ(x) = ρσ,µ(x)∑
z∈Z ρσ,µ(z) (10)

The parameter µ may be omitted when it is equal to zero.

Gram-Schmidt orthogonalization

Any matrix B ∈ Qn×m can be decomposed as follows:

B = L × B̃ (11)

where L is lower triangular with 1’s on the diagonal, and the rows b̃i’s of B̃ verify ⟨b̃i, b̃j⟩ = 0
for i ̸= j. When B is full-rank, this decomposition is unique, and it is called the Gram-Schmidt
orthogonalization (or GSO). We also call the Gram-Schmidt norm of B the following value:

∥B∥GS = max
b̃i∈B̃

∥b̃i∥ (12)

The LDL∗ decomposition

The LDL∗ decomposition writes any full-rank Gram matrix as a product LDL∗, where L ∈ Qn×n is
lower triangular with 1’s on the diagonal, and D ∈ Qn×n is diagonal. The LDL∗ decomposition
and the GSO are closely related as for a basis B, there exists a unique GSO B = L · B̃, and for
a full-rank Gram matrix G, there exists a unique LDL∗ decomposition G = LDL∗. If G = BB∗,
then G = L · (B̃B̃∗) · L∗ is a valid LDL∗ decomposition of G. As both decompositions are unique,
the matrices L in both cases are actually the same. In a nutshell:

[L · B̃ is the GSO of B] ⇔ [L · (BB̃∗) · L∗ is the LDL∗ decomposition of (BB∗)]. (13)

The reason why we present both equivalent decompositions is that the GSO is a more familiar
concept in lattice-based cryptography, whereas the use of LDL∗ decomposition is faster and therefore
makes more sense from an algorithmic point of view.

4
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3 How FALCON works

A group of top-notch cryptographers, Hoffstein, Pipher and Silverman [8] suggested new public–key
cryptosystem based on a polynomial ring in 1997 as an alternative to RSA and DH whose difficulties
are based on number–theoretic hard problems such as integer factorization and discrete log problem,
respectively. They founded the company so–called as NTRU 1 Cryptosystem with Lieman and
initiated an open–source lattice-based cryptography consisting of two algorithms: NTRUEncrypt
used for encryption/decryption and NTRUSign used for digital signatures. Their security relies
on the presumed difficulty of factoring certain polynomials in a truncated polynomial ring into a
quotient of two polynomials having very small coefficients.

NTRUSign was designed based on the GGH signature scheme [7] which was proposed in
1995 based on solving the closest vector problem (CVP) in a lattice and asymptotically is more
efficient than RSA in the computation time for encryption, decryption, signing, and verifying are
all quadratic in the natural security parameter. The signer demonstrates knowledge of a good basis
for the lattice by using it to solve CVP on a point representing the message; the verifier uses a bad
basis for the same lattice to verify that the signature under consideration is actually a lattice point
and is sufficiently close to the message point.

On the other hand, Min et al.[12] suggested weak property of malleability of NTRUSign using
the annihilating polynomial from a given message and signature pair to generate a valid signature.
Nguyen and Regev [13] had cryptanalyzed the original GGH signature scheme including NTRUSign
in 2006 successfully extracting secret information from many known signatures characterized by
multivariate optimization problems. Their experiments showed that 90,000 signatures are sufficient
to recover the NTRUSign–251 secret key.

In a nutshell, FALCON follows a framework introduced in 2008 by Gentry, Peikert, and
Vaikuntanathan [6] which we call the GPV framework for short over the NTRU lattices and uses a
typically hash–and–sign paradigm. Their high–level idea is the following:

1. The public key is a long basis of a q–ary lattice.
2. The private key is (essentially) a short basis of the same lattice.
3. In the signing procedure, the signer:

(a) generates a random value, salt;
(b) computes a target c = H(M ||salt), where H is a hash function sending input to a random–

looking point (on the grid);
(c) uses his knowledge of a short basis to compute a lattice point v close to the target c;
(d) outputs (salt, s), where s = c − v.

4. The verifier accepts the signature (salt, s) if and only if:
(a) the vector s is short;
(b) H(M ||salt) − s is a point on the lattice generated by his public key.

Only the signer should be able to efficiently compute v close enough to an arbitrary target. This
is a decoding problem that can be solved when a basis of short vectors is known. On the other hand,
anyone wanting to check the validity of a signature should be able to verify lattice membership. The
KeyGen, Sign and Verif procedures for FALCON will be introduced briefly in the later Section
by restating the original specification as in [3]. For details, the readers can refer to [3].

3.1 Key Generation of FALCON

For the class of NTRU lattices, a trapdoor pairs is (h, Bf,g) where h = f−1g, Bf,g is trapdoor
basis over LNTRU and Pornin & Prest [15] showed that a completion (F, G) can be computed in
O(d log d) time from short polynomials f, g ∈ Z. In practice, their implementation is as efficient
as can be for this technical procedure: it is called NtruSolve in FALCON. Their algorithm only
depends on the underlying ring and has now a stable version for Z[x]/(xd + 1), where d = 2n.

Figure 1 illustrates the flowchart of the key generation procedure for FALCON.
1 Number Theorists ‘R’ Us, or Number Theory Research Unit, or N–th degree TRuncated polynomial

Ring.
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KeyGen

NtruGen

NtruSolve

ffLDL∗

LDL∗

Fig. 1: Flowchart of KeyGen for FALCON

Algorithm 1 describes the pseudo–code for key generation of FALCON.
Algorithm 1: KeyGen of FALCON

Input: A monic polynomial ϕ ∈ Z[x], a modulus q
Output: A secret key sk, a public key pk

1: f, g, F, G ← NtruGen ; /* Solving the NTRU equation */

2: B ←
[

g −f
G −F

]
;

3: B̂ ← FFT(B) ; /* Compute FFT for each {g, −f, G, −F} */

4: G ← B̂ × B̂∗;
5: T ← ffLDL∗(G); /* Compute the LDL* tree */
6: for each leaf of T do
7: leaf.value ← σ/

√
leaf.value ; /* Normalization step */

8: sk← (B̂, T);
9: h ← gf−1modq;

10: pk← h;
11: return sk, pk;

3.2 Signing of FALCON

At a high level, the signing procedure in FALCON is at first to compute a hashed value c ∈ Zq[x]/(ϕ)
from the message, M and a salt r, then using the secret key, f, g, F, G to generate two short values
(s1, s2) such that s1 + s2h = c mod q. An interesting feature is that only the first half of the
signature (s1, s2) needs to be sent along the message, as long as h is available to the verifier. This
comes from the identity hs1 = s2 mod q defining these lattices, as we will see in the Verif algorithm
description.

The core of FALCON signing is to use ffSampling (Algorithm 11 in [3]) which applies
a randomizing rounding according to Gaussian distribution on the coefficient of t = (t0, t1) ∈
(Q[x]/(ϕ))2 stored in the FALCON Tree, T at the KeyGen procedure of FALCON.

This fast Fourier sampling algorithm can be seen as a recursive version of Klein’s well–known
trapdoor sampler, but cannot be computed in parallel also known as the GPV sampler. Klein’s
sampler uses a matrix L and the norm of Gram–Schmidt vectors as a trapdoor while FALCON
are using a tree of non-trivial elements in such matrices. Note that Fouque et. al.[4] suggested
Gram-Schmidt norm leakage in FALCON by timing side channels in the implementation of the
one-dimensional Gaussian samplers.

FALCON cannot output two different signatures for a message. This well-known concern of
the GPV framework can be addressed in several ways, for example, making a stateful scheme or
by hash randomization. FALCON chose the latter solution for efficiency purposes. In practice,
Sign adds a random “salt” r ∈ {0, 1}k, where k is large enough that an unfortunate collision
of messages is unlikely to happen, that is, it hashes (r||M) instead of M . A signature is then
sig = (r, Compress(s1)).

Figure 2 and Algorithm 2 sketches the signing procedure for FALCON and shows its pseudo-
code for FALCON, respectively.
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Fig. 2: Flowchart of Sign for FALCON.

Algorithm 2: Sign of FALCON
Input: A message M ∈ {0, 1}∗, secret key sk, a bound γ.
Output: A pair (r, Compress(s1)) with r ∈ {0, 1}320 and ∥(s1, s2)∥ ≤ γ.
1: r ← U({0, 1}320);
2: c ← HashToPoint(r||M, q, n);
3: t ← (− 1

q FFT(c) ⊙ FFT(F ), 1
q FFT(c) ⊙ FFT(f)) ; /* t = (FFT(c), FFT(0)) · B̂

−1
*/

4: do
5: do
6: z ← ffSamplingn(t, T);
7: s = (t − z)B̂; /* At this point, s follows Gaussian distribution. */
8: while ||s||2 > γ
9: (s1, s2) ← FFT-1(s);

10: s ← Compress(s2, 8 · sbytelen − 328); /* Remove 1 byte for the header, and 40
bytes for r */

11: while(s = ⊥)
12: return (r, s);

3.3 Verification of FALCON:

The last step of the scheme is thankfully simpler to describe. Upon receiving a signature (r, s) and
message M , the verifier decompresses s to a polynomial s1 and c = (0, H(r||M)), then wants to
recover the full signature vector v = (s1, s2). If v is a valid signature, the verification identity is
(h, −1) · (c − v) = −H(r||M) − hs1 + s2 mod q = 0, or equivalently the verifier can compute

s2 = H(r||M) + hs1 mod q.

This is computed in the ring Rq, and can be done very efficiently for a good choice of modulus q
using the Number Theoretic Transform (NTT). FALCON currently follow the standard choice of
q = 12, 289, as the multiplication in NTT format amounts to d integer multiplications in Z/qZ. The
last step is to check that ∥(s1, s2)∥2 ≤ γ2: the signature is only accepted in this case. The rejection
bound γ comes from the expected length of vectors outputted by Sample described as Algorithm
4 in [9].

Since they are morally Gaussian, they concentrate around their standard deviation; a “slack”
parameter τ = 1.042 is tuned to ensure that 90% of the vectors generated by Sample will get
through the loop:

γ = τ · σsig ·
√

2d.
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Algorithm 3 shows the pseudo–code of verification procedure of FALCON.
Algorithm 3: Verif of FALCON

Input: A signature (r, s) on M , a public key pk = h, a bound γ.
Output: Accept or Reject.

1: s1 ← Decompress(s);
2: c ← H(r||M);
3: s2 ← c + hs1 mod q;
4: if ∥(s1, s2)∥2 > γ2 then
5: return Reject.

end
6: return Accept.

4 How SOLMAE works

SOLMAE is inspired from FALCON’s design. Some of the new theoretical foundations were laid out
in the presentation of Mitaka [1]. At a high level, it removes the inherent technicality of the sampling
procedure, and most of its induced complexity from an implementation standpoint, for free, that is
with no loss of efficiency. This simplicity translates into faster operations while preserving signatures
and verification keys sizes, on top of allowing for additional features absent from FALCON, such as
enjoying cheaper masking, and being parallelizable. By using the novel compression techniques and
tools of [2], SOLMAE can also obtain smaller signatures and verification keys than those already
achieved by FALCON. To sum up, SOLMAE aims to achieve better performances for the same
security and advantages as FALCON.

While its predecessor FALCON could be summed-up as an efficient instantiation of the GPV
framework, SOLMAE takes it one step further. The main ingredients in SOLMAE are:

– Hybrid sampler is a faster, simpler, parallelizable, and maskable Gaussian sampler to generate
signatures;

– Optimally tuned key generation algorithm, enhancing the security of the used hybrid
sampler to that of FALCON’s level2;

– Dedicated compression techniques to reduce bandwidth consumption even further, at no
cost on the security according to our analyses.

The KeyGen, Sign and Verif procedures for SOLMAE will be introduced briefly in the later
Section by restating the original specification in [9]. For details, the readers can refer to [9].

4.1 Key Generation of SOLMAE

An important concern here is that not all pair (f, g), (F, G) gives good trapdoor pairs for Sample
described as Algorithm 4 in [9]. Schemes such as FALCON and Mitaka solve this technicality
essentially by sieving among all possible bases to find the ones that reach an acceptable quality for
the Sample procedure. This technique is costly, and many tricks were used to achieve an acceptable
KeyGen. This sieving routine was bypassed by redesigning completely how good quality bases can be
found. This improves the running time of KeyGen and also increases the security offered by Sample.
In any case, note that NtruSolve’s running time largely dominates the overall time for KeyGen:
this is not avoidable as the basis completion algorithm requires working with quite large integers
and relatively high-precision floating-point arithmetic.

At the end of the procedure, the secret key contains not only the secret basis but also the
necessary data for Sign and Sample. This additional information can be represented by elements
in KR and is computed during or at the end of NtruSolve. All-in-all, KeyGen outputs:

sk = (b1 = (f, g), b2 = (F, G), b̃2 = (F̃ , G̃), Σ1, Σ2, β1, β2),
pk = (h, q, σsig, η),

2 This corresponds to NIST-I and NIST-V requirements.
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where we recall that h = g/f mod q. These parameters and a table of their practical values are
described more thoroughly in [9].

Informally, they correspond to the following:

– (f, g), (F, G) is a good basis of the lattice LNTRU associated to h, with quality Q(f, g) = α, and
b̃2 is the Gram-Schmidt orthogonalization of (F, G) with respect to (f, g);

– σsig, η are respectively the standard deviation for signature vectors, and a tight upper bound
on the “smoothing parameter of Zd”;

– Σ1, Σ2 ∈ KR represent covariance matrices for two intermediate Gaussian samplings in Sample;
– the vectors β1, β2 ∈ K2

R represent the orthogonal projections from K2
R onto KR · b1 and KR · b̃2

respectively. In other words, they act as “getCoordinates” for vectors in K2
R. They are used by

Sample and are precomputed for efficiency.

Algorithm 4 computes the necessary data for signature sampling, then outputs the key pair.
Note that NtruSolve could also compute the sampling data and the public key, but for clarity,
the pseudo-code gives these tasks to KeyGen of SOLMAE. Figure 3 sketches the key generation
procedure of SOLMAE

KeyGen

PairGen NtruSolve Precomputation: Σ1, Σ2, β1, β2

UnifCrown

Fig. 3: Flowchart of KeyGen of SOLMAE.

Algorithm 4: KeyGen of SOLMAE
Input: A modulus q, a target quality parameter 1 < α, parameters σsig, η > 0
Output: A basis ((f, g), (F, G)) ∈ R2 of an NTRU lattice LNTRU with Q(f, g) = α;

1: repeat
b1 := (f, g) ← PairGen(q, α, R−, R+)}
until f is invertible modulo q;
; /* Secret basis computation between R− and R+ */

2: b2 := (F, G) ← NtruSolve(q, f, g):

3: h ← g/f mod q ; /* Public key data computation */

4: γ ← 1.1 · σsig ·
√

2d ; /* tolerance for signature length */

5: β1 ← 1
⟨b1,b1⟩K

· b1 ; /* Sampling data computation, in Fourier domain */

6: Σ1 ←
√

σ2
sig

⟨b1,b1⟩K
− η2;

7: b̃2 := (F̃ , G̃) ← b2 − ⟨β1, b2⟩ · b1;
8: β2 ← 1

⟨b̃2,b̃2⟩K

· b̃2;

9: Σ2 ←
√

σ2
sig

⟨b̃2,b̃2⟩K

− η2;

10: sk← (b1, b2, b̃2, Σ1, Σ2, β1, β2);
11: pk← (q, h, σsig, η, γ);
12: return sk, pk;

The function of two subroutines PairGen and NtruSolve are described below:
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1. The PairGen algorithm generates d complex numbers (xjeiθj )j≤d/2, (yjeiθj )j≤d/2 to act as the
FFT representations of two real polynomial fR, gR in KR. The magnitude of these complex
numbers is sampled in a planar annulus whose small and big radii are set to match a target
Q(f, g) with UnifCrown ([9]). It then finds close elements f, g ∈ Z by round-off, unless maybe
the rounding error was too large. When the procedure ends, it outputs a pair (f, g) such that
Q(f, g) = α, where α depends on the security level.

2. NtruSolve is exactly Pornin & Prest’s algorithm and implementation [15]. It takes as input
(f, g) ∈ Z2 and a modulus q, and outputs (F, G) ∈ Z2 such that (f, g), (F, G) is a basis of
LNTRU associated to h = g/f mod q. It does so by solving the Bézout-like equation fG−gF = q
in Z using recursively the tower of subfields for optimal efficiency.

4.2 Signing of SOLMAE

Recall that NTRU lattices live in R2d. Their structure also helps to simplify the preimage compu-
tation. Indeed, the signer only needs to compute m = H(M) ∈ Rd, as then c = (0, m) is a valid
preimage: the corresponding polynomials satisfy (h, 1) · c = m.

As the same with Sign procedure of FALCON, an interesting feature is that only the first half
of the signature (s1, s2) ∈ LNTRU needs to be sent along the message, as long as h is available to
the verifier. This comes from the identity hs1 = s2 mod q defining these lattices, as we will see in
the Verif algorithm description. 3

Because of their nature as Gaussian integer vectors, signatures can be encoded to reduce the size
of their bit-representation. The standard deviation of Sample is large enough so that the ⌊log √

q⌋
least significant bits of one coordinate are essentially random.

In practice, Sign adds a random “salt” r ∈ {0, 1}k, where k is large enough that an unfortunate
collision of messages is unlikely to happen, that is, it hashes (r||M) instead of M — our analysis
in this regard is identical to FALCON. A signature is then sig = (r, Compress(s1)). SOLMAE
cannot output two different signatures for a message like FALCON which was mentioned in Section
3.2.

Figure 4 sketches the signing procedure of SOLMAE and Algorithm 5 shows its pseudo–code.

Sign

Sample Compress

PeikertSampler

N-Sampler Z-Sampler

Fig. 4: Flowchart of Sign of SOLMAE.

3 The same identity can also be used to check the validity of signatures only with a hash of the public key
h, requiring this time send both s1 and s2, but we will not consider this setting here.
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Algorithm 5: Sign of SOLMAE
Input: A message M ∈ {0, 1}∗, a tuple sk = ((f, g), (F, G), (F̃ , G̃), σsig, Σ1, Σ2, η), a

rejection parameter γ > 0.
Output: A pair (r, Compress(s1)) with r ∈ {0, 1}320 and ∥(s1, s2)∥ ≤ γ.
1: r ← U({0, 1}320);
2: c ← (0, H(r||M));
3: ĉ ← FFT(c);
4: repeat

(ŝ1, ŝ2) ← ĉ − Sample(ĉ, sk) ; /* (s1, s2) ← DLNTRU,c,σsig */

until ∥(FFT-1(ŝ1), FFT-1(ŝ2))∥2 ≤ γ2;
5: s1 ← FFT-1(ŝ1);
6: s ← Compress(s1);

return (r, s);

4.3 Verification of SOLMAE

This is the same as the Verification of FALCON stated in Section 3.3.

5 Asymptotic Complexity of FALCON and SOLMAE

To the best of our allowable knowledge as of writing this paper, we will suggest the asymptotic com-
putational complexity of FALCON and SOLMAE algorithms with their pseudo–codes described
their specifications based on the following assumptions to make our computation work to be simple:

(i) Multiplication of large integers can be done by integer–type Karatsuba algorithm or Schönhage-
Strassen algorithm. However, we assumed multiplication of large integers can be done in
Θ(1).

(ii) The multiplication and division of polynomials in Z[x]/(xd + 1) or Q[x]/(xd + 1) are assumed to
compute the polynomial–type Karatsuba algorithm or operate pointwise in Fourier domain. It
is known that the time complexity of the Karatsuba algorithm and FFT(or FFT-1) are Θ(d3/2)
and Θ(d log(d)), respectively. We assume that all polynomial operations are done in the Fourier
domain, so polynomial multiplication and division in Z[x]/(xd + 1) or Q[x]/(xd + 1) takes
Θ(d log(d)) time. Since every inverse element of Zq is stored in the list and the division of
polynomials in Zq[x]/(xd + 1) can be done in the NTT domain, the division of polynomials in
Zq[x]/(xd + 1) also takes Θ(d log d).

(iii) Some number of rejection samplings may inevitably happen in FALCON and SOLMAE. If
one–loop for rejection sampling takes t times and its probability of the acceptance is p, the
expectation value of the total time is Σ∞

k=1p(1 − p)k−1 · kt = t
p ≈ t since the value 1/p does not

influence our asymptotic analysis due to its fixed constant value. So, we may ignore the number
of rejections occurred in the rejection sampling. In fact, our experiment reveals that more or
less 5 times rejections have occurred.

(iv) Ignore some minor operations and trivial computations which do not affect the total asymptotic
complexity so much.

5.1 Asymptotic Complexity of FALCON

Using the previous assumption stated in Section 5, Table 1 is the detailed analysis of the asymptotic
complexity of KeyGen in FALCON from its algorithm whose total complexity to complete takes
Θ(d log d).
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Table 1: Asymptotic complexity of KeyGen in FALCON
No. Computation Complexity Location Comment(d is degree)

1 NTRUGen(ϕ, q) Θ(d log d) Step 1 of Alg. 1 See below†

2 FFT(f) Θ(d log d) Step 3 of Alg. 1
3 B × B̂∗ Θ(d log d) Step 4 of Alg. 1 Polynomial multiplications
4 ffLDL∗(G) Θ(d log d) Step 5 of Alg. 1 See below‡

5 Normalization Θ(d) Step 6–7 of Alg. 1 d leaf nodes in FALCON tree
6 gf−1 mod q Θ(d log d) Step 9 of Alg. 1 See the beginning of Section 5

Total Complexity of KeyGen : Θ(d log d)
† In Algorithm 6: NTRUGen(), Step 2 and Step 5(or 6) take Θ(d) and Θ(d log d), respectively.
Since the recurrence relation of NtruSolve is T (d) = T (d/2) + Θ(d log d), thus Step 8 in
Algorithm 6 takes Θ(d log d).
‡ Algorithm 9: ffLDL∗(G) in [3] recursively calls ffLDL∗(G0) and ffLDL∗(G1), and other
processes such as LDL∗ and Splitfft both take Θ(d), so the recursive formula is T (d) =
2T (d/2) + Θ(d). From this, we can get T (d) = Θ(d log d).

Algorithm 6: NTRUGen(ϕ, q)
Input: A monic polynomial ϕ ∈ Z[x] of degree n, a modulus q
Output: Polynomials f, g, F, G

1: σ ← 1.17
√

q/2n;
2: for i from 0 to n − 1 do

fi ← DZ,σ{f,g},0;
gi ← DZ,σ{f,g},0;
end

3: f ← Σifix
i;

4: g ← Σigix
i;

5: if NTT(f) contains 0 as a coefficient then
restart
end

6: γ ← max{∥(g, −f)∥, ∥( qf∗
ff∗+gg∗ , qg∗

ff∗+gg∗ )∥};
7: if γ > 1.17√

q then
restart
end
;

8: F, G ← NtruSolven,q(f, g);
9: if (F, G) = ⊥ then

restart
end
return f, g, F, G;

Tables 2 and 3 are the asymptotic complexity of Sign and Verif in FALCON, respectively
whose total complexity to complete takes Θ(d log d).
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Table 2: Asymptotic complexity of Sign in FALCON
No. Computation Complexity Location Comment(d is degree)

1 HashToPoint(r∥M, q, n) Θ(d) Step 2 of Alg. 2
2 FFT Θ(d log d) Step 3 of Alg. 2
3 ffSamplingn(t, T ) Θ(d log d) Step 6 of Alg. 2 See below †
4 (t − z)B̂ Θ(d log d) Step 7 of Alg. 2 Polynomial multiplications
5 ∥s∥2 Θ(d) Step 8 of Alg. 2 Calculating norm
6 invFFT Θ(d log d) Step 9 of Alg. 2
7 Compress Θ(d) Step 10 of Alg. 2 See below ‡

Total Complexity of Sign: Θ(d log d)
† ffSamplingd recursively calls ffSamplingd/2 two times, and other processes such as
splitfft and mergefft take Θ(d). So, the recursive formula is T (d) = 2T (d/2) + Θ(d). If
we solve this, we get T (d) = Θ(d log d).
‡ The compression function converts d degree polynomial into string of length slen(= 666).
slen ≈ d, so it is irrelevant to say that the compression function takes Θ(d).

Table 3: Asymptotic complexity of Verif in FALCON
No. Computation Complexity Location Comment(d is degree)

1 HashToPoint(r∥m, q, n) Θ(d) Step 1 of Alg. 3
2 Decompress(s, 8 · sbytelen − 328) Θ(d) Step 2 of Alg. 3 More or less on par with Compress in Table 2
3 c − s2h mod q Θ(d log d) Step 5 of Alg. 3 Polynomial multiplication
4 ∥(s1, s2)∥2 Θ(d) Step 6 of Alg. 3 Calculating norm

Total Complexity of Verif: Θ(d log d)

5.2 Asymptotic Complexity of SOLMAE

Based on the previous assumption stated in Section 5 as the same manner as we analyze the
asymptotic complexity of FALCON, Table 4 is the asymptotic complexity of KeyGen in SOLMAE
whose total complexity to complete takes Θ(d log d).

Table 4: Asymptotic complexity of KeyGen in SOLMAE
No. Computation Complexity Location Comment(d is degree)

1 Pairgen Θ(d log d) Step 1 of Alg. 4 See below †
2 NtruSolve(q, f, g) Θ(d log d) Step 2 of Alg. 4 Explained in Table 1
3 g/f mod q Θ(d log d) Step 3 of Alg. 4 Polynomial operations
4 Key computations Θ(d log d) Step 4-9 of Alg. 4 Polynomial operations

Total Complexity of KeyGen: Θ(d log d)
† In Algorithm 7:PairGen, Steps 1,3,and 5 all take Θ(d) time. Steps 2 and 4 take
Θ(d log d) time.
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Algorithm 7: PairGen
Input: A modulus q, a target quality parameter 1 < α, two radii parameters 0 < R− < R+
Output: A pair (f, g) with Q(f, g) = α
1: for i = 1 to d/2 do

xi, yi ← UnifCrown(R−, R+) ; /* see Algorithm 9 in [9] */
θx, θy ← U(0, 1);
φf,i ← |xi| · e2iπθx ;
φg,i ← |yi| · e2iπθy ;
end

2: (fR, gR) ←
(

FFT-1((φf,i)i≤d/2), FFT-1((φg,i)i≤d/2)
)
;

3: (f , g) ← (⌊fR
i ⌉)i≤d/2, (⌊gR

i ⌉)i≤d/2;

4: (φ(f), φ(g)) ← (FFT(f), FFT(g));
5: for i = 1 to d/2 do

if q/α2 > |φi(f)|2 + |φi(g)|2 or α2q < |φi(f)|2 + |φi(g)|2 then
restart;

end
end
return (f , g);

Table 5 is the asymptotic complexity of Sign in SOLMAE whose total complexity to complete
takes Θ(d log d).

Table 5: Asymptotic complexity of Sign in SOLMAE
No. Computation Complexity Location Comment(d is degree)

1 H(r∥M) Θ(d) Step 2 of Alg. 5 This is same as HashToPoint()
2 FFT(c) Θ(d log d) Step 3 of Alg. 5
3 Sample(ĉ, sk) Θ(d log d) Step 4 of Alg. 5 See below †
4 FFT-1(ŝ1) Θ(d log d) Step 5 of Alg. 5
5 Compress(s1) Θ(d) Step 6 of Alg. 5 Explained in Table 2

Total Complexity of Sign: Θ(d log d)
† In Sample (Algorithm 4 in [9],) there are some polynomial multiplications and ad-
ditions which take Θ(d log d) and calls PeikertSampler(Algorithm 5 in[9]) two times.
In PeikerSampler, Step 1 takes Θ(d) (Generating normal vector with N–sampler takes
Θ(d) and multiplying Σ takes Θ(d) since Σ is a diagonal matrix.). Steps 2, 3, and 5 take
Θ(d log d) since FFT computation is required. Step 4 takes Θ(d) simply since the loop
iterates d times.

The asymptotic complexity of verification in SOLMAE is omitted since the algorithm is identical
to verification in FALCON. Our asymptotic analysis discussed here is the first step to estimate
the execution time of FALCON and SOLMAE roughly. We can claim that KeyGen, Sign, Verif
procedures take Θ(d log d) together with FALCON and SOLMAE here. This analysis does imply
that FALCON and SOLMAE show the same execution times regardless of its implemented
platform.

6 Gaussian Sampler

Gaussian sampler plays a significant role in preventing quantum–secure signature schemes from
secret key leakage attacks described in [13]. FALCON and SOLMAE use discrete Gaussian
sampling with fixed and variable center values for efficient and secure sampling. We describe the
theoretical significance of N-Sampler (Algorithm 10 in [9]) and and the visual analysis UnifCrown
sampler (Algorithm 9 in [9]) used in SOLMAE specification [9].
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6.1 N-Sampler
A multivariate normal distribution is a natural distribution that is used in many fields. The
process of generating a sample that follows normal distribution is called Gaussian sampling. In
SOLMAE, we use an N-Sampler (which is the same as the Gaussian sampler) to generate the
FFT representation of d–dimensional standard normal distribution. To generate Rd vector that
follows the multivariate normal distribution of mean 0 and variance matrix d

2 · Id, we can generate
independent d

2 many random vectors that follow a bivariate normal distribution with mean 0 and
variance matrix d

2 · I2, then concatenate them together. Also, sampling bivariate normal distribution
with mean 0 and variance matrix d

2 · I2 can be done by using Box–Muller transform [5]. We describe
how it works: First, generate u1 and u2, two independent random numbers, that follow uniform
distribution between 0 and 1. Then, compute R and θ as shown below.

R =
√

−d · ln(u1), Θ = 2π · u2 (14)

Finally, calculate X and Y , to convert (R, Θ) into Cartesian coordinates.

X = R · cos(Θ), Y = R · sin(Θ) (15)

Theorem 6.1. (X, Y ) in Eq.(15) follows bivariate normal distribution with mean 0 and variance
matrix d

2 · I2.
Proof. By using the random variable transform theorem stated in [10], we show that this theorem
holds as follows:

pdfX,Y (x, y) = pdfU1,U2(u1, u2) ·

∣∣∣∣∣
∂u1
∂x

∂u1
∂y

∂u2
∂x

∂u2
∂y

∣∣∣∣∣

=

∣∣∣∣∣
− 2x

d · e− x2+y2
d − 2y

d · e− x2+y2
d

1
2π · −y

x2+y2
1

2π · x
x2+y2

∣∣∣∣∣ (u1 = e− x2+y2
d , u2 = 1

2π
tan−1( y

x
))

= (2π)−1 · |Σ|−1/2exp(−1
2xT Σ−1x)(x = (x, y)T , Σ = d

2 · I2)

where pdf means the probability density function. Thus, we see that (X, Y ) in Eq.(15) follows the
bivariate normal distribution. ⊓⊔

Figure 5 shows 10 bivariate normal samplings using Box–Muller transform generated by Python
script.

-1.5600039712701361 -1.1549240059661916
-1.4247377976757196 1.002076190337793
0.9969000368756169 -1.993812973058359
0.7107783282470497 0.0979834381524135

-0.4516874832960174 -0.9235298958094609
0.04449314089974015 1.1053117363335245
-0.9864717691744923 0.020836466309925545

0.887687084897981 -0.010185532828900362
-1.4066801271173832 -0.7906097922917507
0.9722996719071684 -1.6390701046508105

Fig. 5: 10 bivariate normal samplings

To check whether the N-Sampler used in SOLMAE reference implementation generates the
multivariate normal distribution of mean zero and variance matrix d

2 · Id properly, we made a
checking program in Python script that produces a sample of size 1,000, then plots the random
vectors’ projections to R2 and Chi-square QQ-plot using the built-in library provided in Python.
Fig. 6 illustrates the 2–dimensional plot of this N-Sampler. Figures 6(a) and 6(b) are its scatter
plot and QQ–plot, respectively. From this experiment, we can see that this N-Sampler works
properly.
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(a) Scatter plot (b) QQ–plot

Fig. 6: Plot of N-Sampler

6.2 UnifCrown Sampler

UnifCrown sampler used in SOLMAE is a method that generates a random vector that fol-
lows uniform distribution over Ω = {(x, y) ∈ R2|R2

min < x2 + y2 < R2
max, x > 0, y > 0}

(i.e., the probability density function of random vector (X, Y ) is fX,Y (x, y) = 4
π·(R2

max−R2
min

) ·
I(R2

min
<x2+y2<R2

max,x>0,y>0)). With some calculations, we can easily see that if Uρ, Uθ follows uni-
form distribution over [0, 1], (X, Y ) =

√
R2

min + Uρ(R2
max − R2

min)(cos( π
2 · Uθ), sin( π

2 · Uθ)) follows
uniform distribution over Ω.

To verify this implementation visually, the scatter plot of UnifCrown sampler with 10,000
samples was depicted in Fig. 7. From this, we can see that UnifCrown sampler works properly.

Fig. 7: Scatter plot of UnifCrown Sampler

7 Sample Execution and Performance of FALCON–512 and
SOLMAE–512

Using Python implementation of SOLMAE in https://github.com/kjkim0410/SOLMAE_python_
512 and FALCON [3], we will describe their practical execution and performance comparison here.

For your clear understanding how FALCON–512 and SOLMAE–512 operate step-by-step,
we run the total execution of FALCON–512 and SOLMAE–512 once using the same 512-byte
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message and same 40-byte salt which was randomly generated by using urandom() in Python os
module as below:

Salt: b730f4e48087d8c5d6dcc085a5ad47437fd4da454c4598142b5284a794660a2cf5322d3425c631c2
Length of Salt: 40

Message: bf467a6d349c6409eba490a9ec34443ad9c009b49a0a0e71974893...d147eb98e818e600e8f6
Length of Message: 512

Each algorithm generates a set of secret keys (f, g, F, G) and public key (h) at first using its
KeyGen procedure. Due to the space problem, we printed out the partial output of the interme-
diate values such as HashtoPoint, s0 signature, s1 signature, norm of signature with the
allowable bound of signature. Also, the values of the message, key, and signal are too big, so
they are partially expressed in this paper. The full information of executing FALCON–512 and
SOLMAE–512 can refer to FALCON_512_EX2.txt and SOLMAE_512_EX2.txt, respectively at blog
https://ircs.re.kr/?p=1769 for details.

7.1 Sample Execution of FALCON–512

The following is a partial printout of key generation, signification, and verification with FALCON–
512.

f: [-3, 1, 0, -5, 10, -5, 3, 4, 2, 4, 4, ..., 3, -3, 2, -7, 5, 2, 3, 4, -1, -2]

g: [-3, -3, 4, 5, 5, -6, 10, 1, -4, 3, ..., -9, -3, 1, -2, -7, -3, 7, -2, 0, 2]

F: [23, 10, 2, -16, 14, -26, -20, -1, ..., -7, -14, -24, -21, -23, 18, -1, 44]

G: [-2, 1, 4, 2, -25, 50, 14, 28, -19, ..., -32, -10, -2, 14, 1, -14, -12, 5]

h: [2923, 7873, 9970, 6579, 16, 10828, 337, 8243, ..., 6409, 6857, 2467, 5207]

HashToPoint: [8332, 4711, 5492, 4716, 9558, 8284, ..., 6556, 7525, 11628, 5028]

s0 Signature: [-34, 182, -7, 82, -86, 113, ..., 204, 212, 349, -65, -89, -3]

s1 Signature: [-120, -58, 30, 133, 126, 13, ..., -205, -50, 114, -502, 290, 136]

Norm of Signature : 27,222,436
Bound of Signature: 34,034,726

Signature: f8dd47a0abf43635d313e9d5a5dbb7ec2354a805d3...420000000000000000000000
Length of Signature: 666

Verification result = True

7.2 Sample Execution of SOLMAE–512

The following is a partial printout of key generation, signification, and verification with SOLMAE–
512.

f: [0, 1, -3, -6, -3, 2, -4, 1, -1, 0, ..., 2, -3, -5, 0, -5, -5, -1, 1, -4, 3]

g: [5, 3, 5, 2, 0, 4, -10, -6, -3, 1, -2, ..., 2, 4, -2, 4, -3, 3, 3, 2, 2, -3]

F: [-4, 18, 18, -36, 4, -24, 45, 42, 23, 31, ..., 3, 0, 0, 40, 42, -20, -35, 19]
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G: [27, -11, 70, -13, 19, -10, -37, 20, ..., -45, 12, -3, -32, 48, 14, -16, -1]

h: [11703, 2428, 2427, 11947, 9582, 8908, 3567, ..., 6080, 7718, 3106, 11973]

HashToPoint: [8332, 4711, 5492, 4716, 9558, 8284, ..., 6556, 7525, 11628, 5028]

s0 Signature: [74, -6, 253, 187, -285, 210, ..., -225, -195, 364, 325, 138, -44]

s1 Signature: [-50, -47, 198, 13, 218, -201, ..., 114, -234, 5, -119, -41, 170]

Norm of Signature : 30,454,805
Bound of Signature: 33,870,790

Signature: 4ac35f53b674a92dd3ef7f28a9cee2bd2cc48cc8c471d1...9ac80000000000000000
Length of Signature: 666

Verification result = True

7.3 Performance Comparison of FALCON–512 and SOLMAE–512

Note that Python code is not so good tool to evaluate the exact performance of FALCON and
SOLMAE. However, we can grab a rough idea of their relative performance which one can work
fast. The specification of our test platform is Intel Core i7–9700 CPU at 3 GHz clock speed with
16 GRAM. We limited our experiment to the relative performance of KeyGen, Sign, and Verif
procedures on FALCON–512 and SOLMAE–512 only. We executed 3 cases of each test which is
executed 1,000 times iteration.

Tables 6 and 7 indicates the average time in second of KeyGen and Sign and Verif procedures
of FALCON–512 and SOLMAE–512, respectively.

Table 6: Average time of KeyGen
FALCON–512 SOLMAE–512

Test 1 3.6316 2.7346
Test 2 3.6908 2.7633
Test 3 3.7250 2.7306

Table 7: Average time of Sign and Verif
Time of Sign Time of Verif

Algo. FALCON–512 SOLMAE–512 FALCON–512 SOLMAE–512
Test 1 6.4849 × 10−2 5.9507 × 10−2 5.4598 × 10−3 5.4609 × 10−3

Test 2 6.4664 × 10−2 5.9432 × 10−2 5.4359 × 10−3 5.3684 × 10−3

Test 3 6.4900 × 10−2 5.8873 × 10−2 5.4271 × 10−3 5.3648 × 10−3

Our experiments show almost indistinguishable performances between FALCON–512 and
SOLMAE–512 by their Python implementation in Sign and Verif procedures while the KeyGen
procedure of FALCON takes longer time than that of SOLMAE. We couldn’t check the performance
of FALCON–1024 and SOLMAE–1024 due to the deadlock issue of our experiment with the
limited precision inherited from Python language. The SOLMAE specification [9] states that
the Sign procedure of SOLMAE takes 2 times faster than that of FALCON by the reference
implementation of SOLMAE in C language.
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8 Concluding Remarks

FALCON is claimed to have the advantage of providing short public keys and signatures as well
as high–security levels; plagued by a contrived signing algorithm, not very fast for signing and
hard to parallelize; very little flexibility in terms of parameter settings. However, SOLMAE has a
simple, fast, parallelizable signing algorithm, with flexible parameters with its novel key generation
algorithm.

In this paper, after giving a brief description of the specification of FALCON and SOLMAE,
we found that their asymptotic computational complexity of KeyGen, Sign and Verif procedures
take Θ(n log n) simultaneously. Also, our computer experiments using their Python implementation
exhibit empirically that KeyGen of FALCON–512 only takes longer time than that of SOLMAE–
512 by about a second. But we can say that this is not an exact evaluation of their performance by
Python implementation.

Further work such as elaborated analysis of computational complexity on FALCON and
SOLMAE asymptotically is left to do next.
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Abstract. Post-quantum cryptography is expected to become one of the
fundamental technologies in the field of security that requires public-key
cryptosystems, potentially replacing standards such as RSA and ECC,
as it is designed to withstand attacks using quantum computers. In
South Korea, there is an ongoing standardization effort called the KpqC
(Korean Post-Quantum Cryptography) competition for developing post-
quantum cryptography as a national standard. The competition is in its
first round, and it has introduced a total of 16 candidate algorithms for
evaluation.
In this paper, we analyze the security of five algorithms among the eight
lattice-based schemes in the first round of the KpqC competition. We
assess their security using M. Albrecht’s Lattice Estimator, focusing on
problems related to LWE (Learning with Errors) and LWR (Learning
with Rounding). Additionally, we compare the security analysis results
with the claims in the proposal documents for each algorithm. When an
algorithm fails to achieve the level of security in its proposal, we suggest
potential types of attacks that need to be considered for further analysis
and improvement.

Keywords: Post-Quantum Cryptography, KpqC Competition, LWE, LWR

1 Introduction

In 1994, Peter Shor proposed polynomial-time quantum algorithms for solving
discrete logarithm and factoring problems, posing a significant threat to the se-
curity of standard public-key cryptosystems such as RSA and ECC [32]. Against
this backdrop, there have been active international standardization efforts for
Post-Quantum Cryptography (PQC), which aims to provide new standards that
are resistant to attacks using quantum computers. Since the end of 2016, the Na-
tional Institute of Standards and Technology (NIST) in the United States has
been conducting a standardization project for PQC in the areas of Key Encapsu-
lation Mechanism (KEM) and digital signature. Over three rounds of evaluations,

⋆ corresponding author
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NIST selected one KEM and three signature schemes as standards in 2022 [28].
Currently, there is an ongoing process for additional selections and evaluations
in the fourth round and an on-ramp for the digital signature category [29]. Sim-
ilarly, in South Korea, a national standardization competition for post-quantum
cryptography, known as the KpqC competition, began in 2022 [10].

Lattice-based cryptography is a field of post-quantum cryptography that re-
lies on the hard problems related to lattices, including NTRU [19], Learning
with Errors (LWE) [31, 9], Learning with Rounding (LWR) [30], and Short In-
teger Solution (SIS) [1]. It has gained significant attention and recognition due
to its fast computational speed and balanced performance in terms of commu-
nication overhead compared to other post-quantum cryptosystems: in the U.S.
NIST standardization competition, the one selected KEM standard and two dig-
ital signature schemes out of a total of selected three post-quantum signatures
are lattice-based schemes.

In the context of the KpqC competition, the lattice-based submissions in the
first round include three and five schemes in the Key Encapsulation Mechanism
(KEM) and digital signature categories, respectively. Each of these schemes is
built upon specific underlying problems, which are summarized in Table 1.

Table 1: KpqC Competition - Round 1 Lattice-based Submissions

Category Algorithm Base Problem

KEM

NTRU+ NTRU, RLWE

SMAUG MLWE, MLWR

TiGER RLWR, RLWE

Signature

GCKSign GCK

HAETAE MLWE, MSIS

NCC-Sign RLWE, RSIS

Peregrine NTRU, RSIS

SOLMAE NTRU, RSIS

In this paper, we analyze the security of Learning with Errors (LWE) and
Learning with Rounding (LWR) based algorithms, a total of 5 schemes (NTRU+,
SMAUG, TiGER, HAETAE, NCC-Sign), among the lattice-based algorithms
in the 1st round of the KpqC competition. We analyze the security of the
LWE/LWR problem instances used in each algorithm. For security analysis of
the LWE/LWR problems, we utilize M. Albrecht’s Lattice Estimator [3]. The
Lattice Estimator is an open-source tool written in Sage that quantifies specific
attack complexities for various types of LWE attacks, including those described
in [3]. It takes LWE (LWR) parameters as inputs and computes the attack com-
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plexities along with additional parameters required for the respective attack
methods.

Using the Lattice Estimator for security analysis, we derive classical security
estimation results for the 5 algorithms, as shown in Table 2. For the time com-
plexity calculation of the BKZ algorithm, we employ the Core-SVP model [4],
which is consistent with the methods used in the proposal documents for 4
of the 5 algorithms, excluding NCC-Sign. In Table 2, the column ‘Claimed’ is
the claimed security shown in the proposal documents for each algorithm, and
‘Estimated’ is the security that we estimated by using the Lattice Estimator.
For NTRU+, we observed that the description in the specification document
is different from the reference implementation which is reflected in our security
estimations with respective cases. More precisely, the LWE secret, which is sam-
pled in the encapsulation phase and denoted as r in their scheme description, is
sampled from {0, 1}n according to the specification document (See Algorithm 6
and 9 of the NTRU+ document in [10]), while it is sampled from the centered bi-
nomial distribution in their implementation. We estimate both cases and denote
the security estimation for the NTRU+ version of the specification document in
parentheses. Also, for NCC-Sign, we additionally estimated the security without
the Core-SVP model shown in the parentheses, since the proposal document of
NCC-Sign presented the security result without using the Core-SVP model. The
results are summarized as follows.

– We have observed a discrepancy between the claimed attack complexities
for NTRU+ and the estimated attack complexities derived using the Lattice
Estimator. For the NTRU+576, NTRU+768, and NTRU+864 parameters,
we achieve 115.9 bits, 164.7 bits, and 189.2 bits, respectively, for the version
of the reference implementation. These values exhibit a difference of 0.1 to
3.7 bits compared to the classical security levels claimed in the specification
document. Also, larger gaps were observed between the claimed security and
the estimation for the version of the specification document that utilizes the
LWE with uniform binary secrets.

– For the SMAUG1280 parameters (Security level V) and TiGER256 (Security
level V), classical security levels of 260.3 bits and 263 bits were claimed, but
when measured using the Lattice Estimator, the attack complexities were
found to be 259.2 bits and 262.0 bits, respectively.

– For HAETAE, the claimed parameters from the proposal document and the
security analysis results of the Lattice Estimator are found to be similar,
with an error range of less than 1 bit.

– For NCC-Sign, the proposal document presents security analysis results
without using the Core-SVP model, and it is confirmed that the measured
results using the Lattice Estimator were consistent. However, when mea-
sured using the Core-SVP model, it is determined that for parameters I,
III, and V, the classical security levels were 123.2 bits, 190.1 bits, and 273.3
bits, respectively. This shows a difference of 18 to 24.5 bits compared to the
results without the Core-SVP model in the NCC-Sign proposal document.
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Table 2: Claimed vs. Estimated Security for the Round 1 Lattice-based Submis-
sions. For NTRU+, the estimated results for the specification document version
are reported in parentheses. For NCC-Sign, the estimated results without the
Core-SVP model are reported in parentheses.

Security Level Claimed Estimated

NTRU+

I (n = 576) 116 115.9 (108.9)

I (n = 768) 161 164.7 (156.5)

III 188 189.2 (175.4)

V 264 263.4 (243.5)

SMAUG

I 120.0 120.0

III 180.2 180.2

V 260.3 259.2

TiGER

I 130 130.5

III 200 206.1

V 263 262.0

HAETAE

I 125 125.5

III 236 236.1

V 288 287.1

NCC-Sign

I 147.7 123.2 (147.7)

III 211.5 190.1 (211.5)

V 291.3 273.3 (291.3)

Based on the results, the additional attacks that each scheme needs to further
consider through the Lattice Estimator are as follows:

– For SMAUG, it is confirmed that the SMAUG512 and SMAUG768 parame-
ters achieve the claimed security levels. However, in the case of SMAUG1280,
the claimed values and the estimated values differ for all attacks (usvp, bdd,
bdd hybrid, dual, dual hybrid), which are displayed in Table 3. We remark
that the displayed measurements are for the LWR instances.

– For TiGER, it is confirmed that the TiGER128 and TiGER192 parameters
achieved the claimed security levels. However, for the TiGER256 parameters,
the security level against dual hybrid attacks differs between the claimed
and the estimated values, which are displayed in Table 4. The displayed
measurements are for the LWR instances when the dual hybrid attack is
applied.

Paper Organization This paper is structured as follows: In Chapter II, we intro-
duce lattice-based hard problems, LWE and LWR, and provide definitions for
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Table 3: Claimed vs. Estimated Classical Security for the SMAUG1280 param-
eter set

claimed estimated

usvp 317.1 316.2

bdd 319.5 318.4

bdd hybrid 290.0 288.5

dual 329.1 328.2

dual hybrid 260.3 259.2

Table 4: Claimed vs. Estimated Classical Security for the TiGER256 parameter
set

claimed estimated

dual hybrid ≥ 263 262.0

KEM and digital signatures. In Chapter III, we briefly describe the key features
of the KpqC 1st round candidates, including three KEM schemes and two digital
signature schemes. In Chapter IV, we present the time complexity computation
methods for the BKZ algorithm used in the security analysis of LWE/LWR-
based algorithms and discuss the attacks covered in the Lattice Estimator. In
Chapter V, we present the security analysis results obtained from the Lattice
Estimator for each scheme’s proposed parameters and compare them with the
claimed security. Finally, in Chapter VI, we summarize the main results and
conclude the paper.

2 Preliminaries

2.1 The LWE and LWR Problem

In this section, we introduce lattice-based hard problems, Learning with Errors
(LWE)[31] and Learning with Rounding (LWR)[30].

2.1.1 LWE

Let m,n, q be positive integers, s ∈ Zn
q be a secret vector and χ be an error

distribution on Z. The LWE distribution ALWE
m,n,q,χ(s) consisting of m samples is

obtained as follows: For each i ∈ {1, 2, . . . ,m}, compute

bi = ⟨⃗ai,s⃗⟩+ ei mod q
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by choosing a vector a⃗i ∈ Zn
q uniformly and a small error ei ∈ Z from the

distribution χ, and then output {(⃗ai,bi)}mi=1 as the result.
The decision LWE problem is to distinguish either given samples {(⃗ai,bi)}mi=1

is from the distribution ALWE
m,n,q,χ or from the uniform distribution. The search

LWE problem is to find s ∈ Zn
q , given independent samples {(⃗ai,bi)}mi=1 from

ALWE
m,n,q,χ(s).

Variants of LWE. Let n and q be positive integers and f(x) ∈ Z[x] an ir-
reducible polynomial of degree n. We define a polynomial ring R = Z[x]/f(x)
and its quotient ring Rq = Zq[x]/(f(x)) modulo q. The Module LWE (MLWE)
problem [8] is a variant of the LWE problem defined over a module Rk

q for pos-

itive integers k. The distribution AMLWE
m,n,q,k,χ(s⃗) for the secret value s⃗ ∈ Rk

q is

defined as follows: For i ∈ {1, 2, . . . ,m}, sample uniform random a⃗i ∈ Rk
q and

ei ∈ R ← χn, calculate bi = ⟨⃗ai, s⃗⟩+ei mod q ∈ Rq and return the set of pairs
{(⃗ai,bi)}mi=1 as results. It is also classified into the decision MLWE and search
MLWE problems as in the LWE problem. For the specific case of MLWE when
the dimension of module k is 1, we call it as Ring-LWE (RLWE) problem [25].

2.1.2 LWR

The LWR problem introduced by Banerjee et al. [6] obfuscates the secret by
applying a deterministic rounding procedure (⌊·⌉) to linear equations instead
of adding errors sampled from discrete Gaussian distributions. Given positive
integers m,n, q, p, let s⃗ ∈ Zn

q be an n-dimensional secret vector. The LWR dis-

tribution ALWR
m,n,q,p(s⃗) over Zm×n

q × Zm
p consisting of m samples is obtained as

follows : For i ∈ {1, 2, . . . ,m}, compute bi = ⌊(p/q) · (⟨⃗ai, s⃗⟩ mod q)⌉ where
a⃗i ∈ Zn

q is uniformly sampled, and return the set of pairs {(⃗ai,bi)}mi=1. The deci-
sion LWR problem is to distinguish either given samples {(⃗ai,bi)}mi=1 is from the
distribution ALWR

m,n,q,χ or from the uniform distribution. The search LWR problem

is to find s⃗ ∈ Zn
q , given independent samples {(⃗ai,bi)}mi=1 from ALWR

m,n,q,p(s⃗). This
definition can be extended to Ring-LWR (RLWR) and Module-LWR (MLWR)
by using vectors of polynomials as in the LWE problem.

2.2 The Round 1 LWE/LWR-based Candidates

2.2.1 KEM

A Key Encapsulation Mechanism (KEM) is a triple of algorithms, Π=(KeyGen,
Encaps, Decaps), where

– (pk, sk) ← KeyGen(1λ): The key generation algorithm takes security param-
eter λ > 0 as an input and then outputs the pair of public key and private
key (pk, sk).

– (c,K) ← Encaps(pk): The encapsulation algorithm takes the public key pk
as an input and then outputs a pair of secret key K and ciphertext c.
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– (K or ⊥) ← Decaps(sk, c): The decapsulation algorithm takes the private
key sk and the ciphertext c as input, and then outputs the shared key K or
⊥.

For correctness, it is required that, for all (pk, sk) ← KeyGen(1λ) and for
all (c,K) ← Encaps(pk), Decaps(sk, c) = K holds. In this section, we review
the distinguished features of the KpqC Round 1 lattice-based KEMs NTRU+,
SMAUG, and TiGER.

NTRU+. NTRU+ is an algorithm that improves the efficiency of the existing
NTRU scheme [19]. It follows the strategy to construct NTT (Number The-
ory Transform)-friendly settings for NTRU which has been introduced in NT-
TRU [26] and NTRU-B [17]. The security of NTRU+ is based on the NTRU
and RLWE problems. The main features are as follows:

– NTRU+ utilizes the NTT-friendly polynomial rings Rq = Zq[x]/(f(x)),
where f(x) = xn − xn/2 + 1 is a cyclotomic trinomial of degree n = 2i3j ,
and adapt NTT in all computations.

– In the encapsulation and decapsulation, new methods for secret key encoding
(SOTP) and decoding (Inv) were proposed. The SOTP and Inv operations for

m ∈ {0, 1}n, u = (u1, u2) ∈ {0, 1}2n, and y ∈ {−1, 0, 1}n are designed as
follows.

SOTP(m,u) = (m⊕ u1)− u2 ∈ {−1, 0, 1}n (1)

Inv(y, u) = (y + u2)⊕ u1 (2)

One can easily check Inv(SOTP(m,u), u) = m.
– To satisfy IND-CCA (Indistinguishability against adaptive Chosen-Ciphertext

Attacks) security, NTRU+ applies a modified transform of the conventional
Fujisaki-Okamoto (FO) transform [18]. The difference is that the decapsula-
tion procedures require re-encryption when applying the FO transform, while
NTRU+ removes the re-encryption in the decapsulation by recovering the
random polynomial (denoted by r in their scheme) used in the encapsulation
twice and then comparing between them.

SMAUG. SMAUG is designed based on the hardness of MLWE and MLWR
problems, both of which utilize the sparse ternary secrets following the ap-
proaches in Lizard [14] and RLizard [21]. The main features are as follows.

– SMAUGKEM is obtained by first constructing an IND-CPA (Indistinguisha-
bility against Chosen-Plaintext Attacks) secure public-key encryption (PKE)
scheme and then applying the FO transform [18] on it to achieve the IND-
CCA security.

– The secret keys for MLWE and MLWR are sampled as sparse ternary vectors
with fixed Hamming weights, respectively.

– The moduli q and p are set to powers of 2 in order to replace the rounding
operations in the encapsulation with bit-wise shift operations.
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TiGER. TiGER is designed based on the RLWE and RLWR problems with
sparse secrets. The main features are as follows.

– TiGER consists of an IND-CPA PKE scheme, and an IND-CCA KEM ob-
tained by applying the FO transform to it.

– All integer modulus in the scheme are set to be power of 2 for the same
reason as in SMAUG, in order to replace the rounding operations with bit-
wise shifts.

– TiGER pre-defines the Hamming weight of the secrets of RLWE and RLWR
and generates sparse vectors. Additionally, the errors for RLWE are also
sampled as sparse vectors.

– The sizes of ciphertexts and public keys are relatively small because of using
a small modulus of 1 byte (q = 256) for all suggested parameters.

– When encoding the secret key in TiGER KEM, they employ an Error Cor-
recting Code (ECC) to reduce decryption failure rates. Therefore, it is pos-
sible to adjust the decryption failure rate to be negligible in the security
parameter, despite using the small modulus q. They utilize XEf [5], D2 [4]
for the ECC methods.

2.2.2 Digital Signatures

Digital signatures is a triple of algorithms Π=(KeyGen, Sign, Verify). The key
generation (KeyGen) algorithm generates a pair of a public key and a private
key. The signing (Sign) algorithm takes the private key and a message as inputs
to generate a signature. The verification (Verify) algorithm takes the public key,
message, and signature value as inputs to verify the validity of the signatures.
These can be summarized as follows:

– (pk, sk) ← KeyGen(1λ): The key generation algorithm takes security param-
eter λ as an input and then outputs a pair of public key and private key
(pk, sk).

– σ ← Sign(sk,m): The signature algorithm takes the private key sk and a
message m as inputs and then outputs a signature σ.

– 1 or 0 ← Verify(pk,m, σ): The verification algorithm takes the public key
pk, a message m, and a signature σ as inputs. It outputs 1 if the signature
is valid, and 0 otherwise.

In this section, we summarize the distinguished features of the KpqC Round 1
lattice-based signature schemes HAETAE and NCC-Sign.

HAETAE. HAETAE utilizes the Fiat-Shamir with Aborts paradigm [23, 24]
as in the CRYSTALS-Dilithium [16], one of the standards selected in the NIST
PQC standardization project. HAETAE uses a bimodal distribution proposed
in the rejection sampling of BLISS signatures [15]. The main features are as
follows:

– In lattice-based digital signature algorithms, the distribution used for rejec-
tion sampling has a significant impact on the signature size. HAETAE uses
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a hyperball uniform distribution to reduce the signature size, albeit at the
cost of speed compared to Dilithium.

– HAETAE leverages a module structure and uses a predefined polynomial
ring Rq = Zq[x]/(x

256 + 1) for all parameter sets, making it easy to adjust
parameters according to the required security level.

NCC-Sign. NCC-Sign is a digital signature algorithm that combines the de-
sign rationale of CRYSTALS-Dilithium and NTRU prime [7], which were also
round 3, 4 candidates for NIST PQC standardization project KEM algorithms.
NCC-Sign also adopts Fiat-Shamir with Aborts paradigm as in HAETAE and
Dilithium, but instead of using a cyclotomic polynomial ring ofRq = Zq[x]/(x

n+
1), it uses the non-cyclotomic polynomial ring of the formRq = Zq[x]/(x

p+x+1),
where p is a prime. The main features are as follows:

– Due to the use of a non-cyclotomic ring, NTT cannot be applied to polyno-
mial multiplications. In NCC-Sign, polynomial multiplication is computed
using the Toom-Cook method, one of the divide-and-conquer techniques.
For a prime p such that p ≤ 4n, n ∈ Z, the algorithm computes polynomial
multiplication of degree 4n and exploits Toom-Cook-4-way and Karatsuba
multiplication.

3 Security Analysis Methods

3.1 Time complexity Estimation of the BKZ algorithm

The BKZ algorithm [12] is a state-of-the-art lattice basis reduction algorithm
used to find short bases within a given lattice, and it exhibits exponential time
complexity. To analyze the security of the LWE/LWR-based algorithms, the
instances of LWE/LWR used in the algorithms are induced to the problems to
find short vectors in lattices which are given by the choices of attack strategies
such as Dual and Primal attacks. Hence, it can be solved by using the BKZ
algorithm.

The core idea behind the BKZ algorithm is to iteratively apply a Shortest
Vector Problem (SVP) solver to sub-lattices of dimension smaller than the orig-
inal lattice. When the dimension of the sub-lattice to which the SVP solver is
applied is β > 0, it is referred to as β-BKZ, and this sub-lattice is called a
‘block’.

The Core-SVP model [4] is a measurement model used to estimate the time
complexity of the BKZ algorithm from a conservative perspective. When calcu-
lating the time complexity of the BKZ algorithm using the Core-SVP model,
the time complexity of β-BKZ is estimated to be 2c·β , which is a lower bound of
the time complexity of a single application of the SVP solver

(
2c·β+o(β)

)
, where

c ∈ [0, 1] is constant. This conservative model is designed to ensure that the
security predictions of the BKZ algorithm remain unaffected by improvements
in the efficiency of either the number of iterations of applying the SVP solver or
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the efficiency of the SVP solver itself, thus preserving the algorithm’s security
guarantees.

In the Core-SVP model, the constant c ∈ [0, 1] used for calculating the BKZ
time complexity is determined based on the efficiency of the SVP solver. In [4],
it was employed as shown in Table 5. For quantum SVP solvers, continuous
improvements in efficiency have led to the existence of algorithms with cQ =
0.257 [11]. In this paper, we calculate the BKZ time complexity using c = 0.292
for classical security. When using the Core-SVP model, quantum security (in
bits) can be simply estimated by multiplying classical security (in bits) with
cQ/0.292.

Table 5: The BKZ time complexity (T ) for classical security and quantum secu-
rity in the Core-SVP model

classical quantum

c 0.292 0.265

T 20.292β 20.265β

3.2 Dual Attack

The dual attack identifies a short vector v that is orthogonal to matrix A. Given
(A, b⃗) ∈ Zk×l

q ×Zk
q either from the LWE distribution or the uniform distribution,

a lattice Λdual
m can be defined as follow. Let A[m] be the upmost m× l sub-matrix

of A for m ≤ k.

Λdual
m :=

{
(u⃗, v⃗) ∈ Zm × Zl : A⊤

[m]u⃗+ v⃗ = 0 mod q
}

If it is the case b⃗ = As⃗ + e⃗, with a short non-zero element (u⃗, v⃗), an attacker

can compute ⟨u⃗, b⃗[m]⟩ = −⟨v⃗, s⃗⟩ + ⟨u⃗, e⃗[m]⟩, where b⃗[m] and e⃗[m] are the upmost

m-dimensional sub-vector of b⃗. Hence, the attacker can determine it is an LWE
instance if ⟨u⃗, b⃗[m]⟩ is short enough. Therefore, finding a sufficiently short non-

zero vector in the lattice Λdual
m implies solving the decision-LWE problem. To

find a short lattice element of Λdual
m , the attack employs the β-BKZ lattice basis

reduction algorithm.

3.3 Primal Attack

The primal attack on LWE addresses the bounded distance decoding (BDD)
problem directly. In other words, when provided with LWE samples (A, b), it
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seeks a vector w = As such that ∥b− w∥ is unusually small. There are two main
strategies to solve BDD: the first strategy is to utilize Babai’s nearest algorithm
with lattice basis reduction [22], and the second is to reduce BDD problem
into unique-SVP (uSVP) problem and solve it using the lattice basis reduction
algorithms [2, 4]. Here, we will elaborate on the second method, which is more
widely considered.

Given an LWE instance (A, b = As+ e) ∈ Zm×n
q × Zm

q , a lattice Λm can be

defined as follow. B =
(
A[m] |Im| b[m]

)
∈ Zm×(n+m+1)

q .

Λm =
{
v ∈ Zn+m+1

q : Bv mod q
}

Therefore, a short non-zero vector in the lattice Λm can be transformed into
the non-trivial solutions for the LWE equation. This attack utilizes the β-BKZ
algorithm to find the sufficiently short vector in the lattice Λm.

3.4 Hybrid Attack

An attack that combines techniques, such as meet-in-the-middle, with either Pri-
mal or Dual attacks is known as a hybrid attack. Hybrid attacks are generally
not as efficient as Primal or Dual attacks, but they can be effective in cases
where the secret key in LWE follows a specialized distribution. In [20], by in-
corporating lattice reduction techniques and implementing a meet-in-the-middle
(MITM) strategy, it is possible to diminish the complexity of the attack on the
NTRUEncrypt private key from 284.2 to 260.3 for the parameter set for 80-bit
security. Also, Jung Hee Cheon et al. [13] introduced a hybrid attack strategy
that integrates dual lattice attacks with the MITM approach. This approach
involves increasing the error size while simultaneously reducing the dimension
and Hamming weights of the secret vector. As the MITM attack cost is strongly
correlated with the dimension of the secret vector but less affected by error size,
this trade-off significantly reduces the overall cost of the MITM attack when
applying it to the LWE with sparse secrets.

4 KpqC Round 1 LWE/LWR-based algorithms Security
analysis

4.1 Parameters

In this section, we summarize the proposed parameters used in the underlying
LWE/LWR instances in the respective schemes. For simplicity, we use the same
notations as in the original specification documents.

NTRU+ Parameters. NTRU+ is based on NTRU and RLWE, and the pro-
posed parameters used to analyze attack complexities of RLWE are as shown in
Table 6. They use the quotient ring Rq = Z[X]/(Xn − Xn/2 + 1) for dimen-
sion n = 2i3j and fixed modulus q = 3457 for all parameters. For the RLWE
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secret distribution and error distribution, they utilize the uniform distribution
on (0, 1) and the centered binomial distribution in their specification document
and reference implementation, respectively.

Table 6: NTRU+ Proposed parameter sets

576 768 864 1152

n 576 768 864 1152

q 3457 3457 3457 3457

security level I I III V

SMAUG Parameters. SMAUG is based on MLWE/MLWR, and the param-
eters used for the attack on MLWE/MLWR are as shown in Table 7. They use
the quotient ring Rq = Zq[X]/(Xn + 1) for power of 2 integer n and positive
integer q. The secret keys for each LWE and LWR instance, denoted as s and r
are sampled as sparse vectors with fixed Hamming weights, where the Hamming
weights are denoted as hs, hr, respectively. σ is the standard deviation of the
discrete Gaussian distribution to sample the errors in LWE.

Table 7: SMAUG Proposed parameter sets

SMAUG128 SMAUG192 SMAUG256

n 512 768 1280

m 512 768 1280

q 1024 1024 1024

p 256 256 256

hr 132 147 140

hs 140 150 145

σ 1.0625 1.0625 1.0625

security level I III V

TiGER Parameters. TiGER is based on RLWR/RLWE and the parameters
used for the attack are as shown in Table 8. They use the quotient ring Rq =
Zq[X]/(Xn + 1) for a power of 2 integer n and a positive integer q. k1 and k2
are power of 2’s and represents the modulus used for ciphertext compression.
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hs and hr are the Hamming weights of the secret key and the ephemeral secret
used for encapsulation. he is the Hamming weight of the LWE error.

Table 8: TiGER Proposed parameter sets

TiGER128 TiGER192 TiGER256

n 512 1024 1024

m 512 1024 1024

q 256 256 256

p 128 64 128

hr 128 84 198

hs 160 84 198

he 32 84 32

k1 64 64 128

k2 64 4 4

security level I III V

HAETAE Parameters. HAETAE is based on MLWE/MSIS and the param-
eters used for the attack are as shown in Table 9. They use the quotient ring
Rq = Zq[X]/(Xn + 1) for positive integers n and q which are set to 256 and
64513, respectively, for all parameter sets. (k, ℓ) denotes the matrix size of the
module structure. They select the private key from the uniform distribution over
[−η, η], and τ refers to the Hamming weight of the binary challenge.

Table 9: HAETAE Proposed parameter sets

HAETAE120 HAETAE180 HAETAE260

n 256 256 256

q 64513 64513 64513

(k, ℓ) (2, 4) (3, 6) (4, 7)

η 1 1 1

τ 39 49 60

security level I III V
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NCC-Sign Parameters. NCC-Sign is based on RLWE/RSIS and the pa-
rameters used for the attack are shown in Table 10. They use the ring Rq =
Zq[X]/(Xp − X − 1) for prime numbers p and q. Also, they select the private
key from the distribution over [−η, η], and τ refers to the number of nonzero
coefficients in {−1, 0, 1}.

Table 10: NCC-Sign Proposed parameter sets

I III V

p 1021 1429 1913

q 8339581 8376649 8343469

η 2 2 2

τ 25 29 32

security level I III V

4.2 Analysis using the Lattice Estimator

In this section, we report our estimated results for the lattice attacks in [3]
outlined in Section 3. The results of security analysis using the Lattice Estimator
for NTRU+, SMAUG, TiGER, HAETAE, and NCC-Sign schemes are shown in
Table 11, Table 12, Table 13, Table 14, Table 15, Table 16, and Table 17.

The column names in each table, “sec” and “β” represent classical security in
bits and BKZ block size respectively. For the BKZ time complexity estimation,
we use the Core-SVP model except Table 17. Among the row names in each
table, “usvp” refers to the attack complexity for the Primal attack described in
Section 3.3, and bdd, bdd hybrid, bdd mitm hybrid attacks are variations of
the Primal attack. Also, “dual” means the attack complexity for the Dual attack
explained in Section 3.2, and dual hybrid, dual mitm hybrid are variations of
the Dual attack. For more details about the attacks, we recommend to see [3].
We remark that when analyzing the security of SMAUG and TiGER, we mea-
sured attack complexities for both LWE and LWR instances, and reported the
minimum value. In the case of NTRU+, since it does not use a sparse secret key
in the LWE instance, during the security analysis, we did not measure the attack
complexities for bdd mitm hybrid and dual mitm hybrid, which are expected
to be less efficient compared to other attacks.

In the case of NTRU+, Table 11 shows dual hybrid has the smallest attack
complexity. In Table 12, overall attack complexities have increased, and usvp

has the smallest complexity. In the case of SMAUG, according to Table 13, the
most effective attack differs for each parameter set: the most effective attack
for SMAUG128 is usvp, dual hybrid for SMAUG192, and dual hybrid for
SMAUG256. In the case of TiGER, as listed in Table 14, TiGER128 exhibits
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the smallest complexity for Primal attack usvp. For TiGER192 and TiGER256,
dual hybrid is the most effective method.

In the case of HAETAE, in Table 15, for the claimed security of 120 bits and
260 bits, the most effective attack method is dual hybrid followed by usvp. For
the security of 180 bits, usvp has the smallest attack complexity. In the case
of NCC-Sign, Table 16 and Table 17 show similar results. In Table 16, usvp is
confirmed to have the smallest attack complexity, while in Table 17, bdd exhibits
the smallest attack complexity.

Table 11: NTRU+ Security Estimation

576 768 864 1152

sec β sec β sec β sec β

usvp 109.8 376 156.5 536 180.2 617 252.9 866

bdd 110.8 375 157.4 535 181.0 617 253.7 865

bdd hybrid 111.0 375 157.4 535 181.2 617 316.1 864

dual 114.8 393 162.4 556 186.9 640 261.3 895

dual hybrid 108.9 372 153.0 523 175.4 599 243.5 833

Table 12: NTRU+ Security Estimation rev

576 768 864 1152

sec β sec β sec β sec β

usvp 115.9 397 164.7 564 189.8 650 266.0 911

bdd 116.9 397 165.7 563 190.7 649 266.9 911

bdd hybrid 193.2 397 264.1 563 300.0 649 408.9 911

dual 120.9 414 171.1 586 196.5 673 274.8 941

dual hybrid 117.2 400 164.9 564 189.2 647 263.4 901
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Table 13: SMAUG Security Estimation

128 192 256

sec β sec β sec β

usvp 120.0 411 187.2 641 316.2 1083

bdd 120.9 411 188.5 642 318.4 1090

bdd hybrid 121.3 411 189.0 642 288.5 674

bdd mitm hybrid 166.5 410 221.0 496 277.8 680

dual 125.9 431 195.3 669 328.2 1124

dual hybrid 122.7 399 180.2 575 259.2 749

Table 14: TiGER Security Estimation

128 192 256

sec β sec β sec β

usvp 130.5 447 277.4 950 279.7 958

bdd 131.4 445 281.5 964 280.7 958

bdd hybrid 131.4 445 220.2 472 280.7 958

bdd mitm hybrid 173.8 419 212.7 503 316.5 730

dual 137.5 471 290.5 995 291.7 999

dual hybrid 131.9 428 206.1 535 262.0 835

Table 15: HAETAE Security Estimation

120 180 260

sec β sec β sec β

usvp 125.6 430 238.0 815 290.2 994

bdd 126.6 429 238.8 815 291.1 993

bdd hybrid 126.6 429 238.8 815 291.1 993

bdd mitm hybrid 219.3 429 390.9 815 472.7 993

dual 130.5 447 245.6 841 298.4 1022

dual hybrid 126.4 432 236.1 808 287.1 982
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Table 16: NCC-Sign Security Estimation with the Core-SVP model

1 3 5

sec β sec β sec β

usvp 123.2 422 190.1 651 273.3 936

bdd 124.6 421 191.0 651 274.3 935

bdd hybrid 124.6 421 191.0 651 274.3 935

bdd mitm hybrid 270.0 421 406.1 651 588.6 935

dual 126.4 433 194.2 665 278.6 954

dual hybrid 124.8 427 191.1 654 273.6 937

Table 17: NCC-Sign Security Estimation without the Core-SVP model as they
evaluated in the Round 1 Proposal (less conservative)

1 3 5

sec β sec β sec β

usvp 149.7 422 213.9 651 294,0 936

bdd 147.7 413 211.5 641 291.3 924

bdd hybrid 147.7 413 211.5 641 291.3 924

bdd mitm hybrid 261.8 421 394.9 651 574.2 935

dual 153.8 433 219.6 668 302.4 962

dual hybrid 150.5 421 214.9 651 295.5 937

4.3 Comparisons with the Claimed Security

We present the comparison of the claimed vs. estimated (classical) security in
bits for each scheme in Fig. 1a, Fig. 1b, Fig. 1c, Fig. 1d, and Fig. 1e.

For NTRU+, we measured the security based on both the specification doc-
ument and the implementation. The result from the implementation was similar
to the claimed security in the proposal document. However, the result based
on the specification document indicated lower security than the implementa-
tion result. The reason for these different results occurred from the process of
sampling the secret ’r’ value in the LWE instances using the H function in the
Encaps algorithm in NTRU+ (See Algorithm 6 and 9 in the NTRU+ specifi-
cation document). The specification samples the secret ’r’ with uniform binary
values, however, the implementation samples it with ternary values following the
centered binomial distribution.
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(a) Comparison of the claimed secu-
rity and estimated results in which esti-
mated results are measured for the ver-
sions of specification and implementa-
tion for NTRU+, respectively

(b) Comparson of the claimed security
and estimated results for SMAUG pa-
rameters

(c) Comparison of the claimed security
and estimated results for TiGER param-
eters

(d) Comparison of the claimed security
and estimated results for HAETAE param-
eters

(e) Comparison of the claimed security and
estimated results with Core-SVP and with-
out Core-SVP for NCC-Sign parameters

18

Session 8 - 2 The 26th Annual International Conference on Information Security and Cryptology

ICISC 2023 515



The differences between the analysis by using the Lattice Estimator and the
analysis presented in the proposal document can be summarized as follows.

– For the SMAUG1280 parameters, the claimed security in the proposal doc-
ument is of 260.3 bits, but the estimated result using Lattice Estimator
resulted in an attack amount of 259.2 bits.

– In the case of TiGER256(Security level V), the classical security of 263 bits
was claimed, but the estimated result was 262.0 bits.

– The estimated results of NTRU+ were found different from the claimed
attack complexities for all parameters. For the NTRU+576, NTRU+768,
NTRU+864, and NTRU+1152 parameters, they each satisfy classical secu-
rity levels of 115.9 bits, 164.7 bits, 189.2 bits, and 263.4 bits, respectively, for
the implementation version. These values differ by 0.1 to 3.7 bits from the
classical security levels claimed in the proposal document, which were 116
bits, 161 bits, 188 bits, and 264 bits. For the document version of NTRU+
using LWE with uniform binary secrets, the gaps between the claimed and
estimated security get larger.

– For HAETAE, the result claimed in the proposal document and security
analysis results were similar about all parameters, with an error range of
less than 1 bit.

– In the case of NCC-Sign, the proposal document provided results of security
analysis without using the Core-SVP model and the estimations using the
Lattice Estimator were found to match these results. When we measured
using the Core-SVP model, it was observed that parameters I, III, and V
achieve classical security levels of 123.2 bits, 190.1 bits, and 273.3 bits, re-
spectively. This represents differences of 18 to 24.5 bits compared to the
results presented in the NCC-Sign proposal document.

5 Conclusion

In this paper, we discussed the results of a security analysis using the Lattice
Estimator for five Round 1 lattice-based candidates proposed in the KpqC Com-
petition. It was found that NTRU+ had differences of approximately 0.1 to 3.7
bit compared to the claimed results of security analysis for all parameters when
using the centered binomial distribution as a secret distribution in LWE. For
SMAUG and TiGER, the classical security of parameters in the security level V
was observed to differ by approximately 1 bit from the estimated results. In the
case of HAETAE and NCC-Sign, we confirmed that the claimed parameters are
closely similar to the security analysis results. We also remark that the Lattice
Estimator does not exhaustively cover all recent attacks for LWE including [27].
We will analyze the KpqC Round 1 lattice-based schemes further by applying
various recent LWE attacks for future works.
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Abstract. We analyze REDOG, a public-key encryption system sub-
mitted to the Korean competition on post-quantum cryptography. RE-
DOG is based on rank-metric codes. We prove its incorrectness and at-
tack its implementation, providing an efficient message recovery attack.
Furthermore, we show that the security of REDOG is much lower than
claimed. We then proceed to mitigate these issues and provide two ap-
proaches to fix the decryption issue, one of which also leads to better
security.

Keywords: post-quantum crypto, code-based- crypto, rank-metric codes

1 Introduction

This paper analyzes the security of the REinforced modified Dual-Ouroboros
based on Gabidulin codes, REDOG [KHL+22a], a public-key encryption system
submitted to KpqC, the Korean competition on post-quantum cryptography.
REDOG is a code-based cryptosystem using rank-metric codes, aiming at pro-
viding a rank-metric alternative to Hamming-metric code-based cryptosystems.

Rank-metric codes were introduced by Delsarte [Del78] and independently
rediscovered by Gabidulin [Gab85] in 1985, who focused on those that are linear
over a field extension. Gabidulin, Paramonov, and Tretjakov [GPT91] proposed
their use for cryptography in 1991. The GPT system was attacked by Over-
beck [Ove05,Ove08] who showed structural attacks, permitting recovery of the
private key from the public key.

During the mid 2010s new cryptosystems using rank-metric codes were de-
veloped such as Ouroboros [DGZ17] and the first round of the NIST com-
petition on post-quantum cryptography saw 5 systems based on rank-metric
codes: LAKE [ABD+17a], LOCKER [ABD+17b], McNie [GKK+17], Ouroboros-
R [AAB+17a]. RQC [AAB+17b]. For further information about all these systems

Author list in alphabetical order; see https://www.ams.org/profession/leaders/

culture/CultureStatement04.pdf. This work was funded in part by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s
Excellence Strategy—EXC 2092 CASA—390781972 “Cyber Security in the Age
of Large-Scale Adversaries” and by the Netherlands Organisation for Scientific
Research (NWO) under grants OCENW.KLEIN.539 and VI.Vidi.203.045. Date:
2023.11.14. For the full version see [LPR23].
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see NIST’s Round-1 Submissions page. Gaborit announced an attack weakening
McNie and the McNie authors adjusted their parameters. A further attack was
published in [LT18] and NIST did not advance McNie into the second round of
the competition.

ROLLO, a merger of LAKE, LOCKER and Ouroboros-R, and RQC made
it into the the second round but got broken near the end of it by significant
advances in the cryptanalysis of rank-metric codes and the MinRank prob-
lem in general, see [BBB+20] and [BBC+20]. In their report at the end of
round 2 [AASA+20], NIST wrote an encouraging note on rank-metric codes:
“Despite the development of algebraic attacks, NIST believes rank-based cryp-
tography should continue to be researched. The rank metric cryptosystems offer
a nice alternative to traditional hamming metric codes with comparable band-
width.” (capitalization as in the original).

Kim, Kim, Galvez, and Kim [KKGK21] proposed a new rank-metric system
in 2021 which was then analyzed by Lau, Tan, and Prabowo in [LTP21] who also
proposed some modifications to the issues they found. REDOG closely resembles
the system in [LTP21] and uses the same parameters.

Our contribution In this paper we expose weaknesses of REDOG and show
that the system, as described in the documentation, is incorrect. To start with, we
prove that REDOG does not decrypt correctly. The documentation and [LTP21]
contain an incorrect estimate of the rank of an element which causes the in-
put to the decoding step to have too large rank. The system uses Gabidulin
codes [Gab85] which are MRD (Maximum Rank Distance) codes, meaning that
vectors with errors of rank larger than half the minimum distance will decode to
a different codeword, thus causing incorrect decryption in the REDOG system.

As a second contribution we attack ciphertexts produced by REDOG’s ref-
erence implementation. We show that we can use techniques from the Hamming
metric to obtain a message-recovery attack. This stems from a choice in the im-
plementation which avoids the above-mentioned decryption problem. However,
the errors introduced in the ciphertext have a specific shape which allows us to
apply basic techniques of Information Set Decoding (ISD) over the Hamming
metric to recover the message in seconds.

As a third contribution, we show that, independently of the special choice
of error vectors in the implementation, the security of the cryptosystem is lower
than the claimed security level. The main effect comes from a group of attacks
published in [BBC+20] which the REDOG designers had not taken into account.
An smaller effect comes from a systematic scan through all attack parameters.

Finally, we provide two ways to make REDOG’s decryption correct. The
first is a minimal change to fix the system by changing the space from which
some matrix P−1 is chosen in a way that differs from the choice in REDOG and
avoids the issue mentioned above. However, this still requires choosing much
larger parameters to deal with our third contribution. The second way makes
a different change to REDOG which improves the resistance to attacks while
also fixing the decryption issue. We show that, using this strategy, not only are
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REDOG’s parameters sufficient to reach any claimed security level, but they
provide security abundantly beyond each level, allowing room for an eventual
optimization. Note, however, that these estimates are obtained from big-O com-
plexity estimates, putting all constants to 1 and lower-order terms to 0, and thus
underestimate the security.

2 Preliminaries and background notions

This section gives the necessary background on rank-metric codes for the rest of
the paper. Let {α1, . . . , αm} be a basis of Fqm over Fq. Write x ∈ Fqm uniquely
as x =

m
i=1 Xiαi, Xi ∈ Fq for all i. So x can be represented as (X1, . . . , Xm) ∈

Fm
q . We will call this the vector representation of x. Extend this process to

v = (v1, . . . , vn) ∈ Fn
qm defining a map Mat : Fn

qm → Fm×n
q by:

v →




V11 V21 . . . Vn1

V12 V22 . . . Vn2

...
...

. . .
...

V1m V2m . . . Vnm


 .

Definition 2.1. The rank weight of v ∈ Fn
qm is defined as wtR(v) := rkq(Mat(v))

and the rank distance between v,w ∈ Fn
qm is dR(v,w) := wtR(v −w).

Remark 2.2. It can be shown that the rank distance does not depend on the
choice of the basis of Fqm over Fq. In particular, the choice of the basis is irrele-
vant for the results in this document.

When talking about the space spanned by v ∈ Fn
qm , denoted as ⟨v⟩, we mean

the Fq-subspace of Fm
q spanned by the columns of Mat(v).

For completeness, we introduce the Hamming weight and the Hamming dis-
tance. These notions will be used in our message recovery attack against RE-
DOG’s implementation.

The Hamming weight of a vector v ∈ Fn
qm is defined as wtH(v) := #{i ∈

{1, . . . , n} | vi ̸= 0} and the Hamming distance between vectors v,w ∈ Fn
qm is

defined as dH(v,w) := wtH(v −w).
Let D = dR or D = dH . Then an [n, k, d]-code C with respect to D over Fqm

is a k-dimensional Fqm -linear subspace of Fn
qm with minimum distance

d := min
a,b∈C, a̸=b

D(a,b)

and correction capability ⌊(d − 1)/2⌋. If D = dR (resp. D = dH) then the
code C is also called a rank-metric (resp. Hamming-metric) code. All codes in
this document are linear over the field extension Fqm .

We say that G is a generator matrix of C if its rows span C. We say that H
is a parity check matrix of C if C is the right-kernel of H.

A very well-known family of rank metric codes are Gabidulin codes [Gab85],
which have d = n− k + 1.

Session 8 - 3 The 26th Annual International Conference on Information Security and Cryptology

ICISC 2023 521



4 Tanja Lange, Alex Pellegrini, and Alberto Ravagnani

In this paper we can mostly use these codes as a black box, knowing that
there is an efficient decoding algorithm using the parity-check matrix of the code
and decoding vectors with errors of rank up to ⌊(d− 1)/2⌋.

A final definition necessary to understand REDOG is that of isometries.

Definition 2.3. Consider vectors in Fn
qm . An isometry with respect to the rank

metric is a matrix P ∈ GLn(Fqm) satisfying that wtR(vP ) = wtR(v) for any
v ∈ Fn

qm .

Obviously matrices P ∈ GLn(Fq) are isometries as Fq-linear combinations of
the coordinates of v do not increase the rank and the rank does not decrease as P
is invertible. The rank does also not change under scalar multiplication by some
α ∈ F∗

qm : wtR(αv) = wtR(v). Note that the latter corresponds to multiplication
by P = αIn.

Berger [Ber03] showed that any isometry is obtained by composing these two
options.

Theorem 2.4. [Ber03, Theorem 1] The isometry group of Fn
qm for the rank

metric is generated by scalar multiplications by elements in F∗
qm and elements of

GLn(Fq). This group is isomorphic to the product group
(
F∗
qm/F∗

q

)
× GLn(Fq).

3 System specification

This section introduces the specification of REDOG. We follow the notation
of [LTP21], with minor changes.

The system parameters are positive integers (n, k, ℓ, q,m, r, λ, t), with ℓ < n
and λt ≤ r ≤ ⌊(n− k)/2⌋, as well as a hash function hash : F2n−k

qm → Fℓ
qm .

KeyGen:
1. Select H = (H1 | H2), H2 ∈ GLn−k(Fqm), a parity check matrix of a

[2n−k, n] Gabidulin code, with syndrome decoder Φ correcting r errors.
2. Select a full rank matrix M ∈ Fℓ×n

qm and isometry P ∈ Fn×n
qm (w.r.t. the

rank metric).
3. Select a λ-dimensional subspace Λ ⊂ Fqm , seen as Fq-linear space, con-

taining 1 and select S−1 ∈ GLn−k(Λ); see Section 4 for the definition.

4. Compute F = MP−1HT
1

(
HT

2

)−1
S and publish the public key

pk = (M,F ). Store the secret key sk = (P,H, S, Φ).

Encrypt (m ∈ Fℓ
qm , pk)

1. Generate uniformly random e = (e1, e2) ∈ F2n−k
qm with wtR(e) = t,

e1 ∈ Fn
qm and e2 ∈ Fn−k

qm .
2. Compute m′ = m+ hash(e).
3. Compute c1 = m′M + e1 and c2 = m′F + e2 and send (c1, c2).

Decrypt ((c1, c2), sk)
1. Compute c′ = c1P

−1HT
1 − c2S

−1HT
2 = e′HT where the vector e′ :=

(e1P
−1,−e2S

−1).
2. Decode c′ using Φ to obtain e′, recover e = (e1, e2) using P and S.
3. Solve m′M = c1 − e1. Output m = m′ − hash(e).
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Suggested parameters We list the suggested parameters of REDOG for
128,192 and 256 bits of security, following [KHL+22a] submitted to KpqC.

Security parameter (n, k, ℓ, q,m, r, λ, t)

128 (44, 8, 37, 2, 83, 18, 3, 6)

192 (58, 10, 49, 2, 109, 24, 3, 8)

256 (72, 12, 61, 2, 135, 30, 3, 10)

Table 1. Suggested parameters; see [KHL+22a].

4 Incorrectness of decryption

This section shows that decryption typically fails for the version of REDOG
specified in [KHL+22a,LTP21]. The novelty of this specification, compared to
that introduced in [KKGK21], lies in the selection of the invertible matrix S−1

in Step 3, which is selected with the property that S−1 ∈ GLn−k(Λ), where Λ
is a λ-dimensional Fq-subspace of Fqm . This method has been first proposed
by Loidreau in [Loi17], but it appears to be incorrectly applied in REDOG.
Before providing more details about this claim and proving the incorrectness of
REDOG’s decryption process, we will shed some light on the object GLn−k(Λ).
Unlike the notation suggests, this is not a group, but a potentially unstructured
subset of GLn−k(Fqm) defined as follows:

Let {1, α2, . . . , αλ} ⊂ Fqm be a set of elements that are Fq-linearly indepen-
dent. Let Λ ⊂ Fqm be the set of Fq-linear combinations of these αi’s. This set
forms an Fq-linear vectorspace. Now, S−1 ∈ GLn−k(Λ) is defined to mean that S
is an invertible (n−k)×(n−k) matrix with the property that the entries of S−1

are elements of Λ. Note that such an S exists because λ ≥ 1 by assumption. The
REDOG documentation [KHL+22a] points out that this does not imply that
S ∈ GLn−k(Λ), hence, despite what the notation may suggest, GLn−k(Λ) is not
a group in general.

We continue by giving a proof, and an easy generalization for any q, of [Loi17,
Proposition 1].

Proposition 4.1. Let λ, t, n be positive integers such that λt ≤ n, A ∈ GLn(Λ)
where Λ ⊂ Fqm is a λ-dimensional subspace of Fqm , and x ∈ Fn

qm with wtR(x) =
t. Then

wtR(xA) ≤ λt.

Proof. Let Γ be the subspace of Fqm generated by the entries of x = (x1, . . . , xn).
Since Γ has dimension t, we can write Γ = ⟨y1, . . . , yt⟩ with yi ∈ Fqm . Similarly
for Λ, we can write Λ = ⟨α1, . . . , αλ⟩ with αi ∈ Fqm . Express xA as

xA =

(
n∑

i=1

xiAi,1, . . . ,
n∑

i=1

xiAi,n

)
.
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Fix j ∈ {1, . . . , n}. Then

(xA)j =
n

i=1

xiAi,j =
n

i=1


t

h=1

xi,hyh


λ

k=1

Ai,j,kαk


,

with xi,h, Ai,j,k ∈ Fq. By rearranging the terms we obtain

(xA)j =
t

h=1

λ
k=1


n

i=1

xi,hAi,j,k


yhαk. (1)

Therefore each entry of xA can be expressed as an Fq-linear combination of
the λt elements of the form yhαk. ⊓⊔

We will now show that REDOG typically does not decrypt correctly. In order
to do so, we need some preliminary results and tools. The proof of the next
lemma uses some tools from combinatorics. It computes the probability that a
randomly selected t-tuple of elements of a t-dimensional vector space spans the
entire space.

Lemma 4.2. Let V be a t-dimensional subspace V ⊆ Fm
q and let S ∈ V s be a

uniformly random s-tuple of elements of V . The probability p(q, s, t) that ⟨Si |
i ∈ {1, . . . , s}⟩ = V is 0 if 0 ≤ s < t and

p(q, s, t) =
t

i=0


t

i



q

(−1)t−iqs(i−t)+(t−i
2 ) (2)

otherwise, where

t
i


q
is the q-binomial coefficient, counting the number of sub-

spaces of dimension i of Ft
q, and

�
a
b


= 0 for a < b. In particular, this probability

does not depend on m or on the choice of V , but only on its dimension.

Proof. Let (P,⊆) be the poset (partially ordered set) of subspaces of Fm
q ordered

by inclusion. Recall that the Möbius function of P, and of any finite poset, is
defined, for A,B ∈ P, as

µ(B,A) =




1 if B = A,

−


C|B⊆C⊂A µ(B,C) if B ⊂ A,

0 otherwise.

For the poset of subspaces, the Möbius function is computed e.g. in [Sta11,
Example 3.10.2] as

µ(B,A) =


(−1)kq(

k
2) if B ⊆ A and dim(A)− dim(B) = k,

0 otherwise.
(3)

We want to compute the function f : P → N defined as

f(A) = #

S ∈

�
Fm
q

s | ⟨S⟩ = A

.
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Clearly, if s < dimA, there does not exist any s-tuple S spanning A, hence
f(A) = 0, which gives the first case of (2). We can therefore restrict ourselves to
the case s ≥ dimA. Define the auxiliary function g : P → N as

g(A) =
∑
B⊆A

f(B)

= #
{
S ∈

(
Fm
q

)s | ⟨S⟩ ⊆ A
}

= |A|s = qs dimA.

Then by Möbius inversion we can compute:

f(A) =
∑
B⊆A

g(B)µ(B,A). (4)

Splitting the sum over the dimensions, and substituting the values in Equation 3,
we can obtain

f(V ) =

t∑
i=0

∑
U⊆V, dimU=i

g(U)µ(U, V )

=
t∑

i=0

qsi(−1)t−iq(
t−i
2 )

∑
U⊆V, dimU=i

1

=

t∑
i=0

[
t

i

]

q

(−1)t−iqsi+(
t−i
2 ).

The probability can be computed by dividing f(V ) by the number of s-tuples of
elements of V , that is, qst. ⊓⊔

Remark 4.3. The probability given in Lemma 4.2 can be interpreted as the ratio
of the number of surjective linear maps from Fs

q onto Ft
q over the total number

of linear maps.

We next compute the probability that by truncating a rank t vector, the rank
stays the same.

Theorem 4.4. Let e = (e1, e2) ∈ F2n−k
qm , with e1 ∈ Fn

qm and e2 ∈ Fn−k
qm , be a

uniformly random error with wtR(e) = t. Then wtR(e1) = t and wtR(e2) = t
with probability p(q, n, t)/p(q, 2n − k, t) and p(q, n − k, t)/p(q, 2n − k, t) respec-
tively.

Proof. By definition, the probability that wtR(e1) = t is the ratio

π =
#{e ∈ F2n−k

qm | wtR(e) = t and wtR(e1) = t}
#{e ∈ F2n−k

qm | wtR(e) = t}
. (5)
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We can split the cardinalities above over all the subspaces of Fm
q of dimension t

as follows:

π =

∑
V⊂Fm

q , dimV=t #{e ∈ F2n−k
qm | ⟨e⟩ = ⟨e1⟩ = V }

∑
V⊂Fm

q , dimV=t #{e ∈ F2n−k
qm | ⟨e⟩ = V }

. (6)

It is not hard to prove that the summands in (4) are independent of the space V .
Therefore

π =
#{e ∈ F2n−k

qm | ⟨e⟩ = ⟨e1⟩ = V }
#{e ∈ F2n−k

qm | ⟨e⟩ = V }
=

#{e1 ∈ Fn
qm | ⟨e1⟩ = V } qt(n−k)

#{e ∈ F2n−k
qm | ⟨e⟩ = V }

,

where V is any subspace of Fm
q of dimension t. By applying Lemma 4.2 we then

get

π =
p(q, n, t) qntqt(n−k)

p(q, 2n− k, t) q(2n−k)t
=

p(q, n, t)

p(q, 2n− k, t)
,

as claimed. The probability for e2 can be computed with the same arguments
as for e1. ⊓⊔

Remark 4.5. In the context of a REDOG instance, the data q, n and t is fixed,
hence, for the sake of reading simplicity, we denote the probability given in
Theorem 4.4 by

p̄(r, t) =
p(q, r, t)

p(q, 2n− k, t)
.

Example 4.6. Consider the suggested parameters of REDOG for 128 bits of se-
curity from Table 1. Using SageMath [S+21] we computed the probability that
wtR(e1) = t, that is p̄(44, 6) = 0.999999999996419, and the probability that
wtR(e2) = t, that is p̄(36, 6) = 0.999999999083229.

We are ready to state the following theorem, which directly implies that
REDOG’s decryption process fails with extremely high probability.

Theorem 4.7. Let (n, k, q,m, λ, t) be integers with k < n < m and λt ≤ m. Let
Λ ⊂ Fqm be a λ-dimensional subspace of Fqm and e = (e1, e2) as in Theorem 4.4.
Let P ∈ Fn×n

qm be a random isometry matrix (w.r.t. the rank metric) and S−1 ∈
GLn−k(Λ). Then e′ :=

(
e1P

−1,−e2S
−1

)
has rank weight wtR(e

′) ≥ λt+ 1 with
probability bounded from below by

pfail(n, k, q,m, λ, t) := p̄(n, t) p̄(n− k, λt) p̄(n− k, t)

(
1−

[
λt

t

]

q

/
[m
t

]
q

)
.

Proof. By Theorem 2.4, the isometry P is of the form αP̄ for α ∈ F∗
qm and P̄ ∈

GLn(Fq), where q
m ≫ q and thus typically α ̸∈ Fq. Because of the multiplication

by α−1, we can assume that the linear transformation induced by P−1 takes a t-
dimensional subvectorspace of Fm

q to a random t-dimensional subspace. Similarly
we assume that S−1 sends a t-dimensional subspace of Fm

q to a random subspace
of dimension at most λt, by Proposition 4.1. We get the lower bound on the
failure probability by showing the following:
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1. wtR(e1P
−1) = t with probability p̄(n, t);

2. wtR(−e2S
−1) = λt with probability p̄(n− k, t)p̄(n− k, λt);

3. under the conditions in (1) and (2), ⟨e1P−1⟩ ̸⊂ ⟨−e2S
−1⟩ with probability

1−
[
λt
t

]
q
/
[
m
t

]
q
.

Note that (1) follows directly from Theorem 4.4 and the fact that P is an isom-
etry of the space w.r.t the rank metric.

Likewise, wtR(−e2) = t with probability p̄(n − k, t). The proof of Propo-
sition 4.1 shows that for e2 with wtR(−e2) = t we have that −e2S

−1 is con-
tained in a λt-dimensional subspace of Fm

q . Again by Theorem 4.4 we obtain
that ⟨−e2S

−1⟩ spans the entire space with probability p̄(n− k, λt), proving (2).
To prove (3) we will compute the opposite, i.e. the probability that ⟨e1P−1⟩

is a subspace of ⟨−e2S
−1⟩. As mentioned at the beginning of the proof, we treat

⟨e1P−1⟩ as a random t-dimensional subspace of Fqm . Thus we can compute
this probability as the ratio between the number of t-dimensional subspaces of

⟨−e2S
−1⟩ and of Fm

q , that is,
[
λt
t

]
q
/
[
m
t

]
q
.

Combining the probabilities and observing that (1 – 3) imply wtR(e
′) ≥ λt+1

gives the result. ⊓⊔

Remark 4.8. There are more ways to get wtR(e
′) ≥ λt+ 1 by relaxing the first

two requirements in the proof of Theorem 4.7 and studying the dimension of the
union in the third, but pfail is large enough for the parameters in REDOG to
prove the point.

Remark 4.9. The proof of property (3) relies on e1P
−1 being a random subspace

of dimension t. We note that for α ∈ Fq we have ⟨e1⟩ = ⟨e1P−1⟩ ⊂ ⟨e2S−1⟩
for S−1 ∈ GLn−k(Λ) and 1 ∈ Λ. The latter constraint is stated in [KHL+22a]
and [LTP21] and it is possible that the authors were not aware of the full gen-
erality of isometries. See also the full version [LPR23] for further observations
on [LTP21] which are consistent with this misconception.

Recall that the decoder Φ can only correct errors up to rank weight r = λt.
By Theorem 4.7 we have that e′ has rank weight ≥ λt+ 1, hence the following
corollary.

Corollary 4.10. Let (n, k, ℓ, q,m, r, λ, t) be the parameters of a instance of RE-
DOG with r = λt. Then REDOG will produce decryption failures with probability
at least pfail(n, k, q,m, λ, t).

Note that a [2n− k, n] Gabidulin code has minimum distance dR = 2n− k−
n+ 1 = n− k + 1 and can thus correct at most ⌊(n− k)/2⌋ errors and that all
instances of REDOG in Table 1 satisfy ⌊(n− k)/2⌋ = r = λt.

Example 4.11. As in Example 4.6, consider the suggested parameters for 128
bits of security. Then Theorem 4.7 states that wtR(e

′) ≥ 19 with probabil-
ity at least pfail(44, 8, 2, 83, 3, 6) = p̄(44, 8)p̄(36, 6)p̄(36, 18)

(
1−

[
18
6

]
2
/
[
83
6

]
2

)
=

0.999996184401789.

Session 8 - 3 The 26th Annual International Conference on Information Security and Cryptology

ICISC 2023 527



10 Tanja Lange, Alex Pellegrini, and Alberto Ravagnani

Table 2 reports the value of pfail for each set of security parameters given in
Table 1. This shows that REDOG’s decryption process fails almost always.

Security parameter pfail

128 0.999996184401789

192 0.999999940394453

256 0.999999999068677
Table 2. Value of decryption failure probability pfail per suggested parameters.

5 Message recovery attack on REDOG’s implementation

Theorem 4.7 and the numerical examples show that, with probability almost 1,
REDOG will fail decrypting. However, the probability is not exactly 1 and there
exist some choices of e for which decryption still succeeds. One extreme way to
avoid decryption failures, chosen in the refenrence implementation of REDOG,
is to build errors as follows:

Algorithm 5.1 (REDOG’s error generator)

1. Pick β1, . . . , βt ∈ Fqm being Fq-linearly independent.
2. Pick random permutation π on 2n− k symbols.
3. Set einit = (β1, . . . , βt, 0, . . . , 0) ∈ F2n−k

qm . Output e = π(einit).

Error vectors in REDOG’s reference implementation1, whose performance is
analyzed in [KHL+22b], are generated in an equivalent way to Algorithm 5.1.
Indeed, e′ has rank weight wtR(e

′) = (e1P
−1,−e2S

−1) ≤ λt and can therefore
be decoded using Φ.

Remark 5.2. Algorithm 5.1 produces an error vector e such that wtH(e) =
wtR(e) = t as only t coordinates of e are nonzero.

We are ready to give the description of an efficient message recovery algo-
rithm.

Algorithm 5.3 (Message recovery attack)
Input: REDOG’s public key pk and a REDOG’s ciphertext c = (c1, c2) =
Encrypt(m, pk) generated by the reference implementation.
Output: m

1. Let C ′ be the linear [2n − k, ℓ]-code in the Hamming metric generated by
G = (pk1 | pk2). Put f = 0.

2. While f = 0:
(a) Randomly select ℓ columns of G to form the matrix A. Let cA be the

matching positions in c.

1 https://www.kpqc.or.kr/images/zip/REDOG.zip
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(b) If A is invertible

i. Compute B = A−1 and m̄ = cAB.
ii. Compute c̄1 = m̄pk1.
iii. If wtH(c1 − c̄1) = t1 ≤ t

A. Compute c̄2 = m̄pk2.
B. If wtH(c2 − c̄2) = t− t1

Put m′ = m̄, e = (c1, c2)− (c̄1, c̄2) and f = 1.

3. Compute m = m′ − hash(e).

The inner loop is Prange’s information-set decoding algorithm [Pra62] in the
generator-matrix form with early aborts. If the chosen ℓ positions are not all
error free then m̄ equals m with one or more rows of B added to it. Then m̄pk1
will be random vector and thus differ from c1 in more than t positions. If the
initial check succeeds there is a high chance of the second condition succceeding
as well leading to e with wtH(e) = t.

We now analyze the success probability of each iteration of the inner loop of
Algorithm 5.3. The field Fqm is large, hence A very likely to be invertible. The
algorithm succeeds if the ℓ positions forming A are chosen outside the positions
where e has non-zero entries. This happens with probability

(
2n−k−t

ℓ

)(
2n−k

ℓ

)
.

Each trial costs the inversion of an ℓ×ℓ matrix and up to three matrix-vector
products, where the vector has length ℓ and the matrices have ℓ, n, and n − k
columns respectively, in addition to minor costs of two vector differences and
two weight computations.

We implemented the attack in Algorithm 5.3 in Sagemath 9.5; see online for
the code. We perform faster early aborts, testing m̄ on only t + 3 columns of
pk1. The probability that a coordinate matches between c1 and c̄1 for m̄ ̸= m
is q−m and thus negligible for large m. Hence, most candidate vectors m̄ are
discared after (t + 3)ℓ2 multiplications in Fqm . Running the attack on a Linux
Mint virtual machine we broke the KAT ciphertexts included in the submssion
package for all the proposed parameters. We also generated a bunch of cipher-
texts corresponding to randomly chosen public keys and messages and measured
the average running time of our algorithm.

As can be seen from Table 3, the attack on the reference implementation
succeeds in few steps and is very fast to execute for all parameter sets.

Security parameter log2(Prob) TimeKAT (sec.) Time100(sec.)

128 -5.62325179726894 ∼ 8.01 ∼ 9.17

192 -7.51182199577027 ∼ 108.13 ∼ 112

256 -9.40052710879827 ∼ 167.91 ∼ 133.43
Table 3. Prob is the probability of success of one iteration of the inner loop of Algo-
rithm 5.3. TimeKAT is the average timing of message recovery attack over entries in the
KAT file (30 for 128 bits, 15 for 192 bits, 13 for 256 bits). Time100 is the average timing
of message recovery attack over 100 ciphertext generated by REDOG’s encryption.
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12 Tanja Lange, Alex Pellegrini, and Alberto Ravagnani

6 Recomputing attacks costs

In this section we deal with the computation of complexities of general attacks
against cryptosystems relying on the rank decoding problem. We noticed that
the official REDOG submission [KHL+22a], as well as [LTP21] do not consider
attack algorithms proposed in [BBC+20] and [BBB+23]

Our computations are reported in Table 4 which shows that parameters sug-
gested for REDOG provide significantly less security than expected. The tables
also confirm that the parameters do provide the claimed security under attacks
prior to [BBC+20] when using a realistic exponent for matrix multiplication.
Note that the computations in these tables ignore all constants and lower-order
terms in the big-O complexities. This is in line with how the authors of the
attack algorithms use their results to determine the security of other systems,
but typically constants are positive and large. We apply the same to [BBB+23]
although their magma code makes different choices.

Overview of rank decoding attacks Recall that the public code is generated
by the ℓ × 2n − k matrix (M | F ) over Fqm . The error vector added to the
ciphertext is chosen to have rank t. In the description of the attacks we will
give formulas for the costs using the notation of this paper, i.e., the dimension
is ℓ and the error has rank t; we denote the length by N for reasons that will
become clear later. The complexity of algorithms also depends on the matrix
multiplication exponent ω.

The GRS [GRS16] algorithm is a combinatorial attack on the rank decoding
problem. The idea behind this algorithm is to guess a vectorspace containing
the space spanned by the error vector. In this way the received vector can be
expressed in terms of the basis of the guessed space. The last step is to solve the
linear system associated to the syndrome equations. This has complexity

O
(
(N − ℓ)ωmωqmin{t⌊ℓm/N⌋,(t−1)⌊(ℓ+1)m/N⌋}

)
. (7)

Note that we use ω here while the result originally was stated with exponent 3.
These matrices are not expected to be particularly sparse but should be large
enough for fast matrix multiplication algorithms to apply. The same applies to
the next formulas.

The second attack, introduced in [GRS16], which we denote GRS-alg, is an
algebraic attack. Under the condition that ℓ > ⌈((t+ 1)(ℓ+ 1)−N − 1)/t⌉ the
decoding problem can be solved in

O
(
tωℓωqt(⌈((t+1)(ℓ+1)−N−1)/t⌉)

)
. (8)

The attack AGHT [AGHT18] is an improvement over the GRS combinatorial
attack. The underlying idea is to guess the space containing the error in a specific
way that provides higher chance of guessing a suitable space. It has complexity

O
(
(N − ℓ)ωmωqt(ℓ+1)m/N−m

)
. (9)
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The BBB+ attack [BBB+20] translates the rank metric decoding problem
into a system of multivariate equations and then uses Gröbner-basis methods
to find solutions. Much of the analysis is spent on determining the degree of
regularity, depending on the length, dimension, and rank of the code and error.
If m

(
N−ℓ−1

t

)
+ 1 ≥

(
N
t

)
then the problem can be solved in

O
((

((m+N)t)t

t!

)ω)
. (10)

If the condition is not satisfied then the complexity of solving the decoding
problem becomes

O
((

((m+N)t)t+1

(t+ 1)!

)ω)
(11)

or the same for t+2 in place of t+1. The authors of [BBB+20] use (11) in their
calculations and thus we include that as well.

The BBC+-Overdetermined,BBC+-Hybrid and BBC+-SupportMinors im-
provements that will follow are all introduced in [BBC+20]. They make explicit
the use of extended linearization as a technique to compute Gröbner bases.
For solving the rank-decoding problem it is not necessary to determine the full
Gröbner basis but to find a solution to this system of equations. Extended lin-
earization introduces new variables to turn a multivariate quadratic system into
a linear system. The algorithms and complexity estimates differ in how large the
resulting systems are and whether they are overdetermined or not, dependent
on the system parameters.

BBC+-Overdetermined applies to the overdetermined case, which matches
m
(
N−ℓ−1

t

)
+ 1 ≥

(
N
t

)
, and permits to solve the system in

O

(
m

(
N − ℓ− 1

t

)(
N

t

)ω−1
)
. (12)

In case of an undetermined system, BBC+-Hybrid fixes some of the unknowns
in a brute-force manner to produce to an overdetermined system in the remaining
variables. The costs are testing all possible values for j positions, where j is the
smallest non-negative integer such that m

(
N−ℓ−1

t

)
+ 1 ≥

(
N−j

t

)
, and for each

performing the same matrix computations as in BBC on j columns less. This
leads to a total complexity of

O

(
qjtm

(
N − ℓ− 1

t

)(
N − j

t

)ω−1
)
. (13)

The brute-force part in BBC+-Hybrid quickly becomes the dominating fac-
tor. The BBC+-SupportMinors algorithm introduces terms of larger degrees
first and then linearizes the system. This consists in multiplying the equations
by some homogeneous monomials of degree b so as to obtain a system of homo-
geneous equations. However, for the special case of q = 2 the equations in the
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14 Tanja Lange, Alex Pellegrini, and Alberto Ravagnani

system might not be homogeneous. In this case, homogeneous equations coming
from smaller values of b are considered. Let Ab =

∑b
j=1

(
N
t

)(
mℓ+1

j

)
. The degree of

the equations formed in BBC+-SupportMinors depends on b, where 0 < b < 2+t

is minimal such that ab−1 ≤
∑b

j=1

∑j
s=1

(
(−1)s+1

(
N
t+s

)(
m+s−1

s

)(
mℓ+1
j−s

))
if such

a b exists. In this case the problem can be solved with complexity

O
(
(mℓ+ 1)(t+ 1)A2

b

)
. (14)

We do not report the last two attacks presented in [BBC+20] as the underly-
ing approach has been pointed out to be incorrect in [BBB+23]. More precisely,
[BBB+23] show that the independence assumptions made in [BBC+20] are in-
correct. The SupportMinors and MaxMinors modelings in [BBC+20] are not as
independent as claimed, and [BBB+23] introduces a new approach that com-
bines them while keeping independence, at least conjecturally and matched by
experiments. They again multiply by monomials of degree up to b− 1 but a rel-
evant difference is that the equations from the SupportMinors system are kept
over Fqm . They introduce the following notation:

N Fqm

b =

ℓ∑
s=1

(
N − s

t

)(
ℓ+ b− 1− s

b− 1

)
−

(
N − ℓ− 1

t

)(
ℓ− b− 1

b

)
,

N Fq

b,syz = (m− 1)

b∑
s=1

(−1)(s+1)

(
ℓ+ b− s− 1

b− s

)(
N − ℓ− 1

t+ s

)
, and

MFq

b =

(
ℓ+ b− 1

b

)((
N

t

)
−m

(
N − ℓ− 1

t

))

and put N Fq

b = N Fqm

b −N Fq

b,syz.

The problem can then be solved by linearization whenever N Fq

b ≥ MFq

b − 1.

The complexity of solving the system is T (m,N, ℓ, t) = O
(
N Fq

b

(
MFq

b

)ω−1
)
.

Moreover, [BBB+23] introduce a hybrid strategy. Compared to BBC+-Hybrid
it randomly picks matrices from GLN (Fq) to randomly compute Fq-linear com-
binations of the entries of the error vector and applies the same transformation
to the generator matrix, hoping to achieve that the last a positions of the error
vector are all 0 and then shortening the code while also reducing the dimension.

This technique has complexity

min
a≥0

(
qta · T (m,N − a, ℓ− a, t)

)
. (15)

6.1 Lowering the attack costs beyond the formulas stated

The combinatorial attacks GRS and AGHT perform best for longer codes, how-
ever, algebraic attacks that turn each column into a new variable perform best
with fewer variables. For each attack strategy we search for the best number of
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On the security of REDOG 15

columns that we should consider in order to obtain the cheapest cost of a suc-
cessful break of REDOG. This is why we presented the above formulas using N
rather than the full code length 2n − k. The conditions given above determine
the minimum length required relative to dimension and rank of the error.

We then evaluate the costs for each algorithm for each choice of length N =
ℓ+ t+ i, for every value of i = 0, 1, . . . , 2n− k− ℓ− t satisfying the conditions of
the attacks. Figure 1 shows the different behaviour of the algorithms for fixed ℓ
and t and increasing i. The jump in the BBB+ plot is at the transition between
the two formulas.
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Fig. 1. Plots showing the log2 of the costs for AGHT and BBB+ for the parameters
at the 128–bit security level for different choices of code length.

We point out that [BBC+20] also considered decreasing the length of the code
for the case of overdetermined systems, see [BBC+20, Section 4.2] on puncturing
the code in the case of “super”-overdetermined systems. We perform a systematic
scan for all algorithms as an attacker will use the best possible attack.

The recomputed values We computed complexity costs for all the attacks
introduced in the previous subsection, taking into consideration two values of
matrix multiplication exponent, namely ω = 2.807 and ω = 2.37. For each
possible length N+i for N = ℓ+t and i = 0, 1, . . . , 2n−k−ℓ−t we computed the
costs for each attack strategy, keeping the lowest value per strategy. For the two
cases of BBB+ and the three strategies described for the BBC+-* algorithms, we
selected the best complexity among them. For the sake of completeness, we report
the value of i in Table 4 as well and the value of a for [BBB+23]. All the values
are stated as the log2 of the costs resulting from the complexity formulas. The
lowest costs of the best algorithm are stated in blue. Note the above-mentioned
caveats regarding evaluating big-O estimates for concrete parameters.

As shown in the tables, suggested parameters of REDOG for 128 and 192
levels of security do not resist BBC+ attack and Mixed-attack for any choice
of ω, and BBB+ for ω = 2.37. Suggested parameters for level 256 resist all
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Algorithm Formula 128 level 192 level 256 level
ω = 2.807 ω = 2.37 i ω = 2.807 ω = 2.37 i ω = 2.807 ω = 2.37 i

GRS [GRS16] 7 228.03 - 36 392.30 - 48 604.07 - 60

GRS-alg [GRS16] 8 207.88 - 36 368.18 - 48 595.97 - 60

AGHT [AGHT18] 9 186.68 - 37 337.69 - 49 536.22 - 61

BBB+ [BBB+20] 10 & 11 140.06 118.25 33 210.26 150 0 269.03 227.15 0

BBC+ [BBC+20] 12 – 14 77.83 65.73 33 175.72 159.57 48 337.92 318.01 61

Mixed [BBB+23] 15 80.94 68.61 32 166.67 149.49 49 347.38 311.77 61
Table 4. Values of the log2 of attack costs for REDOG’s suggested parameters for all
security level (see Table 1).

attacks except BBB+ for ω = 2.37. In Section 8 we propose a solution to the
decryption failures that also boosts the security of REDOG.

7 Solving decryption failures

The core of REDOG’s decryption failures is given by point (3) of the proof of
Theorem 4.7. Indeed, the crucial step for showing decoding failure of the decoder
Φ, is that ⟨e1P−1⟩ ̸⊂ ⟨−e2S

−1⟩.
In order to solve the issue of decryption failures in REDOG, we propose an

alternative that keeps the random choice of an error vector e with wtR(e) = t and
changes the public key. The idea is to retain the method introduced in [Loi17],
but also to make sure that wtR(e

′) ≤ λt. We suggest to pick P−1 ∈ GLn(Λ)
randomly instead of it being an isometry of the space Fn

qm .
The proof of the next result is an adaptation of the proof of Proposition 4.1.

Proposition 7.1. Let Λ ⊂ Fqm be a λ-dimensional subspace of Fqm and e =
(e1, e2) a random vector with wtR(e) = t with e1 ∈ Fn

qm and e2 ∈ Fn−k
qm . Let

S−1 ∈ GLn−k(Λ) and P−1 ∈ GLn(Λ). Then ⟨e1P−1,−e2S
−1⟩ ⊆ V for some

λt-dimensional Fq-linear vectorspace V .

Proof. Let Γ = ⟨e⟩ be the Fq-linear subspace of Fqm generated by e. As be-
fore we can write Γ = ⟨y1, . . . , yt⟩. Write also Λ = ⟨α1, . . . , αλ⟩. As in the
proof of Proposition 4.1 we can express the j-th coordinate of e1P

−1 as a lin-
ear combination of the λt elements yhαk for h = 1, . . . , t and k = 1, . . . , λ as
(e1P

−1)j =
∑t

h=1

∑λ
k=1 ch,kyhαk. The same can be done for each coordinate of

−e2S
−1. Hence both subspaces are contained in the space V = ⟨yhαk⟩ generated

by these λt elements. ⊓⊔

Corollary 7.2. Let e′ =
(
e1P

−1,−e2S
−1

)
with e, P−1 and S−1 as in Proposi-

tion 7.1. Then wtR(e
′) ≤ λt.

The only change to the specification of REDOG is in the KeyGen algorithm
in Step 3; encryption and decryption remain unchanged as in Section 3. Here is
KeyGen for the updated version of REDOG with no decryption failures.
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On the security of REDOG 17

1. Select H = (H1 | H2), H2 ∈ GLn−k(Fqm), a parity check matrix of a [2n −
k, n] Gabidulin code, with syndrome decoder Φ correcting r errors.

2. Select a full rank matrix M ∈ Fℓ×n
qm .

3. Select a λ-dimensional subspace Λ ⊂ Fqm , seen as Fq-linear space, and select
S−1 ∈ GLn−k(Λ) and P−1 ∈ GLn(Λ).

4. Compute F = MP−1HT
1

(
HT

2

)−1
S and publish the public key

pk = (M,F ). Store the secret key sk = (P,H, S, Φ).

Theorem 7.3. The updated version of REDOG is correct.

Proof. The correctness of the updated version of REDOG follows from the cor-
rectness of the original version, except for decryption correctness, which is proven
by Corollary 7.2. ⊓⊔

8 Solving decryption failures and boosting security

Our second idea of how to deal with REDOG not decrypting correctly is to
change how e is sampled. While the approach in Section 7 works and preserves
all considerations regarding parameter sizes, in Section 6 we have shown that
these are too small to offer security against the best known attacks. The approach
in this section provides a functioning system and increases the security offered
by the parameters.

Recall that the public key is (M | F ), where M has dimension ℓ × n and
F has dimension ℓ × (n − k) and both, M and F , have full rank. The relative
sizes in REDOG are such that n − k = ℓ − 1, so F is just one column short
of being square, and n = ℓ + t + 1. The parameters are chosen so that the
decryption step can decode errors of rank up to r, while encryption in REDOG
adds only an error vector of rank t with r ≥ tλ. All parameter sets have λ = 3
and r = λt = (n− k)/2.

Encryption is computed as c = m′(M | F ) + e, for m′ ∈ Fℓ
qm . Decryption

requires decoding in the Gabidulin code for error (e1P
−1,−e2S

−1), where P is
an isometry and S−1 ∈ GLn−k(Λ). We have shown in Theorem 4.7 that this e′

typically has rank larger than r, which causes incorrect decoding, for REDOG’s
choice of e with wtR(e) = t. Where we proposed changing the definition of P in
the previous section to reach a system which has minimal changes compared to
REDOG, we now suggest changing the way that e is chosen.

In particular, we redefine e to have different rank on the first n positions
and the last n− k positions. Let e = (e1, e2) with wtR(e1) = t1 and wtR(e2) =
t2. This can be achieved by sampling t1 random elements from Fqm , testing
that this achieves rank t1 and taking the n positions in e1 as random Fq-linear
combinations of these t1 elements. Because m is significantly larger than t1, this
finds an e1 of rank t1 on first try with high probability. Similarly, we pick t2
random elements from Fqm and use their Fq-linear combinations for e2.

We keep P being an isometry and S−1 ∈ GLn−k(Λ) as in REDOG. Then the
decoding step needs to find an error of rank t1 + λt2, namely e1P

−1 on the first
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n positions and e2S
−1 on the last n− k positions. This will succeed if

r ≥ t1 + λt2. (16)

Hence, we can consider different splits of r to maximize security.

Considerations for extreme choices of t1 and t2 As already explained in
Section 6.1, the attacker can consider parts of c1 and c2, for example, the extreme
choice of t1 = 0 would mean that c1 is a codeword in the code generated by M
and thus m′ would be trivially recoverable from c1 = m′M by computing the
inverse of an ℓ × ℓ submatrix of M . Because Fqm is large, almost any choice of
submatrix will be invertible.

The other extreme choice, t2 = 0, does not cause such an obvious attack as for
the REDOG parameters F has one column fewer than it has rows, meaning that
c2 = m′F cannot be solved for m′. Hence, at least one position of c1 needs to be
included, but that means that we do not have a codeword in the code generated
by that column of M and F but a codeword plus an error of rank 1. However,
a brute-force attack on this system still succeeds with cost qm as follows:

Let F̄ = (Mi|F ) be the square matrix obtained from taking Mi, the i-th
column of M , for a choice of i that makes F̄ invertible. Most choices of i will
succeed. Let c̄ = (c1i, c2), the i-th coordinate of c1 followed by c2.

For each a ∈ Fqm compute m̄ = (c̄ − (a, 0, 0, . . . , 0))F̄−1. Then compute
ē = c− m̄(M | F ) and check if wtR(ē1) = t1. If so put m′ = m̄ and e = ē.

The matrix operations in this attack are cheap and can be made even cheaper
by observing that m̄ = c̄F̄−1 − af , for f the first row of F̄−1 , and ē = c −
(c̄F̄−1)(M | F ) + af(M | F ), where everything including f(M | F ) ∈ F2n−k

qm is
fixed and can be computed once per target c. Note also that only the c1 and
e1 parts need to be computed as by construction e2 = 0. This leaves just n
multiplications and additions in Fqm and the rank computation for each choice
of a. The search over a ∈ Fqm is thus the main cost for a complexity of qm. For
all parameters of REDOG this is less than the desired security.

Generalizations of the brute-force attack For t1 = 1, a brute-force attack
needs to search over all a ∈ Fqm , up to scaling by Fq-elements, and over all choices
of error patterns, where each position of the error is a random Fq-multiple of
a. We need ℓ positions from c1 = m′M + e1 to compute a candidate m̄′ as in
the attack on t1 = 0. Hence, for each a ∈ Fqm we need to try at most the qℓ

patterns for those ℓ positions of e1 for a cost of (qm − 1)qℓ/(q − 1). For the
REDOG parameters, q = 2 and m + ℓ is significantly smaller than the security
level. Hence, t1 = 1 is also a bad choice.

Starting at t1 = 2, when there are two elements a, b ∈ Fqm and error patterns
need to consider random Fq-linear combinations of these two elements, the attack
costs of (qm−1)(qm−2)q2ℓ/(2(q−1)2) grow beyond the more advanced attacks
considered in Section 6.1.
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Lemma 8.1. In general, the brute-force attack on the left side takes

(
qm − 1

t1

)
qt1ℓ/(q − 1)t1

steps.

Proof. The error vector on the left, e1, has rank t1, this means that there are
t1 elements a1, a2, . . . , at1 ∈ Fqm which are Fq-linearly independent. There are(
qm−1
t1

)
/(q − 1)t1 such choices up to Fq factors.

Each of the ℓ positions takes a random Fq-linear combination. For a fixed
choice of the ai there are qt1ℓ choices for these linear combinations. Combining
these quantities gives the result. ⊓⊔

Similarly, for t2 = 1 the brute-force attack is no longer competitive, yet less
clearly so than for t1 = 2 because a and b appear in separate parts. There are qm

candidate choices for e1i and (qm − 1)qℓ−1/(q − 1) candidates for e2. For q = 2
this amounts to roughly 22m+ℓ−1 and 2m+ ℓ− 1 is larger than the security level
for all parameters in REDOG.

Lemma 8.2. In general, the brute-force attack on the right side takes

qm
(
qm − 1

t2

)
qt2(ℓ−1)/(q − 1)t2

steps.

Proof. There are qm choices for e1i. The result follows by the same arguments
as for Lemma 8.1, and taking into account that e2 has length ℓ− 1. ⊓⊔

We do not consider other combinations of columns from the left and right as
those would lead to higher ranks than these two options. Depending on the sizes
of t1 and t2, Lemma 8.1 or 8.2 gives the better result, but apart from extreme
choices these costs are very high.

Finding good choices of t1 and t2 We now turn to the more sophisticated
attacks and try to find optimal splits of the decoding budget r between t1 and t2
satisfying (16), to r ≥ t1+λt2. to make the best attacks as hard as possible. For
any such choice, we consider attacks starting from the left with (parts of) c1 and
M or from the right with c2, F , and parts of c1 and M . The attacks and sub-
attacks differ in how many columns they require, depending on the dimension
and rank, and we scan the whole range of possible lengths from both sides.

Since n = ℓ+ t+1, for the t parameter in REDOG, for small choices of t1 ≤ t
the attack may take a punctured system on c1 and M to recover m′, similar to
the attacks considered in Section 6, or include part of c2 and F , while accepting
an error of larger rank including part of t2. Hence, the search from the left may
start with puncturing of c1. Once parts of c2 are included, the rank typically
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parameter set best attack log2(cost) N + i t1 t2 m n k ℓ

128-bit brute-force 320.00 - 12 2 83 44 8 37

192-bit BBB+ 458.25 61 15 3 109 58 10 49

256-bit BBB+ 628.20 75 21 3 135 72 12 61
Table 5. Best parameter choices and achieved security for ω = 2.807, using the original
values for ℓ, k,m, and n and splitting the decoding capacity r according to r ≥ t1+λt2.

increases by one for each extra position, again because m is much larger than
t1 and t2, until reaching t1 + t2, after which the rank does not increase with
increasing length.

If t1 > t + 1 parts of c2 need to be considered in any case, with the corre-
sponding increases in the rank of the error, in turn requiring more positions to
deal with the increased rank, typically reaching t1 + t2 before enough positions
are available.

Starting from the right, the attacker will always need to include parts from
c1 to even have an invertible system. Hence, the attack is hardest for t1 maximal
in (16) provided that the brute-force attack is excluded. This suggests choosing
t2 = 1, t1 = r− λ, as then the attacker is forced to decode an unstructured code
with an error of rank t1 + t2 = r − λ+ 1.

A computer search, evaluating all attacks considered in Section 6 for all
choices of t2 ∈ {1, 2, . . . , r/λ − 1} and considering both directions as starting
points for the attacker confirms that t2 = 1 is optimal. See online for the Sage
code used for the search. The original parameters choices for REDOG then
provide the attack costs in Table 5.

This means that this second idea solves decryption failures and takes the
parameters of REDOG to a safe level of strength. Actually our optimized choice
of t1 and t2 allows enough margin to shrink the other system parameters.

Note that, as pointed out before, these computations use big-O complexity
estimates and put all constants to 1 and lower-order terms to 0. This is in line
with how estimates are presented in the papers introducing BBB+ [BBB+20]
and BBC+ [BBC+20] but typically underestimates the security.

Remark 8.3. After we developed this idea but before posting it, the REDOG
authors informed us that they fixed the decryption issue in a manner similar to
the approach in this section, namely by having different ranks for e1 and e2.
Their choice of t1 = r/2 and t2 = r/(2λ) satisfies r ≥ t1 + λt2. but provides
less security against attacks. The Sage script gives the results in Table 6 as a
byproduct of computing the costs for all values of t2.

9 Conclusions and further considerations

In this paper we showed several issues with the REDOG proposal but also some
ways to repair it. One other issue is that REDOG has rather large keys for
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a rank-metric-based system. A strategy used by many systems in the NIST
post-quantum competition, is to generate parts of the secret and public keys
from seeds and storing or transmitting those seeds instead of the matrices they
generated. Implementations written in C always need to define ways to take
the output of a random-number generator and this strategy includes the use of
a fixed such generator into the KeyGen, encryption, and decryption steps. For
REDOG, this approach permits to reduce the size of the secret key sk and, at
the same time, moderately shrink the size of the public key pk.

Let f : {0, 1}256 → {0, 1}∗ be such a generator, where {0, 1}∗ indicates that
the output length is arbitrary, in a use of f the output lengthN must be specified.
Most recent proposals use SHAKE-256 or SHAKE-512. The idea is to pick a
random 256-bit seed s and initialize f with this seed, the output bits of f(s)
are then used in place of the regular outputs of the random-number generator
to construct elements of the public or secret key. This method is beneficial if s
is much smaller than the key element it replaces. The downside is that any use
of that key element then incurs the costs of recomputing that element from s.

As one of the more interesting cases, we show how to build the isometry P
form f(s) for some seed s. Let (n, k, ℓ, q,m, λ) denote the same quantities as in
REDOG.

Example 9.1. Let N = (n2 +m)⌈log2(q)⌉+ 256 and let {α1, . . . , αm} be a basis
of Fqm over Fq. Choose a random seed s and produce the N -bit string f(s). Use
the first n2⌈log2(q)⌉ bits of f(s) to determine n2 elements in Fq and build an
n×n matrix Q with these elements. The matrix Q is invertible with probability
roughly 0.29. If this is not the case, use the last 256 bits of the output as a
new seed s′, discard s, and repeat the above with f(s′) (an average of 3 trials
produces an invertible matrix).

Once an invertible Q has been constructed, use the middle m⌈log2 q⌉ bits of
f(s) to define m coefficients in Fq and to determine an element γ ∈ Fqm as the
Fq-linear combination of the αi. Then compute P = γQ which, by Theorem 2.4
is an isometry for the rank metric.

As a second example we show how to select S.

Example 9.2. We first observe that Fqm is a large finite field, so any choice
of λ elements for λ ≪ m will be Fq-linearly independent with overwhelming
probability. Using N = (m + (n − k)2)λ⌈log2(q)⌉ we can determine λ random

Intended security in bits 128 192 256

Achieved security in bits (ω = 2.807) 271.75 384.03 500.50

Number of columns (N + i) (ω = 2.807) 46 61 76

Achieved security in bits (ω = 2.37) 229.45 324.24 422.58

Number of columns (N + i) (ω = 2.37) 46 61 76

Table 6. Results for the modified parameter for REDOG using t1 = r/2 and t2 =
r/(2λ). The stated costs are achieved by BBB+ at length N + i.
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elements from Fqm which define the subspace Λ ⊂ Fqm . We then define the
(n − k)2 entries of S−1 ∈ GLn−k(Λ) as Fq-linear combinations over those λ
elements, using the next (n − k)2λ⌈log2 q⌉ bits. The resulting matrix is almost
certainly invertible and permits computing S = (S−1)−1.

Similar strategies can be applied to compute the matrices M,H1 and H2. Let
sP , sS , sM , sH1 , sH2 be the seeds corresponding to the matrices P, S,M,H1 and
H2, respectively. Then we can set sk = (sP , sS , sH1

, sH2
) and pk = (sM , F ) where

F = MP−1HT
1

(
HT

2

)−1
S. This approach cannot be used to compress F as it

depends on the other matrices. In this way we reduced the private key size of RE-
DOG to 1024 bits and public key of size of REDOG to 256+ℓ(n−k)m⌈log2(q)⌉.
For the 128-bit-security level, we obtain a secret key size of 0.13 KB compared
to the original 1.45 KB and a public key size of 13, 85 KB, compared to the orig-
inal 14, 25KB (which was obtained by choosing M to be a circulant matrix) at
the expense of having to recompute the matrices from their seeds when needed.
Given that matrix inversion over Fqm is not fast, implementations may prefer
to include S and S−1 in sk and use seeds for the other matrices. To save even
more space, it is possible to replace sP , sS , sM , sH1

, sH2
by a single seed s and

generating those five seeds as a call to f(s). The public key then includes the
derived value sM but the secret key consists only of s. Note that in that case
each non-invertible Q will be generated for each run expanding the secret seed,
before finding the Q and P that were used in computing pk. In summary, this
strategy provides a tradeoff between size and computing time.
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Abstract. HALFLOOP-96 is a 96-bit tweakable block cipher used in
high frequency radio to secure automatic link establishment messages.
In this paper, we concentrate on its differential properties in the contexts
of conventional, related-tweak, and related-key differential attacks. Us-
ing automatic techniques, we determine the minimum number of active
S-boxes and the maximum differential probability in each of the three
configurations. The resistance of HALFLOOP-96 to differential attacks
in the conventional and related-tweak configurations is good, and the
longest distinguishers in both configurations consist of five rounds. In
contrast, the security of the cipher against differential attacks in the
related-key configuration is inadequate. The most effective related-key
distinguisher we can find spans eight rounds. The 8-round related-key
differential distinguisher is then utilised to initiate a 9-round weak-key
attack. With 292.96 chosen-plaintexts, 38.77-bit equivalent information
about the keys can be recovered. Even though the attack does not pose
a significant security threat to HALFLOOP-96, its security margin in
the related-key configuration is exceedingly narrow. Therefore, improper
use must be avoided in the application.

Keywords: Differential cryptanalysis · Related-tweak · Related-key ·
HALFLOOP-96.

1 Introduction

HALFLOOP is a family of tweakable block ciphers. It was created to encrypt pro-
tocol data units before transmission during automatic link establishment (ALE).
HALFLOOP has been standardised in the most recent revision of MIL-STD-188-
141D [1], the interoperability and performance standards for medium and high
frequency radio systems issued by the United States Department of Defence.

The three versions of HALFLOOP, namely HALFLOOP-24, HALFLOOP-
48, and HALFLOOP-96, possess the same key size of 128 bits while exhibit-
ing differing state sizes of 24 bits, 48 bits, and 96 bits, correspondingly. The
three variants of HALFLOOP are used in various generations of ALE systems:
HALFLOOP-24 in the second generation (2G) system, HALFLOOP-48 in the
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third generation (3G) system, and HALFLOOP-96 in the fourth generation (4G)
system.

The announcement of HALFLOOP is not accompanied by a public crypt-
analysis. Dansarie et al. [12] presented the first public cryptanalytic result on
HALFLOOP-24 and proposed a number of differential attacks [5] for ciphertext-
only, known-plaintext, chosen-plaintext, and chosen-ciphertext scenarios. De-
spite having a 128-bit key size, the results of the attack indicate that HALFLOOP-
24 is incapable of providing 128-bit security. Note that [12] only assesses the
security of HALFLOOP-24 and does not examine the security of the other two
variants.

Despite the fact that many HALFLOOP operations are derived from AES
[2], HALFLOOP-96 is the most similar to AES of the three HALFLOOP vari-
ants. It is common knowledge that AES is susceptible to relate-key differential
attacks, and full-round attacks on AES-192 and AES-256 are proposed in [6,7].
Consequently, the similarity between AES and HALFLOOP-96 drives us to in-
vestigate the security of HALFLOOP-96 in the context of related-key differential
attacks.

1.1 Our Results

Motivated by recognising the resistance of HALFLOOP-96 to differential attack
in the relate-key setting, we examine its differential property in the contexts
of conventional, related-tweak, and related-key differential attacks. Automatic
methods based on the Boolean satisfiability problem (SAT) are employed to find
the lower bound on the number of active S-boxes and the upper bound on the
differential probability for each of the three configurations.

❖ The resistance of HALFLOOP-96 to standard differential attacks is accept-
able. The longest distinguisher with a probability above 2−95 covers five
rounds. The probability of the optimal 5-round differential characteristic is
2−92, whereas the accumulated probability of the best 5-round differential we
can discover is 2−89.18. Due to the limited accumulated effect of differential
characteristics, there is no effective 6-round distinguisher.

❖ Comparing the security of HALFLOOP-96 in the related-tweak setting to
the security of the cipher in the conventional differential setting, there is no
significant decline. The bounds on the active S-boxes and differential proba-
bility in the related-tweak setting are identical to those in the conventional
setting, commencing from the sixth round. For more than five rounds, the
differential characteristics returned by the SAT solver are the same as those
with zero tweak differences. Therefore, starting with the sixth round, the
performance of related-tweak differential characteristics is not superior to
that of traditional differential characteristics.

❖ In the related-key setting, HALFLOOP-96 has a low resistance to differential
attack. The maximum number of rounds covered by a related-key differential
characteristic is eight. The probability of the unique 8-round related-key
differential characteristic is 2−124, whereas the probability of the key schedule

Session 9 - 1 The 26th Annual International Conference on Information Security and Cryptology

ICISC 2023544



Distinguisher and Related-Key Attack on HALFLOOP-96 3

is 2−34 and the probability of the round function is 2−90. The security margin
in this case is limited, considering the ten rounds of HALFLOOP-96.

Using the newly discovered 8-round related-key differential distinguisher, we
launch a 9-round related-key differential attack to recover partial information
about the key pair. It takes 292.96 chosen-plaintexts and 292.96 9-round en-
cryptions to retrieve 38.77 bits of equivalent key information. The attack has
a 90% success probability and is effective against 294 key pairs with a speci-
fied difference. Although the attack does not pose an actual security threat to
HALFLOOP-96, the security margin of the cipher in the setting for related-key
attack is reduced to only one round. Hence, it is crucial to take measures to
avoid the improper use of the application.

Outline. Section 2 goes over the target cipher HALFLOOP-96 as well as differ-
ential cryptanalysis. Section 3 describes the procedure for developing SAT mod-
els to seek for differential distinguishers of HALFLOOP-96. Section 4 provides
the differential properties of the cipher in the conventional, related-tweak, and
related-key configurations. The 9-round related-key differential on HALFLOOP-
96 is detailed in Section 5. Section 6 serves as the conclusion of the paper.

2 Preliminaries

In this section, the cipher examined in the paper is initially reviewed. Next, the
primary concept of differential cryptanalysis is presented.

2.1 Description of HALFLOOP-96

HALFLOOP [1] is a tweakable block cipher family with three distinct variants.
HALFLOOP-96 employs 96-bit blocks and has 128-bit key K and 64-bit tweak
T . Many operations in HALFLOOP-96 are derived from AES [2].

Initialisation After receiving the plaintext m = m0∥m1∥ · · · ∥m11, where mi ∈
F8
2, 0 ⩽ i ⩽ 11, the internal state IS is created by setting IS as

IS =



m0 m4 m8

m1 m5 m9

m2 m6 m10

m3 m7 m11


.
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RKi

AddRoundKey

S

S

S

S

SubBytes

≪ 6

≪ 12

≪ 18

RotateRows

M

MixColumns

Fig. 1. Round function of HALFLOOP-96.

A single encryption round consists of the four operations depicted in Fig. 1:
AddRoundKey (ARK), SubBytes (SB), RotateRows (RR), and MixColumns (MC).
The encryption process consists of r = 10 rounds, with the last round replac-
ing the MixColumns operation with AddRoundKey. The definitions of the four
operations are as follows.

AddRoundKey (ARK) The round key RKi is bitwise added to the state in the i-th
round.

SubBytes (SB) An 8-bit S-box S is applied to each byte of the state, which is
identical to the S-box used by AES (cf. [2]).

RotateRows (RR) As shown in Fig. 1, this operation rotates the rows of the state
to the left by a variable number of bit positions.

MixColumns (MC) This operation is the same as the MixColumn transformation
used in AES. The columns of the state are regarded as polynomials over the
finite field F28 , with the irreducible binary polynomial denoted as m(x) =
x8 + x4 + x3 + x + 1. Each column is multiplied modulo x4 + 1 by a fixed
polynomial c(x) given by c(x) = 3 · x3 + x2 + x + 2. The aforementioned
process can instead be represented as a matrix multiplication utilising the
matrix M over F28 . In this case, the matrix M is defined as

M =



2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2


. (1)
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RK0

RK1

RK2

RK3

RK4

RK5

RK6

RK7

RK8

RK9

RK10

W0 W1 W2 W3

Rcon1 g

W4 W5 W6 W7

Rcon2 g

W8 W9 W10 W11

Rcon3 g

W12 W13 W14 W15

Rcon4 g

W16 W17 W18 W19

Rcon5 g

W20 W21 W22 W23

Rcon6 g

W24 W25 W26 W27

Rcon7 g

W28 W29 W30 W31

gRcon8

W32

Fig. 2. Key schedule of HALFLOOP-96.

Key Schedule The key schedule resembles that of AES-128 closely. Denote K
and T as K0∥K1∥K2∥K3 and T0∥T1, respectively, where Ki (0 ⩽ i ⩽ 3) and
Tj (j = 0, 1) are 32-bit words. K and T are utilised to generate a linear
array of 4-byte words W0, W1, . . ., W32, which are then employed to create
the round keys. The first four words are initialised with

W0 = K0 ⊕ T0,W1 = K1 ⊕ T1,W2 = K2,W3 = K3.

The remaining words are derived using the subsequent two functions.
RotWord The function accepts the input word a0∥a1∥a2∥a3, performs a cyclic

permutation, and returns the output word a1∥a2∥a3∥a0.
SubWord The function takes a 4-byte input word and applies the S-box S to

each of the four bytes to generate a 4-byte output word.
Each subsequent word Wi (4 ⩽ i ⩽ 16 and i mod 4 ̸= 0) is the XOR of
the two preceding words Wi−1 and Wi−4. For words in positions i that are
a multiple of four, g = SubWord ◦ RotWord is applied to Wi−1 prior to the
XOR, and a round constant Rconi/4 is XORed with the result. Eight round
constants are involved in the key schedule of HALFLOOP-96, which are

Rcon1 = 0x01000000, Rcon2 = 0x02000000, Rcon3 = 0x04000000,

Rcon4 = 0x08000000, Rcon5 = 0x10000000, Rcon6 = 0x20000000,

Rcon7 = 0x40000000, Rcon8 = 0x80000000.
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To obtain the round keys RK0, RK1, . . ., and RK10 for HALFLOOP-96,
it is necessary to repackage the 4-byte words into 12-byte words. The key
schedule is illustrated in Fig. 2.

2.2 Differential Cryptanalysis

The concept of differential cryptanalysis was initially introduced by Biham and
Shamir [5] at CRYPTO 1990. The fundamental methodology involves using
plaintext pairs (P, P ′) linked by a constant input difference ∆in, commonly de-
scribed as the XOR operation between two plaintexts. The attacker subsequently
calculates the difference between the two ciphertexts (C,C ′) to identify a non-
random occurrence of an output difference ∆out with a certain likelihood.

The pair of differences (∆in,∆out) is called a differential. The differential
probability of the differential over an n-bit primitive EK is computed as

PrEK
(∆in,∆out) =

{x ∈ Fn
2 | EK(x)⊕ EK(x⊕∆in) = ∆out}

2n
.

The weight of the differential is determined by taking the negative logarithm of
its probability, using a base of two.

The task of evaluating the differential probability of a differential in order
to discover a valid differential for a cryptographic algorithm with several iter-
ations is known to be quite challenging. The differential is usually localised by
constructing differential characteristics, which enable the tracking of differences
occurring after each round. Let (∆0 = ∆in,∆1, . . . ,∆r = ∆out) be an r-round dif-
ferential characteristic of the given differential (∆in,∆out). Suppose the r-round
encryption EK can be represented as the composition of r round functions de-
noted by fkr−1

◦ fkr−2
◦ · · · ◦ fk0

. Given the premise that the round keys k0, k1,
. . ., and kr−1 are independent and uniformly random, the differential probability
of the differential characteristic can be calculated as

PrEK
(∆0,∆1, . . . ,∆r) =

r−1∏
i=0

Prfki
(∆i,∆i+1).

As discussed in [14], a fixed differential might encompass several differential char-
acteristics, and the probability of the differential is determined by aggregating
the probabilities associated with each differential characteristic. This probability
may be computed as

PrEK
(∆in,∆out) =

∑
∆1,∆2,...,∆r−1∈Fn

2

PrEK
(∆in,∆1, . . . ,∆r−1,∆out).

In practical applications, the comprehensive search for all characteristics in-
side a differential and the precise calculation of their probabilities are unattain-
able due to the constraints imposed by limited computational resources. A com-
mon way of handling this is to find the differential characteristics with a higher

Session 9 - 1 The 26th Annual International Conference on Information Security and Cryptology

ICISC 2023548



Distinguisher and Related-Key Attack on HALFLOOP-96 7

probability in the differential, and the summation of probabilities of these char-
acteristics approximates the probability of the differential.

After finding an r-round differential (∆in,∆out) with probability p0 (p0 >

21−n), we can launch an attack against the (r + 1)-round encryption ÊK =
fkr

◦ EK . The following is a summary of the attack procedure.

① Select N pairs of plaintexts (P, P ′) whose difference P⊕P ′ equals ∆in. Query
the encryption oracle to obtain pairs of corresponding ciphertexts (C,C ′).

② Create a counter Ctr[k(i)r ] for each possible value k
(i)
r of the subkey kr, 0 ⩽

i ⩽ 2n − 1. For each pair (C,C ′), determine the value of f−1

k
(i)
r

(C)⊕ f−1

k
(i)
r

(C ′)

for each k
(i)
r . If the equation f−1

k
(i)
r

(C) ⊕ f−1

k
(i)
r

(C ′) = ∆out is valid, increment

the counter Ctr[k(i)r ] by one.
③ If the threshold is set to τ , the key guess k

(i)
r is sorted into a candidate list

only if the counter value Ctr[k(i)r ] is at least τ .

The counter that keeps track of the number of pairs confirming the differential
conforms to the binomial distribution B(N, p0) when the correct key guess is
made, as the attack procedure specifies. The counter under the wrong key guess
follows a binomial distribution B(N, p), where p is the probability of a pair
matching the differential given a wrong key guess, which is equal to p = 21−n.

As a statistical cryptanalysis, differential cryptanalysis is inevitably con-
fronted with two errors. The symbol ε0 denotes the likelihood that the candidate
list does not include the right key. The likelihood of a key guess that is not cor-
rect remaining in the candidate list is represented by the symbol ε1. Hence, the
probability of success (PS) in the attack, denoting the likelihood of the right key
being included in the candidate list, may be expressed as 1−ε0. When the value
of N is sufficiently large, the approximations for ε0 and ε1 may be derived using
the methodology presented in [8] as

ε0 ≈
p0 ·

√
1− (τ − 1)/N(

p0 − (τ − 1)/N
)
·
√
2 · π · (τ − 1)

· exp
[
−N ·D

(
τ − 1

N

∥∥∥∥p0
)]

,

ε1 ≈
(1− p) ·

√
τ/N

(τ/N − p) ·
√
2 · π ·N · (1− τ/N)

· exp
[
−N ·D

(
τ

N

∥∥∥∥p
)]

,

(2)

where D(p∥q) ≜ p · ln
(

p
q

)
+ (1 − p) · ln

(
1−p
1−q

)
represents the Kullback-Leibler

divergence between two Bernoulli distributions with parameters p and q.

2.3 Related-Key and Related-Tweak Differential Cryptanalysis

One notable distinction between differential cryptanalysis and related-key differ-
ential cryptanalysis is the utilisation of differential propagations. In related-key
differential cryptanalysis, the focus is on exploiting the differential propagation
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while encrypting plaintexts P and P ′ with distinct keys, even if these plain-
texts happen to be identical. The formal representation of an r-round related-
key differential is denoted by the triple (∆in,∆out,∆key), where ∆key signifies the
difference between the keys. The probability is calculated as

PrEK
(∆in,∆out,∆key) =

{x ∈ Fn
2 | EK(x)⊕ EK⊕∆key(x⊕∆in) = ∆out}

2n
.

AES is widely acknowledged as vulnerable to related-key differential attacks, as
evidenced by the suggested full-round attacks on AES-192 and AES-256 in [6,7].
Given that HALFLOOP-96 has the highest degree of similarity to AES among
the three HALFLOOP variations, our focus lies on examining its differential
property in the context of a related-key attack.

It is also feasible to initialise related-tweak differential cryptanalysis for tweak-
able block ciphers. Differential propagation is utilised when P and P ′, which
might potentially be identical, are encrypted using the same key and distinct
tweaks. The related-tweak differential is denoted by (∆in,∆out,∆tweak), where
∆tweak signifies the difference between the tweaks. In contrast to related-key dif-
ferential cryptanalysis, related-tweak differential cryptanalysis is considered a
more feasible approach because the adversary knows the value of the tweak.

3 Automatic Search of Differential Distinguishers

Identifying a differential with a non-negligible probability is a pivotal and ar-
duous stage in a differential attack. At the EUROCRYPT 1994, Matsui [18]
introduced a pioneering approach called the branch and bound algorithm, which
offered a systematic methodology for investigating the best differential charac-
teristic. When considering tailored optimisations for certain ciphers, it is indis-
putable that branch and bound algorithms exhibit high efficiency [13]. However,
the ability to prevent memory overflow through the precise selection of search
nodes is a challenge requiring proficiency in cryptanalysis and programming.

The introduction of automatic search techniques [19] has dramatically sim-
plified the process of identifying differential characteristics. The main aim is to
transform the task of finding differential characteristics into some well-studied
mathematical problems. With some publicly accessible solvers for these mathe-
matical problems, the optimal differential characteristics can be identified. Due
to its relatively straightforward implementation, automatic approaches have
been widely employed in the search for distinguishers in various attacks.

The mathematical problems that are commonly encountered include mixed
integer linear programming (MILP), Boolean satisfiability problem (SAT), sat-
isfiability modulus theories (SMT), and constraint satisfaction problem (CSP).
The classification of automatic search methods is based on the mathematical
issues they address. The search for differential characteristics in ciphers with
8-bit S-boxes may be conducted using MILP method as described in [3,9,15],
SAT method as described in [4,23], and SMT method as described in [16]. In
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this study, the SAT method proposed in [23] is chosen for efficiently generating
SAT models for S-boxes.

This section provides a comprehensive description of the SAT models neces-
sary for searching for differential characteristics of HALFLOOP-96.

3.1 Boolean Satisfiability Problem

A Boolean formula is comprised of Boolean variables, the operations AND (con-
junction, ∧), OR (disjunction, ∨), and NOT (negation, ·̄), and brackets. The
Boolean satisfiability problem (SAT) pertains to ascertaining the existence of a
valid assignment for all Boolean variables such that the given Boolean formula
holds. If this condition is met, the formula is known as satisfiable. In the absence
of such a designated task, the formula in question is considered unsatisfiable.
SAT is the first problem proven to be NP-complete [11]. However, significant
advancements have been made in developing efficient solvers capable of han-
dling a substantial volume of real-world SAT problems.

This work employs the solver CryptoMiniSat [21] for distinguisher search.
CryptoMiniSat necessitates that Boolean formulae be expressed in conjunc-
tive normal form (CNF), whereby many clauses are made in conjunction with
each other, and each clause consists of a disjunction of variables, which may be
negated. CryptoMiniSat additionally provides support for XOR clauses that are
formed of XOR operations on variables. This feature greatly simplifies the pro-
cess of constructing models for HALFLOOP-96. Converting distinguisher search-
ing problems into Boolean formulae is critical in developing automatic models.

3.2 SAT Models for Linear Operations of HALFLOOP-96

For the m-bit vector ∆, the i-th bit (0 ⩽ i ⩽ m − 1) is denoted by ∆[i], while
∆[0] represents the most significant bit.

Model 1 (XOR, [17]) For the m-bit XOR operation, the input differences are
represented by ∆0 and ∆1, and the output difference is denoted by ∆2. Differen-
tial propagation is valid if and only if the values of ∆0, ∆1 and ∆2 validate all
of the following XOR clauses.

∆0[i]⊕∆1[i]⊕∆2[i] = 0, 0 ⩽ i ⩽ m− 1.

To build the model for the MC operation, we employ the procedure described
in [24]. First, the primitive representation [22] M of the matrix M (cf. Eqn. (1))
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is created.

M =




0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
1 0 0 0 0 1 0 0 1 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 1 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0
1 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0




is the matrix representation of M over F2. The notation Mi,j represents the
element located in the i-th row and j-th column of the matrix M. The SAT
model can then be constructed using XOR clauses.

Model 2 (Matrix Multiplication) For matrix multiplication with the 32 ×
32 matrix M, the input and output differences are represented by ∆0 and ∆1

respectively. Differential propagation is valid if and only if the values of ∆0 and
∆1 satisfy all the XOR clauses in the subsequent.


{j | 0⩽j⩽31 s.t. Mi,j=1}

∆0[j]⊕∆1[i] = 0, 0 ⩽ i ⩽ 31.

3.3 SAT Model for the S-box of HALFLOOP-48

The method in [23] is utilised to construct the SAT model for the S-box. We
commence our analysis with the SAT model that is focused on active S-boxes.
In addition to using 16 Boolean variables ∆0 = (∆0[0],∆0[1], . . . ,∆0[7]) and
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∆1 = (∆1[0],∆1[1], . . . ,∆1[7]) to represent the input and output differences of
the S-box, it is necessary to incorporate an auxiliary Boolean variable denoted
as w. The value assigned to w is one for active S-boxes and zero for inactive
S-boxes, assuming the propagation ∆0 → ∆1 is possible. Based on the given
criteria, the set

V1 =



∆0∥∆1∥w



∆0,∆1 ∈ F8
2, w ∈ F2

w =


1, if PrS(∆0,∆1) < 1

0, if PrS(∆0,∆1) = 1




encompasses potential values for ∆0∥∆1∥w. In order to maintain the constraint
that ∆0∥∆1∥w remains within the bounds of the set V1, a clause is generated
for each 17-bit vector v /∈ V1,

7
i=0

(∆0[i]⊕ v[i]) ∨
7

i=0

(∆1[i]⊕ v[i+ 8]) ∨ (w ⊕ v[16]) = 1,

which may serve as a candidate for the SAT model of the S-box. These clauses
comprise an initial version of the SAT model for the search oriented to active
S-boxes. The use of the initial version of the SAT model without modification
would impede the search process of the automatic method due to the large size
of the set F17

2 \V1, which is 217 − 32386 = 98686. To reduce the size of the S-box
model, we employ the Espresso algorithm [10] to simplify the model4. The final
SAT model oriented to active S-boxes is composed of 7967 clauses.

The SAT model oriented to differential probability can be created similarly.
The probabilities of possible differential propagations ∆0 → ∆1 for the 8-bit
S-box S can take values from the set {2−7, 2−6, 1}. Motivated by the two-step
encoding method described in [23], we introduce two Boolean variables u0 and
u1 for each S-box to encode the differential probability of possible propagations.

V2 =



∆0∥∆1∥u0∥u1



∆0,∆1 ∈ F8
2, u0, u1 ∈ F2

u0∥u1 =




1∥1, if PrS(∆0,∆1) = 2−7

0∥1, if PrS(∆0,∆1) = 2−6

0∥0, if PrS(∆0,∆1) = 1




is an optional set of values that may be assigned to the vector ∆0∥∆1∥u0∥u1.
Thus, the weight of a potential propagation can be determined by u0 + 6 · u1.
To ensure that ∆0∥∆1∥u0∥u1 never takes values outside of the set V2, we should
generate a clause for each 18-bit ν /∈ V2,

7
i=0

(∆0[i]⊕ ν[i]) ∨
7

i=0

(∆1[i]⊕ ν[i+ 8]) ∨ (u0 ⊕ ν[16]) ∨ (u1 ⊕ ν[17]) = 1.

4 A modern, compilable re-host of the Espresso heuristic logic minimizer can be found
at https://github.com/classabbyamp/espresso-logic.
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These clauses constitute an initial version of the SAT model oriented to differ-
ential probability. ESPRESSO algorithm is once again employed to reduce the
size of the model. The final S-box model oriented to differential probability is
composed of 8728 clauses.

3.4 SAT Model for the Objective Function

We aim to identify differential characteristics that exhibit fewer active S-boxes
and high probability. The objective function can be mathematically expressed

as
ℓ

i=0

ui ⩽ ϑ, where ui (0 ⩽ i ⩽ ℓ) are Boolean variables that indicate the

activation status of the S-boxes or encode the differential probability of possible
propagations for the S-boxes. Let ϑ denote a predetermined upper limit for either
the number of active S-boxes or the weight of the differential characteristics.
The sequential encoding method [20] is utilised to transform this inequality into
clauses.

Model 3 (Objective Function, [20]) The following clauses provide validity

assurance for the objective function
ℓ

i=0

ui ⩽ 0.

ui = 1, 0 ⩽ i ⩽ ℓ.

For the objective function
ℓ

i=0

ui ⩽ ϑ with ϑ > 0, it is necessary to incorporate

auxiliary Boolean variables ai,j (0 ⩽ i ⩽ ℓ − 1, 0 ⩽ j ⩽ ϑ − 1). The objective
function is valid if and only if the following clauses hold.

u0 ∨ a0,0 = 1

a0,j = 1, 1 ⩽ j ⩽ ϑ− 1

ui ∨ ai,0 = 1

ai−1,0 ∨ ai,0 = 1

ui ∨ ai−1,j−1 ∨ ai,j = 1

ai−1,j ∨ ai,j = 1


1 ⩽ j ⩽ ϑ− 1

ui ∨ ai−1,ϑ−1 = 1




1 ⩽ i ⩽ ℓ− 2

uℓ ∨ aℓ−1,ϑ−1 = 1

.

3.5 Finding More Differential Characteristics

Using the models presented in Sections 3.2 to 3.4, we can identify differential
characteristics with fewer active S-boxes and high probabilities. To improve the
probability evaluation of the differential, we should fix the input and output
differences in the automatic model and find as many other differential charac-
teristics as feasible. To prevent the solver from returning the same solution after
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obtaining a single differential characteristic, we should add a clause to the SAT
problem. Assume that v ∈ Fω

2 is a solution for the ω Boolean variables x0, x1,
. . ., xω−1 returned by the SAT solver. Two index sets

v|0 = {i|0 ⩽ i ⩽ ω − 1 s.t. v[i] = 0}, and v|1 = {i|0 ⩽ i ⩽ ω − 1 s.t. v[i] = 1}.

are generated based on the value of v. Adding the clause
∨

i∈v|0

xi ∨
∨

i∈v|1

xi = 1

to the SAT problem guarantees that the solver will not find v again.

4 Differential Distinguishers of HALFLOOP-96

This section presents an analysis of the differential characteristics of HALFLOOP-
96 in three attack settings: conventional, related-tweak, and related-key. These
characteristics are determined using the methodology in Section 3.

Table 1. Differential properties of HALFLOOP-96.

Round 1 2 3 4 5 6 7 8 9 10

#S 1 5 8 11 14 17 20 23 26 29
#ST 0 1 3 8 14 17 20 23 26 29
#SK 0 0 1 5 11 14 16 19 24 29

P 2−6 2−30 2−48 2−70 2−92 2−113 2−134 2−155 2−176 2−197

PT 1 2−6 2−18 2−53 2−91 2−113 2−134 2−155 2−176 2−197

PK 1 1 2−6 2−31 2−66 2−87 2−106 2−124 2−154 2−197

#S, #ST, and #SK: The number of active S-boxes in conventional, related-tweak, and related-key settings.
P, PT, and PK: Differential probabilities in conventional, related-tweak, and related-key settings.

4.1 Conventional Differential Distinguishers of HALFLOOP-96

The lower bound on the number of active S-boxes and the upper bound on the
differential probability are calculated in the standard differential attack scenario.
The outcomes of 1 to 10 rounds of HALFLOOP-96 are displayed in Table 1.

Table 2. Information about three 5-round differentials with probability 2−89.18.

Index Input difference Output difference

1 0x000000580600000000660000 0x101030205f6a3535e8c09d2e

2 0x060000000066000000000058 0x5f6a3535e8c09d2e10103020

3 0x006600000000005806000000 0xe8c09d2e101030205f6a3535
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The longest differential characteristic with a probability greater than 2−95

spans five rounds, and the SAT solver indicates that there are 3207 5-round
differential characteristics with probability 2−92. A thorough analysis reveals
that the 3207 characteristics stem from 2214 distinct differentials. We search
for all differential characteristics in the 2214 differentials with probabilities more
significant than 2−110 by fixing the input and output differences in the automatic
search. The largest accumulated probability of the differential is 2−89.18, and
there are three differentials with the highest probability, whose input and output
differences are shown in Table 2. Six 5-round characteristics exist in the first
differential with the highest probability of 2−92, as depicted in Fig. 3.

(a) The first characteristic in the differential with probability 2−92.
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(b) The second characteristic in the differential with probability 2−92.
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(c) The third characteristic in the differential with probability 2−92.
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(d) The fourth characteristic in the differential with probability 2−92.
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(e) The fifth characteristic in the differential with probability 2−92.
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(f) The sixth characteristic in the differential with probability 2−92.
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Fig. 3. Six dominated characteristics in the first 5-round differential.

Even though the probability of the optimal 6-round differential characteristic
of HALFLOOP-96 is less than 2−95, we question the existence of 6-round differ-
entials with accumulated probabilities greater than 2−95. To find the answer, we
first search for all 6-round differential characteristics with a probability of 2−113

and determine that 1272 characteristics meet the condition. Note that the 1272
characteristics come from 1017 different differentials. Then, we fix the input and
output differences in the automatic search and discover all differential charac-
teristics with probabilities greater than 2−135 for each of the 1017 differentials.
The maximal accumulated probability of 6-round differentials reaches 2−110.87,
indicating that these differentials cannot support a valid differential attack. The
longest differential distinguisher for HALFLOOP-96 comprises five rounds.
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4.2 Related-Tweak Differential Distinguishers of HALFLOOP-96

The evaluation of active S-boxes and differential probabilities should include
the key schedule in the context of a related-tweak attack. Table 1 displays the
minimum number of active S-boxes and maximum differential probabilities for
one to ten rounds of HALFLOOP-96 in the related-tweak attack configuration.

From the sixth round, the bounds on the active S-boxes and probabilities
in the related-tweak setting are identical to those in the conventional setting,
as shown in Table 1. The differential characteristics returned by the SAT solver
for more than five rounds do not have non-zero tweak differences. Accordingly,
beginning with the sixth round, related-tweak differential characteristics do not
perform better than conventional ones. Given that the optimal differential in
the conventional differential attack setting has already reached five rounds, the
advantage of the adversary in the related-tweak setting is insignificant.
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Difference in RK4

Differential propagations for the S-box with probability 2−7
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Bytes with non-zero differences

Bytes with differences being zero

(a) Differential propagation in the key schedule for the two 5-round related-tweak differential characteristics.
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(b) Differential propagation in the round function for the first 5-round related-tweak differential characteristic.
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(c) Differential propagation in the round function for the second 5-round related-tweak differential characteristic.
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Fig. 4. Two 5-round related-tweak differential characteristics with probability 2−91.
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The minor advantage resides in the existence of 5-round related-tweak dif-
ferential characteristics with a probability of 2−91, whereas the probability of
the optimal 5-round characteristic in the conventional setting is 2−92. We find
two 5-round related-tweak differential characteristics with a probability of 2−91

using the SAT solver. The probability in the key schedule is 2−12 and the prob-
ability in the round function is 2−79 for both characteristics. In addition, after
searching exhaustively with the automatic procedure for all characteristics with
probabilities greater than 2−120, we are unable to identify a clustering effect for
the two characteristics. Figure 4 exhibits the two characteristics.

4.3 Related-Key Differential Distinguishers of HALFLOOP-96

In the context of a related-key attack, the calculation of active S-boxes and
differential probabilities must consider the key schedule. Table 1 displays the
bounds on the active S-boxes and differential probabilities from one to ten cycles
of HALFLOOP-96.

Note that in the related-key attack configuration, the characteristics may
be utilised in an attack if the probability is greater than 2−127. According to
Table 1, the effective related-key differential characteristic with the most rounds
is eight. We verify using the SAT solver that there is only one 8-round related-key
differential characteristic with probability 2−124. Figure 5 illustrates the 8-round
characteristic. The probability in the key schedule is 2−34, and the probability in
the round function is 2−90. In addition, we do not identify the clustering effect
for the 8-round distinguisher after exhaustively searching for all characteristics
with probability no less than 2−150.

∆in = 0xad0000f6c05df6f7f7f6f001

∆out = 0xf7f6f601f7f6f601f7f6f601
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∆key = 0xad0000f65af6f6f75af6f60100000000
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(a) Differential propagation in the key schedule. (b) Differential propagation in the round function.
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Fig. 5. 8-round related-key differential characteristics with probability 2−124.
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5 Related-Key Differential Attack on HALFLOOP-96

In this section, we employ the 8-round related-key differential distinguisher in
Section 4.3 to launch a 9-round related-key differential attack on HALFLOOP-
96. Note that the attack is a weak-key attack, as the probability of the key sched-
ule shown in Fig. 5 is 2−34. In other words, only one pair of keys out of 234 pairs
of keys with a difference of ∆key = 0xad0000f65af6f6f75af6f60100000000 is
susceptible to the following attack. In this circumstance, a valid attack must
ensure the time complexity is less than 294.

In the attack, one round is appended after the distinguisher, and the key-
recovery procedure is depicted in Fig. 6. S structures are prepared for the attack.
Each structure contains 280 plaintexts, where ten bytes P [0, 3-11] of the plain-
text P traverse all possible values while the remaining two are fixed to random
constants. Then, a single structure can be used to create 279 pairs with a dif-
ference of ∆P = 0xad0000f6c05df6f7f7f6f001, bringing the total number of
pairs to N = S · 279. Therefore, the data complexity of the attack is S · 280
chosen-plaintexts.

(a) Differential propagation in the key schedule.
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(b) Key-recovery procedure of the 9-round related-key attack.
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Fig. 6. 9-round related-key differential attack on HALFLOOP-96.

In the attack, an empty hash table H is created. For each output pair (O,O′)
returned by the encryption oracle, if the conditions

∆O[0-2] = 0x5af6f6, ∆O[5]⊕∆O[9] = ∆O[6]⊕∆O[10] = 0xf6.

are fulfilled, the quadruple (P, P ′, O[3, 4, 7, 11], O′[3, 4, 7, 11]) will be inserted
into H at index ∆O[8-10]. Consequently, H contains approximately N · 2−40

quadruples, and each index ∆O[8-10] corresponds to approximately N · 2−64

quadruples. The index ∆O[8-10] that renders differential propagation of either
0xf6 → ∆O[8] ⊕ ad or 0xf6 → ∆O[9] impossible for the S-box is then elimi-
nated from H. After this stage, there are approximately 224 · (127/256)2 = 221.98

indexes remaining in H. The time complexity of this phase is dominated by the
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time to query the encryption oracle, which corresponds to line 3 of Algorithm 1
and is equivalent to TL3 = S · 279 · 2 = S · 280 9-round encryptions.

For each index ∆O[8-10] in H, we guess the value of RK9[4] and initialise
an empty table T1. After deriving the value of RK ′

9[4] = RK9[4]⊕∆O[8]⊕ 5a,
the value of ∆X8[4] for each quadruple at index ∆O[8-10] can be computed.

Algorithm 1: 9-round related-key differential attack
1 Create S · 279 pairs (P, P ′) from S structures
2 Initialise an empty hash table H
3 Obtain the value of (O,O′) for each (P, P ′) by querying the encryption oracle
4 if ∆O[0-2] = 0x5af6f6 and ∆O[5]⊕∆O[9] = ∆O[6]⊕∆O[10] = 0xf6 then
5 (P, P ′, O[3, 4, 7, 11], O′[3, 4, 7, 11]) is inserted into H at index ∆O[8-10]
6 end
7 foreach index ∆O[8-10] of H do
8 if 0xf6 → ∆O[8]⊕ ad or 0xf6 → ∆O[9] are impossible propagations then
9 Remove the index ∆O[8-10] from H

10 else
11 foreach 8-bit possible values of RK9[4] do
12 Initialise an empty table T1

13 Derive RK′
9[4] = RK9[4]⊕∆O[8]⊕ 0x5a

14 foreach (P, P ′, O[3, 4, 7, 11], O′[3, 4, 7, 11]) at index ∆O[8-10] do
15 Compute ∆X8[4]
16 if ∆X8[4] = 0xad then
17 Inserted (P, P ′, O[3, 7, 11], O′[3, 7, 11]) into table T1

18 end
19 end
20 foreach 63 possible values of α′ and 127 possible values of ζ do
21 foreach 24-bit possible values of RK9[3, 7, 11] do
22 Initialise an empty table T2

23 Derive RK′
9[3, 7, 11] = RK9[3, 7, 11]⊕ (α′∥(α′ ⊕ ζ)∥ζ)

24 foreach (P, P ′, O[3, 7, 11], O′[3, 7, 11]) in T1 do
25 Compute ∆X8[3, 7, 11]
26 if ∆X8[3] = ∆X8[7] = ∆X8[11] = α′ ⊕ 0x01 then
27 Inserted (P, P ′) into table T2

28 end
29 end
30 Count the number of pairs Ctr in T2

31 if Ctr ⩾ τ then
32 Derive candidates for RK0[4, 5, 8, 10] with (P, P ′) in T2

33 Output RK0[4, 5, 8, 10]∥RK9[3, 4, 7, 11]∥α′∥ζ∥∆[8-10]
34 end
35 end
36 end
37 end
38 end
39 end
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If ∆X8[4] = 0xad, the quadruple (P, P ′, O[3, 7, 11], O′[3, 7, 11]) is inserted into
table T1. The approximate number of quadruples in T1 is N ·2−64 ·2−8 = N ·2−72.
This phase, which corresponds to line 14 of Algorithm 1, has a time complexity
of TL14 = 221.98 · 28 ·N · 2−64 · 2/12 = S · 242.40 one-round encryptions.

Since the difference ∆RK9[3, 7, 11] is related to undetermined values α′ and ζ,
the following attack should enumerate the values of α′ and ζ. Noting that 5a → ζ
is a possible propagation for the S-box, ζ can take on one of 127 possible values.
Since ad → α′ ⊕ 0x01 and α′ → ∆O[10] must be possible propagations for the
S-box, the probability that a random 8-bit vector validates the two constraints
for the case of α′ is (127/256)2 = 2−2.02. Therefore, α′ has an average of 63
possible values. Then, for all 63 possible values of α′ and 127 possible values of
ζ, we estimate the value of RK9[3, 7, 11] and create an empty table T2. After
deriving the values of RK ′

9[3] = RK9[3] ⊕ α′, RK ′
9[7] = RK9[7] ⊕ α′ ⊕ ζ, and

RK ′
9[11] = RK9[11] ⊕ ζ, it is possible to calculate the value of ∆X8[3, 7, 11]. If

∆X8[3] = ∆X8[7] = ∆X8[11] = α′ ⊕ 0x01, the quadruple in T1 will be inserted
into T2. Consequently, T2 contains approximately N · 2−72 · 2−24 = N · 2−96

quadruples. This step, which corresponds to line 24 of Algorithm 1, has a time
complexity of TL24 = 221.98 · 28 · 63 · 127 · 224 · N · 2−72 · 3 · 2/12 = S · 272.95
one-round encryptions.

We set a counter Cnt in order to remember the number of quadruples in
T2. Based on the analysis presented above, the value of Cnt follows a bino-
mial distribution with parameters B(N, p0 = 2−90) for a correct key guess and
B(N, p = 2−96) otherwise. The threshold τ is set to two correct pairs, and the
success probability PS is set to 90.00%. Using Eqn. (2), we determine S = 212.96

and ε1 = 2−14.77. Therefore, there are ε1 · 221.98 · 232 · 63 · 127 = ε1 · 266.95 can-
didates for RK9[3, 4, 7, 11]∥α′∥ζ∥∆[8-10] that satisfy the condition at line 30 of
Algorithm 1. Utilising the property of the four active S-boxes in the first round,
as depicted in Fig. 6(b), and relying on right pairs, additional information about
the key can be recovered. Take the S-box at X0[4] as an illustration. Since the
input difference 0x9a must be propagated to the output difference 0xdb, there
are only four possible values for X0[4] and X ′

0[4], which are 0x00, 0x72, 0x9a,
and 0xe8. This restriction allows us to screen out candidates for RK0[4] with a
probability of 2−6. Likewise, the constraints on X0[5], X0[8] and X0[10] yield a
sieving probability of 2−18. There are a total of ε1·266.95·44 = ε1·274.95 candidates
for RK0[4, 5, 8, 10]∥RK9[3, 4, 7, 11]∥α′∥ζ∥∆[8-10]. This phase, corresponding to
line 31 of Algorithm 1, has a maximal time complexity of TL31 = ε1 · 266.95
one-round encryptions. We recover equivalently 1/ε1+6 ·4 = 38.77 bits of infor-
mation about the key pair. As a result, the total time complexity of the attack is
TL3 + (TL14 + TL24 + TL31)/9 = 292.96 9-round encryptions. Given that the hash
table H dominates memory consumption, the memory complexity of the attack
is 256.96 bytes.

Remark 1. We attempt to recover the remaining key bits as well. However, the
time required to seek the remaining key bits exhaustively exceeds 294. The re-
covery of complete information about the key is an intriguing future endeavour.
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20 Jinpeng Liu and Ling Sun

6 Conclusion

This paper focuses on the differential distinguishers and related-key differential
attacks on HALFLOOP-96. SAT problems are utilised to model the search for
differential distinguishers. We use the SAT solver to determine the minimum
number of active S-boxes and the maximum differential probability for the con-
ventional, related-tweak, and related-key differential attack configurations. By
applying the newly discovered 8-round related-key differential distinguisher, we
launch a 9-round related-key differential attack against the cipher. The attack
is weak-key and effective against 294 key pairs with a specified difference. Al-
though the attack does not pose a real security threat to HALFLOOP-96, the
security margin of the cipher in the setting for related-key attacks is minimal.
Consequently, care must be taken to avoid misuse.
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Not optimal but efficient: a distinguisher based
on the Kruskal-Wallis test
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Abstract. Research about the theoretical properties of side channel dis-
tinguishers revealed the rules by which to maximise the probability of
first order success (“optimal distinguishers”) under different assumptions
about the leakage model and noise distribution. Simultaneously, research
into bounding first order success (as a function of the number of observa-
tions) has revealed universal bounds, which suggest that (even optimal)
distinguishers are not able to reach theoretically possible success rates.
Is this gap a proof artefact (aka the bounds are not tight) or does a dis-
tinguisher exist that is more trace efficient than the “optimal” one? We
show that in the context of an unknown (and not linear) leakage model
there is indeed a distinguisher that outperforms the “optimal” distin-
guisher in terms of trace efficiency: it is based on the Kruskal-Wallis
test.

Keywords: Distinguisher � Side Channel

1 Introduction

To exploit the information contained in side channels we use distinguishers:
these are key-guess dependent functions, which are applied to the side chan-
nel observations and some auxiliary input (plaintext or ciphertext information),
that attribute scores to key guesses. Optimal distinguishers [HRG14] are distin-
guishing rules derived by the process of maximising the likelihood of ranking
the key guess that corresponds to the true secret value first (via their respec-
tive scores). The mathematical setup to derive optimal distinguishers is agnostic
to estimation and trace efficiency, and thus an optimal distinguisher is not per
construction the most trace efficient one. However, the optimal distinguishing
rules that were derived in [HRG14] outperformed (experimentally) other distin-
guishers, or when not, [HRG14] showed mathematical equivalence between an
optimal distinguishing rule and a classical rule. For instance, the correlation dis-
tinguisher turned out to be equivalent to the optimal rule in the situation where
the leakage function is known and the noise is Gaussian.

The situation in which an adversary is confronted with a new device that
contains an unknown key is interesting because it corresponds to the “hardest
challenge” for the adversary: they should recover the key with only informa-
tion about the cryptographic implementation. Framing this in the context of

yanyansmajesty@outlook.com; elizabeth.oswald@aau.at; arnab.roy@uibk.ac.at
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side channel distinguishers, this leads to a type of distinguisher that neither
requires assumptions about the noise distribution nor information about the
device leakage distribution. Previous research has looked at distinguishers such
as mutual information [GBTP08], Spearman’s rank correlation [BGL08], and
the Kolmogorov-Smirnov (KS) test [WOM11] in this context — these papers
pre-date the seminal paper [HRG14] that establishes how to derive an optimal
distinguishing rule.

Relatively recently only it was argued that the mutual information can be
recovered as the optimal distinguishing rule [dCGHR18] if no assumptions about
the device leakage distribution can be made. They also show experimentally that
mutual information is the most trace efficient distinguisher in this setting. Next,
better bounds for the estimation of the first order success rate (i.e. the probability
to rank the key guess that corresponds to the true secret key first based on
distinguishing scores) were derived in [dCGRP19]. The idea here was to derive
these bounds independently of any specific distinguisher, purely based on the
mutual information between the observed leakage and the key. The bounds were
then compared to the respective optimal distinguishing rule. It turned out that
there is a considerable gap between the optimal distinguisher and the bounds.
This begs the question: could there indeed be a distinguisher that is more trace
efficient than the one recovered as the optimal distinguishing rule?

1.1 Our contributions

We find a more trace efficient distinguisher by switching to rank based statistics.
Previous work has once touched on rank based statistics before (Spearman’s rank
correlation) but we seek out a method that works even if the relationship between
the intermediate values and the device leakage is not monotonic: this leads us
to explore the Kruskal-Wallis method. We show how to translate it to the side
channel context (the important trick here is to rank the traces itself
prior to any partitioning) and we demonstrate how to estimate the number
of needed traces for statistical attack success. We extend the existing work here
by developing a lower bound for the number of needed traces.

Following established practice we then provide experimental results that en-
able us to conclude also from a practical point of view that the anticipated
theoretical advantages show in practice. We cover a range of situations where
we explore different target functions and different device leakage functions. In
terms of target functions, we use non-injective target functions (as required by
the assumptions in [HRG14,dCGHR18]), and also injective target functions with
the bit-dropping trick. For device leakage functions we cover functions that range
from highly non-linear to linear. We investigate Gaussian and Laplacian noise.
Our philosophy is to include settings from prevoius work and more. We also
consider implementations based on shared out intermediate values. Experiments
that vary all these factors are necessarily based on simulations. We also demon-
strate that our observations translate to real device data by using traces from
two AES implementations: one with and one without masking.
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Our research exhibits, for the first time, in the setting where no information
about the device leakage distribution is available, a distinguishing rule that is
more trace efficient than the optimal distinguishing rule (MI). Our research also
shows for the first time that a purely rank based distinguisher is effective in the
context of masking.

We provide the necessary background about (rank based) distinguishers, and
our notation in Sect 2. Then we introduce the Kruskal-Wallis method and turn
it into a distinguisher (alongside the analysis for the number of needed traces
from a statistical point of view) in Sect. 3. In Sect.4 we show and discuss the
simulation results, and in Sect. 5 we show and discuss the results for the real
traces. We conclude in Sect. 6.

2 Background

We try and use notation that is uncluttered whenever we refer to well established
background, in particular, when it comes to known facts about distinguishers,
and we “overload” variables so that they simultaneously refer to sets and random
variables. For instance, we use L to refer to the set of observed traces, which we
also know to have a distribution.

2.1 Side channel attacks and notation

We assume that the side-channel leakage L can be expressed as a sum of a key
dependent function M and some independent noise ε:

L = M(Vk∗) + ε.

The device leakage model M is not known in practice. It is a function of V ,
an intermediate value, which depends on some input word X and a fixed and
unknown secret key word k∗. We assume that the noise follows a Gaussian distri-
bution ε ∼ N (0, σ).3 The intermediate V is derived by the keyed cryptographic
function fk∗ :

Vk∗ = fk∗(X).

In a side-channel attack, the adversary is given a set of leakages L and their cor-
responding inputs X4. To recover the correct (secret) key k∗ embedded within
the device, the adversary first computes the (predicted) intermediates Vk un-
der all possible guesses of k, from the given input X. Then they compute the
hypothetical leakage value LH,k = H(Vk) by assuming a leakage function H.
In side-channel attacks that rely on a direct or proportional approximation of
the device leakage, the quality of H determines the success or efficiency of the
corresponding attacks. When no model is known, then H is simply the identity
function.

3 For readability we do not make input and key dependence explicit in the leakage L.
4 Side-channel attacks are also possible by exploiting the output with f−1

k∗ .
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A distinguisher D is used to compute the distinguishing score dk from the
predicted intermediates Vk and the observed leakage L. In a successful side-
channel attack, the correct key k∗ is determined as the maximum distinguishing
score(s):

k∗ = argmax
k

dk = argmax
k

D(LH,k, L)

It is important to bear in mind that distinguishers are based on estimators of
statistical quantities, thus in the formulas below we indicate this fact by placing
a hat above the respective quantity. Distinguishers may or may not be based on
some either assumed or known properties of the observed leakage L. In statisti-
cal jargon, statistics that require assumptions about the distribution are called
“parametric” and statistics that do not require assumptions about the distri-
bution are called “non-parametric”. In this paper we work on the assumption
that we are in a “first contact” scenario where the adversary utilises no infor-
mation about L in their initial attack attempt: this hence requires them to use
non-parametric statistics, thus a non-parametric distinguisher.

In all practical side-channel attacks, the targeted intermediate Vk is normally
a part of operands being processed by the device during the cryptographic al-
gorithms, and the key k is a chunk of the cryptographic key. The complete key
recovery is done via performing multiple side-channel attacks on each of the key
chunks (thus we use a divide and conquer strategy). Also observable leakage
often is given as a real-valued vector: e.g. power traces consist of many mea-
surement points. Distinguishers are either applied to individual trace points, or
to specific subsets of trace points. Therefore, in our aim to keep the notation
uncluttered, we do not include any variables for indices for trace points or the
like. We implicitly understand that the distinguisher is applied to (many) trace
points or sets of trace points individually.

2.2 Rank transformations

Many statistical techniques that do not require assumptions about the underly-
ing distributions have been developed by working on ranked data. Suppose that
we have a set of leakages L: there are several ways in which ranks can be assigned
to the leakages in the set. The two most natural types of assigning ranks are the
following:

Type 1: The entire set is ranked from smallest to largest (or vice versa), and
the smallest leakage having rank 1, the second smallest having rank 2, etc.

Type 2: The set L is partitioned according to some rule into subsets, then each
subset is ranked independently of all other subset, by ordering the elements
within a set (either from smallest to largest or vice versa).

Ties are resolved by assigning the average of the ranks that the ties would have
received.

Any monotonic increasing function that is applied to the data does not change
the ranking of the data. In our text we indicate that ranking takes place by
applying the rank() function to the resp. variables. The type of ranking will be
clear from the context.
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2.3 Non-parametric side-channel distinguishers

For the sake of completeness we provide a very brief description of the non-
parametric side-channel distinguishers that we use as comparisons with are new
distinguisher.

Difference of Means The Difference of Means (DoM) [KJJ99] is often used
as a baseline distinguisher, and it can be defined such that it makes minimal
assumptions about the leakage distribution. For its’ computation, the traces are
divided into two groups LVk=0 and LVk=1 depending on whether a predicted
single bit of a targeted intermediate is zero or one (Vk = 0 or Vk = 1). The
distinguishing score is defined as the estimated difference of means (often one
takes the absolute value)):

dk = |Ê(LVk=0)− Ê(LVk=1)|.

Spearman’s Rank Correlation This is a non-parametric alternative to Pear-
son’s correlation, and it was investigated in [BGL08] against an AES implemen-
tation. It was shown to be significantly more efficient (in terms of success rate)
compared to Pearson’s correlation-based attack [BCO04] (a.k.a. CPA). In this
attack, the adversary computes the hypothetical leakage from Vk by computing
LH,k where H is guessed/assumed by the adversary. Then LH,k and L are ranked
and the (absolute value of the) correlation coefficient is estimated as follows

dk =

∣∣∣∣∣
ˆCov(rank(L), rank(LH,k))

σ̂rank(L)σ̂rank(LH,k)

∣∣∣∣∣ .

Notice that although the adversay must “guess” a hypothetical leakage model,
there is no requirement for the device leakage to follow a Gaussian distribution.

Mutual Information Mutual Information [GBTP08] analysis is a distinguish-
ing method that can be used without the need for H. The MI distinguishing
score is computed by estimating the mutual information from a set of collected
traces and the corresponding inputs or plaintexts:

dk = Î(L, Vk) = Ĥ(L)− Ĥ(L|Vk)

where Ĥ and Î denote the (estimated) Shannon’s entropy and mutual infor-
mation respectively. For estimating MI, different entropy estimation methods
have been studied, but the most commonly applied and efficient method (over
R) is the so-called binning method that is used in the original proposal of MIA
[GBTP08]. We also use this same estimation method in our experiments.

Note that MI requires that the target function fk is not a bijection as dis-
cussed in [WOS14,dCGHR18]. When MIA is applied to cryptographic target
that is a bijection, then the bit dropping technique [RGV14] that simply chops
off a selected number bits from the output, is used. Although it is not necessary
to supply MI with a hypothetical leakage model H this is frequently done in the
literature, in particular by selecting the Hamming weight as H.
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Kolmogorov–Smirnov (KS) The KS test-based distinguisher [WOM11] is
suggested as an alternative to using MI. The distinguishing score (of a key) is
defined as the average of KS distances between the leakage distribution of L and
leakage distributions of LVk

for each predicted intermediate Vk i.e.

dk = ÊVk

(
sup
l

|FL(l)− FLVk
(l)|

)

where FL(l) and FLVk
(l) are the Cumulative Distribution Functions (CDFs) of L

and LVk
respectively. From a finite sample set A the empirical CDF is computed

by FA(x) =
1
n

∑
a∈A Ia≤x where I is the indicator function and |A| = n.

3 The Kruskal-Wallis test as side-channel distinguisher

The Kruskal-Wallis test (KW) [KW52] is a non-parametric method for the anal-
ysis of variance (ANOVA): this means it does not require any distributional
assumption about the leakage L. The KW test is based on the ranks of the
observed data and it is often used to check whether (or not) multiple groups
of samples are from the same distribution. In this section we explain how to
construct a KW based distinguisher, and we discuss the salient properties of the
resulting distinguisher.

3.1 The KW statistic as a distinguisher

In this section we describe how to compute the KW statistic in a side-channel
setting, and we argue why it gives a sound side channel distinguisher. For a
generic description of the KW statistic we refer the readers to appendix A.

Informally, the KW test statistic is derived by first ranking the observed
data, and second by grouping the data according to the resp. (key dependent)
intermediate values. Then the tests checks if the groups can be distinguished
from another or not, by comparing the variances between the groups and within
the groups.

More formally, let us assume that we have N side channel leakages. We apply
the type 1 rank transformation to the side channel leaks, and then work with the
ranked data: rank(L). For each key guess k, the ranked data is grouped according
to the respective intermediate Vk. Thus the set Ri

k = {rank(L)|Vk = i} contains

the ranks of leakages where the intermediate Vk equals i. Let Ri,j
k refers to the

j-th element in Ri
k. Suppose that we have t groups and the size of group Ri

k is

ni and so N =
∑t

i=1 n
i.

Let us assume that the group Ri
k has distribution F i. The null hypothesis

is that all the groups have the same distribution, and alternative hypotheses of
KW test is that the groups can be distinguished:

H0 : F 0 = F 1 = . . . = F t−1 (1)

Ha : F i ̸= F j for some i, j s.t i ̸= j.
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The average of the ranks in Ri is given as:

R̄i
k = 1/ni

ni∑
j=1

Ri,j
k

and R̄k = (N + 1)/2 the average of all Ri,j
k .

The KW test statistic is defined [KW52] as:

dk = (N − 1)

∑t
i=1 ni(R̄i

k − R̄k)
2

∑t
i=1

∑ni

j=1 (R
i,j
k − R̄k)2

(2)

If the elements in Ri
k are all from the same distribution, then all R̄i

k are
expected to be close to R̄k and thus the statistic dk should be smaller, than
when the elements in Ri

k are from different distributions. Thus large values of
the test statistic imply that we reject the null hypothesis of the KW test (i.e. we
have enough data to conclude that there are meaningful groups). We can use this
test statistic readily as a side channel distinguisher: the groups are given by the
key dependent intermediate values Vk. Thus, for k = k∗ we have a meaningful
grouping of the ranked leakages, and thus the test statistic is large. If k ̸= k∗,
then the ranked side channel leaks are randomly assigned to different groups,
which will lead to a small test statistic. Consequently the value of dk∗ >= dk
for ∀k, which implies that it is a sound side channel distinguisher.

3.2 Properties of the KW distinguisher

Side channel distinguisher are most useful if they can be applied in different
settings, including higher order attacks. It is also beneficial to be able to derive
sample size estimates. For some of the existing non-parametric, in particular in
the case of MI, this is hard to achieved. We now explain what is possible for the
KW distinguisher.

Application to higher order attack scenarios. In masked implementations,
an intermediate value is represented as a tuple of shares. The leakage of a single
share is uninformative, but a statistic that exploits the distribution of the en-
tire tuple enables key recovery. The canonical way of applying distinguishers to
masked implementations is via processing the observed leakage traces: a popular
(processing) function is the multiplication of (mean-free) trace points [PRB09].
Such trace processing produces a new trace in which each point now is based
on the joint leakage of multiple points (aka shares). Using the mean-free prod-
uct to produce joint leakage is compatible with the Kruskal-Wallis distinguisher
(if the mean-free product of two values is larger than the mean-free product of
another two values then this property is preserved by ranking: it is a monotoni-
cally increasing function), and we show how well it performs in the experimental
sections.

Session 9 - 2 The 26th Annual International Conference on Information Security and Cryptology

ICISC 2023 571



Computational cost. The KW test is often compared to theWilcoxon-Whitney-
Mann test (MWW) [MW47] with respect to computation costs, which is another
rank based non-parametric test. The major difference between the two is that
MWW is applied to paired data against two values, whereas KW is applied
to multiple groups. The latter thus naturally fits with the side channel setting
where the intermediate values fall naturally in multiple (independent) groups.
Applying MWW in the side channel setting increases the computational cost.
For example, in case of t groups we need to apply MWW in the worst case

(
t
2

)
times. Thus the KW test is a natural choice over the MWW test. We found that
the computational cost of KW is of the same order as other generic distinguishers
(MI, KS).

Number of samples. For the KW statistic, the theoretical analysis [FZZ11,
Theorem 1] shows how to estimate the sample size. The main result necessary for
estimating the sample size in a KW test is that under the alternative hypothesis
the KW statistic follow a non-central χ2distribution. Let λi = ni/N ≥ λ0 for all
i and a fixed λ0 > 0. And let α be the confidence level and β be the power of
the test. Then the estimated sample size is given as

Ñ =
τα,β

12
∑t

i=1 λi

(∑
s̸=i λs(p̂is − 1/2)

)2 . (3)

For each pair i, s s.t. i ̸= s, the probability estimates p̂is can be computed from
the given data sample of size N as follows

p̂is =
1

NiNk

Ni∑
j=1

Ns∑
ℓ=1

(I(Xsℓ < Xij) + I(Xsℓ = Xij)/2)

where I is the indicator function, and i, s ∈ {1, 2, . . . t}. Note that the second
part of the above expression corresponds to the ties in ranking. In eq. (3) τα,β
is solution to P(χ2

t−1(τ) > χ2
t−1,1−α) = 1 − β for some fixed α, β, and χ2

t−1,1−α

is the (1− α) quantile of central χ2distribution with t− 1 degrees of freedom.
The estimation of sample size following equation eq. (3) is biased and needs

to be adjusted. As explained in [FZZ11], an adjusted estimator N̂ is defined as
follows

N̂ = Ñ ·
median{χ2

t−1(τ̂)}
τ̂

(4)

where τ̂ = N · 12
∑t

i=1 λi

(∑
s̸=i λs(p̂is − 1/2)

)2

.

Considering correct and incorrect key hypotheses. The application of sample size
estimation technique requires care in the context of side-channel key recovery
attack. Recall that in a statistical (hypothesis) testing there are two types of
errors namely
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1. Type I error α where the null hypothesisH0 is rejected when the hypothesis
H0 is true, and

2. Type II error β where the null hypothesis H0 is not rejected when the
alternate hypothesis Ha is true.

In a successful attack the null hypothesis should not be rejected for any k
where k ̸= k∗ (thus we want α to be small). However, under the correct key
guess k = k∗ the alternative hypothesis Ha is true and we should not fail to
reject H0. Hence, β should be small so that the power of the test 1− β is large.
In fact we wish to have a high power for both cases.

Thus we should perform the sample size estimation for both cases (correct
and incorrect keys) and then take the maximum of these sample sizes as a
conservative estimate. In statistical hypothesis testing typically it is ensured
that the value of P(Type I error) ≤ 0.1 and P(Type II error) ≤ 0.2.

Example 1. In this example we show the sample size estimation for N = 1000
using simulated Hamming weight traces of AES Sbox where the Gaussian noise
has σ = 6.

We choose α = 0.025 (corresponding to the confidence level) and β = 0.05
(corresponding to the power of the test). First, using the technique as described
above, we find the generic estimate of the sample size as per eq. (3). For applying
the leakage estimation (or KW attack) we extract the 4 Least Significant Bits
(LSB) from the output of the Sbox.

For this experiment the degrees of freedom of the χ2distributions is 16− 1 =
15 (the number of different groups are 16 corresponding to the 4-bit output
values obtained). Note that τα,β depends only on the degrees of freedom, α and

β. In this case τα,β = 1.8506. We compute Ñ for different key choices. Here we

only show the computation for one key that corresponds to the maximum Ñ .
The estimation process is carried out in the same way for other keys.

Estimating λi and p̂is from 1000 data points we obtain the Ñ = 1.8506
.0041 ≈ 451.

Since this is a biased estimate we obtain the adjusted estimate as

N̂ = Ñ ·
median{χ2

t−1(τ̂)}
τ̂

= 451 · median{χ2
15(4.1)}

4.1
≈ 2015. (5)

Remark 1. For estimating the sample size in the context of side-channel attack,
λi can be estimated from the target cryptographic function (instead of estimating
it from the data). Suppose, the target function is 8-bit Sbox, and say 4 bits of the
output is chosen for the attack. In this case, for all 28 input values, the number
of elements ni in each 24 groups can be computed.

Example 2. In this example we show the sample size estimation when traces are
simulated from ARX function with a HW leakage model and Gaussian noise
with σ = 6. We fix N = 1000 and follow the same process as in Example 1. Here
we choose α = 0.001 and β = 0.1.
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We consider a key recovery attack (using KW statistic) which recovers 4-bit
key chunk from each k1 and k2, in the usual divide and conquer process used for
side-channel attack. The ARX function is defined as

A(x) = (x⊕ k1)⊞ (y ⊕ k2).

(⊕ denotes the bit-wise exclusive-or and ⊞ the addition in GF (216)). So, the
degrees of freedom for the χ2distribution remains 16−1 = 15. The biased sample
size estimation gives Ñ ≈ 992. After adjusting the bias as in Example 1 we get
N̂ ≈ 2212.

Corollary 1. The generic estimate Ñ in eq. (3) (and bias adjusted estimate N̂
in eq. (4)) gives estimated lower bound on sample size.

Proof. The sample estimate is derived from the fact that τ̂ ≈ τα,β . Recall that
τα,β is the solution to the equation

P(χ2
t−1(τ) > χ2

t−1,1−α) = 1− β.

for some fixed β. Now, if we obtain a τ̂1 from the fixed sized data such that
τ̂1 ≥ τα,β , then P(χ2

t−1(τ1) > χ2
t−1,1−α) will be more than 1−β. This is favourable

since we want to maximise the power of the test. Thus we have

τ̂ ≥ τα,β =⇒ Ñ∗ ≥ τα,β

12
∑t

i=1 λi

(∑
s̸=i λs(p̂is − 1/2)

)2 = Ñ

The lower bound on the bias adjusted estimate N̂∗ follows from this.

4 Experiments based on simulated leakage

We now detail a range of experiments that are based on simulating side channel
data. Experiments based on simulated data offer the advantage, over experi-
ments based on data from devices, that we can efficiently vary implementation
characteristics such as the leakage function, the cryptographic target function,
and the signal to noise ratio. Therefore the inclusion of simulations is standard
in research on distinguishers.

We display simulation outcomes in terms of the success rate as function of
an increasing number of side channel observations. Our comparisons include
the KW test, mutual information analysis (MI) with an identity leakage model,
mutual information analysis with a Hamming weight leakage model (MI-HW),
the Kolmogorov-Smirnov test and Spearman’s test. We included MI-HW because
of its wide use in the literature (and despite the obvious fact that it is no longer
assumption free).

Before we discuss the outcomes, we provide an informal but detailed descrip-
tion of the choices for the cryptographic target functions Vk as well as the device
leakage functions M .
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4.1 Simulation setup

Our choice of target functions Vk is informed by best-practice: it is well known
that properties of the target function impact on distinguishability and there-
fore we aimed to select a function that is known to be “poor” target, to chal-
lenge all distinguishers. Our selection observed a further requirement imposed
by the use of MI (as main comparison) that MI is only a sound distinguisher
for non-injective target functions (if a target function is injective, then MI can-
not distinguish any key candidates)[HRG14], and the bit-dropping trick must
be used. Therefore, we selected as a poor non-injective target function Vni the
non-injective target function is the modular addition that is part of many ARX
constructions, which is also the basis of modern permutation based ciphers such
as SPARKLE:

Vni(xl, xr, kl, kr) = (xl ⊕ kl)⊞ (xr ⊕ kr)

where xl∥xr ∈ {0, 1}32 is a state element, and kl∥kr ∈ {0, 1}32 is the key, and ⊞
is the addition modulo 216.

We also experimented with a function that is known to be an excellent target
function, namely the AES SubBytes operation, which is injective, and thus the
bit-dropping trick must be applied. To aid the flow of this submission, we include
the results of this in the appendix (they are aligned with the results for the
injective target function).

Our choice of leakage functions M is also informed by best-practice: leakage
functions are also well known to impact on distinguisher performance. Linear
leakage functions help distinguishers that are based on distributional assump-
tions or simple hypothetical leakage models. Highly non-linear leakage func-
tions are representative of of complex leakage originating in combinational logic
([LBS19] and [GMPO20]) are a motivating factor for studing “assumption free”
distinguishers like MI, KS and KW.

In our experiments we thus use a range of device leakage functions, which
are defined as follows. Let yi be the ith bit of y. Then we consider two linear
device leakage functions (Hamming weight and Randomly weighted bits), and
two non-linear leakage functions (Strongly non-linear and Binary), as follows:

Hamming weight: M(y) =
∑n

i=1 yi
Randomly weighted bits: M(y) =

∑n
i=1 wiyi with w ∈ [−1, 1]

Strongly non-linear: M(y) = S(y), with S(y) defined to be the Present S-Box
Binary: M(y) =

∑
i S(y)i (mod 2), with S(y) defined to be the Present S-Box

4.2 First order attack simulations

Figure 1a shows that the Spearman rank correlation has indeed a significant
advantage (because it uses the correct hypothetical leakage model), compared
to the other distinguishers. Note that the KW test-based attack outperforms the
other generic distinguishers with a clear margin that is more significant in the
lower SNRs.
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(a) HW leakage model

(b) Rrandomly weighted bits leakage model

(c) Strongly non-linear (PRESENT S-Box) leakage model

(d) Binary leakage model

KW: MI: MI-HW:+ KS:× Spearman:

Fig. 1: Simulations for Modular Addition as a Target
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(a) Hamming weight (b) Randomly weighted bits (c) Strongly non-linear

KW: MI: MI-HW:+ KS:× Spearman:

Fig. 2: 2-share Boolean masking of ARX with different leakage models

Figure 1b shows that the Spearman rank correlation fails: more traces re-
duce the success rate, which is a clear indication that that the “built in leakage
model” is incompatible with M . This is a useful reminder that linear models
are not necessarily compatible with a Hamming weight assumption. All model-
free distinguishers succeed, and KW turns out to be the most trace efficient in
all SNR settings. The MI and MI-HW distinguishers show similar performance
while KS is the least trace efficient one among the successful attacks.

In the non-linear simulation (Figure 1c) We expect that Spearmans rank
correlation will fail because the leakage model is not compatible. However MI
with the same model works very well, alongside MI without model and KS. These
three distinguishers show a very similar performance in all SNR settings. KW
shows a clear margin to the other distinguishers, which is evidence that it is the
preferable distinguisher in this setting.

The last simulation (Figure 1d) is a binary leakage model that represents
an extreme case where the leakage is either 0 or 1 such that only a minimum
resolution exists in the leakage values. In a high SNR setting, all assumption-free
distinguishers recover the key. In low SNR seetings, the KW distinguisher show
the quickest convergence to a high success rate, which is evidence that it is the
preferable distinguisher in this setting.

4.3 Masked implementation

We further extend our simulations to a masked implementation by simulating the
leakages of a 2-shares Boolean masking scheme using the same leakage models
as before. To perform an attack we use the a well understood, and frequently
adopted approach of combining the leakages from all independent shares via the
centred product-combining function, [PRB09], which was also used in [BGP+11].
5

5 It is worth noting that there exists no known optimal multivariate implementation
for the above mentioned side-channel distinguishers [BGP+11,WOM11], because the
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(a) 3 Shares SNR 22 (b) 3 Shares SNR 23 (c) 4 Shares SNR 23

KW: MI: MI-HW:+ KS:×

Fig. 3: Higher order Boolean masking of AES with Hamming weight leakage

The results of the simulations for the 2-share Boolean masking scheme are
shown in Figure 2a, Figure 2b and Figure 2c. For succinctness, we excluded the
very low SNR settings of 2−3 and 2−5 (because the observations are the same
as for the higher SNRs), and the results of binary leakage model (because all
distinguishers failed in this setting). As is evident from the graphs, Spearman
fails in all settings; among the successful attacks, KW turned out to be the most
trace efficient distinguisher.

We then turn our attention to masking for the AES SubBytes operation,
where Figures 3a-3c show that KW provides a clear advantage for low order
masking.

5 Experiments based on Device Data

To complement our simulation results we also show experiments that were per-
formed based on measurements from two processors. These processors are based
on the ARM Cortex M0 and the ARM Cortex M3 architecture. We implemented
the same target functions as before in the simulations.

To work with the masked implementation, we perform the same mean-free
product combining pre-processing as in the simulations. Before showing the out-
comes, we discuss the implementation characteristics in some more detail.

5.1 Implementation characteristics and experimental setup

Our simulated experiments ranged from unprotected implementations to imple-
mentations based on sharing out intermediate values. For implementations that
are unprotected we only ensure functional correctness of our implementation.
In the case of the non-injective target function, we utilise the modular addition

outcomes are highly sensitive to various factors, including leakage models, noise levels
and methods for pre-processing, etc.
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in C and let the compiler translate this into Assbembly code. In the case of
the AES SubBytes implementation we use a simple table-based lookup. For the
masked SubBytes implementation we use a custom Thumb-16 Assembly imple-
mentation of a two share ISW multiplication gadget. This implementation is
specifically crafted to ensure that there are no first-order leaks.

Both processors are mounted in a special purpose measurement rig6. We
have a state of the art scope and probe, but do not perform any filtering or
de-noising before applying the distinguishers. The devices that we use are well
characterised, and we know that they exhibit a range of leakage functions, which
all have a strong linear component (thus they resemeble the two linear leakage
functions that we considered in the simulations).

We apply the distinguishers to all trace points, and perform repeat experi-
ments to determine the first order success rate. We then select the best point
and plot the success rate graphs for this point only.

5.2 Experimental results

Non-injective target function. Figure 4a shows the results of repeat attacks on
the modular addition on the M0. In the corresponding simulated experiments,
we supplied Spearman with the Hamming weight leakage model and as a result
it outperformed the other distinguishers when the device leakage model was also
the Hamming weight. To demonstrate that Spearmans succeess in the Hamming
weight simulation really was because we supplied it with the Hamming weight
model, we now supply it with only 4 bits of the intermediate values. We give the
same 4 bit intermediate values also to MI, MI-HW, KS and KW.

Lacking the correct leakage model, Spearman now completely fails. All other
side-channel distinguishers successfully recover the key. KW shows again a better
success rate than the competitors.

Injective target function. Figure 4b shows the results of repeat attacks on the
SubBytes operation on the M0. Now we supply Spearman once more with the
Hamming weight leakage model, which gives it a significant advantage over the
other distinguishers (because the device features signifant linear leakage in all
trace points).

KW is the most trace efficient distinguisher among the other distinguishers.
DoM is the least efficient one which might due to the fact that DoM can only
exploit a single bit leakage whereas other distinguishers exploit all 4 bit leakages.

Masked implementation. Figure 4c 7 shows a familiar picture: KW achieves a
higher success rate by a clear margin over the other distinguishers. Spearman
failed, so we did not include it anymore. The picture also shows that MI-HW

6 We refrain to include more details at this point in order to maintain the anonymity
of the submission.

7 Spearman and DoM are excluded from Figure 4c as they failed against the masked
implementation.
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(a) 4LSB of the modular
addition on M0

0 500 1000 1500 2000

0

0.2

0.4

0.6

0.8

1

Number of traces

S
u
c
c
e
s
s
 R

a
te

(b) 4LSB of AES SBox on
M0
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(c) 4LSB of Masked AES
SBox on M3

KW: MI: MI-HW:+ KS:× Spearman: DoM: ◦

Fig. 4: Experiments based on real device data

no longer shows any advantage over MI, which one should expect given that
pre-processing is applied to the trace points as part of attacking the masking
scheme.

6 Discussion and Conclusion

Of the distinguishers that we compared in this submission, Spearman and MI-
HW are supplied with the Hamming weight leakage model. Theoretically, this
gives them an advantage in situations where there is strong Hamming weight
device leakage. We can see this advantage also experimentally: in all Hamming
weight simulations, Spearman outperforms all other distinguishers, including
MI-HW. This particular simulation showcases that iff the device leakage model
is “simple” then there is no point in using MI, KS or KW.

In situations where the leakage model is unknown and HW based attack fail,
they are the premise of our work, MI, KS, and KW are considerably better than
Spearman (and MI-HW). When looking carefully at the experimental outcomes,
then we can observe that the gap between the distinguishers decreases with lower
SNR values. This behaviour is expected because of [MOS11], according to which
they must, asymptotically speaking, get closer in terms of trace efficiency the
lower the SNR.

All together our experiments provide strong evidence that MI is not the most
trace efficient distinguisher setting where no leakage model is available, which is
in contrast to [dCGHR18], who selected different distinguishers for comparison
with MI.

Our results help clarify that “optimal distinguishers” are not necessarily the
most trace efficient distinguishers, despite that in previous work they have always
been identified as being more trace efficient (in their respective categories) than
their “normal” counterparts.
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A The KW Statistic

Let Xij where i = 1, . . . , t, j = 1, . . . , ni be independent random samples col-
lected from a population having t groups and the sample size for group i is ni.
Let us assume that the random variables Xij have distribution Fi. The generic
null and alternative hypotheses of KW test are

H0 : F1 = F2 = . . . = Ft (6)

Ha : Fi ̸= Fj for some i, j s.t i ̸= j.

The observations are combined into one sample of size N where

N =
t∑

i=1

ni
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This combined sample is ranked. Suppose, Ri,j is the ranking of the j-th sample
from the group i, R̄i the average rank of all samples from group i:

R̄i = ni
−1

ni∑
j=1

Ri,j

and R̄ = (N + 1)/2 the average of all Ri,j .
The KW test statistic HKW is defined [KW52] as:

HKW = (N − 1)

∑t
i=1 ni(R̄i − R̄)2∑t

i=1

∑ni

j=1 (Ri,j − R̄)2
(7)

In eq. (7) the denominator
∑t

i=1 ni(R̄i − R̄)2 describes the variation of ranks

between groups, and the numerator
∑t

i=1

∑ni

j=1 (Ri,j − R̄)2 describes the varia-
tion of ranks in the combined sample. Intuitively, if Xij are all sampled from the
same distribution, then all R̄i are expected to be close to R̄ and thus the statis-
tics HKW should be smaller, and vice versa. Large values of the test statistic
results in rejecting the null hypothesis of the KW test.

B Further experimental results

(a) HW leakage

(b) Randomly weighted bits leakage

KW: MI: MI-HW:+ KS:× Spearman: DoM: ◦

Fig. 5: Attacking the AES SubBytes target, dropping 4 most significant bits
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Abstract. Cache side-channel attacks have been widely utilized as an
intermediate step in some comprehensive attacks. Eviction sets, espe-
cially the minimal eviction sets, are essential components of the conflict-
based cache side-channel attacks. It is important to develop efficient
search algorithms that incur the lowest latency with the highest success
rate. Several fast search algorithms have been proposed in recent years,
among which conflict test (CT) achieves the highest success rate with
the lowest latency. In this paper, we have conducted the first systematic
feasibility analysis of the CT algorithm. Besides failing on the commonly
known cache architectures where the last-level cache (LLC) is exclusive
or non-inclusive, CT is also found and verified failing on two inclusive
LLC architectures if it is running in single-core mode. We have further
explored three optimizations for improving the speed performance of the
CT algorithm, two of which are newly proposed in this paper.

Keywords: Computer micro-architecture · Cache architecture · Cache
side-channel attack · Eviction set construction

1 Introduction

As an effective way of obtaining sensitive information from the cache system [10,
18, 24], cache side-channel attacks have been widely utilized as an intermedi-
ate step in some comprehensive attacks, such as reconstructing cryptographic
keys [1, 6, 11, 29, 30, 37], disarming the address space randomization [7, 8] in
control-flow attacks, retrieving the leaked information at the end of a transient
execution attack [14, 15], and constantly striking a row of the off-chip memory
in a rowhammer attack [9].

Eviction sets, especially the minimal eviction sets [32], are essential compo-
nents of the conflict-based cache side-channel attacks [34]. In such attacks, an
attacker and her victim share the same cache space, typically certain cache sets
in the last-level cache (LLC). The attacker needs to control the state of these
shared cache sets to monitor the memory accesses of her victim, which are then
used to infer security-critical information. To be specific, the attacker occupies
(primes) a cache set by accessing an eviction set [9]; therefore, her victim’s access
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to this cache set must incur a cache miss, refilling of the missing cache block,
evicting an address from the eviction set, and eventually a prolonged access.
Both the address eviction and the prolonged access latency might be observable
and used to infer the access of her victim.

All addresses in a minimal eviction set are congruent with (mapping to)
the targeted cache set [32]. At least W addresses are required for a W -way
set-associative cache. Obviously, the key for constructing an eviction set is to
find enough congruent addresses. Unfortunately, this is not an easy task on
modern processors. LLC is indexed by physical addresses but attackers control
only virtual addresses. A complex addressing scheme is utilized by modern In-
tel processors [17] to randomize the mapping from physical addresses to LLC
slices. Attackers are usually forced to search eviction sets at runtime from a
large amount of random addresses. It is important to develop efficient search
algorithms that incur the lowest latency with the highest success rate. Sev-
eral fast search algorithms have been proposed in recent years, including group
elimination (GE) [16, 27, 32], prime, prune and probe (PPP) [19, 22], conflict
test (CT) [23] and write-after-write (W+W) [28]. Among these algorithms, CT
achieves the highest success rate with the lowest latency (see Table 1), and be-
comes one of the most widely utilized search algorithms [20,21]. However, there
lacks a systematic analysis on the feasibility and the potential optimization of
CT while similar analyses have been done for GE [27] and PPP [19].

In this paper, we have conducted the first systematic feasibility analysis of
the CT algorithm. Besides sharing a commonly known limitation with other
algorithms, that CT fails to work on exclusive or non-inclusive LLCs, CT also
fails on two inclusive LLC architectures if the algorithm is running in single-core
mode. Based on the result of the feasibility analysis, we have further explored
three techniques for further optimizing the CT algorithm, two of which are newly
proposed in this paper. Overall, this paper makes the following contributions:

– Conduct a systematic feasibility analysis on CT. For the first time, two
inclusive cache architectures are identified as infeasible for single-core CT.

– Optimize the performance of CT by improving the efficiency of the cacheback
technique and propose two new techniques.

– Practically evaluate the optimization techniques on both real processors and
a behavioral-level cache model.

2 Background

Modern processors are multicore processors adopting a two/three-level cache
structure. Each processing core contains a pair of private level-one (L1) instruc-
tion and data caches. Some processors, especially the Intel ones, equip each
core with a uniformed level-two (L2) cache. A large LLC (L2 or L3) is shared
among all cores. This LLC might be divided into multiple slices, whose mapping
with physical addresses is decided by an undisclosed hash function (complex ad-
dressing scheme [17]) in Intel processors. All levels of caches are set-associative
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writeback allocated caches. According to [31], all cache levels in the early gener-
ations (Haswell and earlier) and the L1 caches in recent Intel processors utilize
the pseudo-LRU (PLRU) replacement policy [5], while L2 and LLC in recent
Intel processors adopt some policies derived from RRIP [13]. The situation is
similar for most other commercial processors, such as AMD ones. In some rare
cases, random replacement policy is used in embedded-level processors [26]. In all
cache architectures, LLC acts as the coherence hub. LLC and the private L1/L2
caches maintain either an inclusive relation (Intel’s consumer processors), where
all cache blocks in the private caches are also stored in the LLC, or a non-
inclusive relation (Intel’s Xeon and AMD’s Ryzen), where cache blocks stored
in private caches may not be concurrently stored in the LLC.

Cache side-channel attacks normally fall in two categories: flush-based and
conflict-based attacks. Flush-based attacks use explicit flush instructions (clflush
on x86 [36]) to invalidate a targeted data out of the cache architecture. These
attacks are accurate but require the targeted data is accessible by the attacker,
which is a rather strict requirement infeasible in most cross-process side-channel
attacks. As an alternative, conflict-based attacks can achieve the similar effect.
They evict the targeted data out of the LLC by occupying the corresponding
LLC cache set with a collection of attacker’s controlled cache blocks, typically
called an eviction set. An eviction set is a collection of addresses (cache blocks)
that contain enough addresses congruent with the targeted data. A sufficiently
large number of addresses are also an eviction set as they can evict any cache
block by priming the whole caches [33]. However, this type of untargeted eviction
introduces undesirable noise [9] and brings down the attack speed [7]. What is
really desirable is a minimal eviction containing only the congruent addresses.
For simplicity, an “eviction set” beyond this point refers to a minimal eviction
set. This paper concentrates on the algorithms for searching eviction sets.

Existing search algorithms for eviction sets can be classified into two cate-
gories: pruning algorithms which begin with an untargeted eviction set contain-
ing a large number of random addresses and prune it into a minimal one, and
inserting algorithms which begin with an empty collection and gradually fill it
with newly found congruent addresses until it becomes an eviction set.

GE and PPP are the two widely utilized pruning algorithms. GE prunes the
initial large eviction set in a multi-round process. In each round, the remaining
N addresses are divided into W + 1 groups. Since a minimal eviction set con-
tains only W addresses, at least one group contains none of the W addresses
and should be removed. By sequentially testing whether the address collection
remains an eviction set without a certain group, the removable group is found
and removed. The prune process continues until a minimal set is produced. GE
is robust in tolerating environment noise, as indicated by the high success rate
shown in Table 1, but the multi-round prune is slow.

PPP reduces the prune latency by manipulating the PLRU replacement pol-
icy [22,23]. It first tries to store addresses of the initial large eviction set into the
LLC concurrently by gradually removing the addresses causing self-evictions.
The resulted (reduced) eviction set is still untargeted but may fully occupy the
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Table 1. Speed comparison of different search algorithms for eviction sets.

CPU GE PPP W+W CT

latency rate latency rate latency rate latency rate

i7-3770 58 ± 32ms 74% 0.69 ± 1.7ms 8.8% 33 ± 41ms 6.1% 6.0 ± 3.4ms 69%
i7-6700 82 ± 66ms 79% 1.0 ± 2.9ms 0.9% 10 ± 5.3ms 5.3% 23 ± 21ms 16%
i7-9700 115 ± 92ms 85% 0.65 ± 0.68ms 11% 159 ± 8.5ms 2.0% 20 ± 17ms 21%
i7-11700 642 ± 586ms 24% 0.81 ± 0.04ms 7.0% 3 ± 1.4ms 0.4% 12 ± 4.4ms 2.1%

targeted cache set. Then the attacker incurs an eviction in the targeted cache
set by accessing the targeted address, following with a timed re-access of the re-
duced eviction set. Due to the PLRU replacement policy, it is likely that exactly
W addresses (just enough for an eviction set) are found missing in the LLC.
However, the probability that the reduced eviction set occupying the targeted
cache set is actually low in a large LLC with many cache sets. As shown in
Table 1, the success rate of PPP is much lower than GE.

CT is the mostly utilized inserting algorithm. It was initially proposed only
for LLCs adopting the random replacement policy [23]. In this case, a congruent
address has a 1/W probability to evict the targeted cache block. As a random
address is a congruent address by a probability of 1/S, where S is the num-
ber of cache sets, one congruent address can be found by probing around SW
random addresses. Finding eviction set with W congruent addresses therefore
requires probing O(SW 2) random addresses. This algorithm is also effective for
permutation-based replacement, such as LRU and RRIP. Instead of finding con-
gruent addresses by detecting the eviction of the targeted cache block, detecting
the prolonged write latency due to the LLC enforced serialization of parallel
writes to the same cache set was also found effective [28]. The resulted algo-
rithm, namely W+W, was claimed faster than the GE algorithm. However, the
accuracy of such serialization detection is found extremely noisy and unstable,
which results in low success rates as shown in Table 1.

To compare the speed performance of these algorithms, they are ported to
four Intel processors and the result is shown in Table 1. CT seems to provide
the most balanced performance in latency and success rate. The search latency
is significantly lower than GE while the success rate is much higher than PPP
(except for i7-11700). The search latency of W+W is shorter than CT only on
i7-6700 and i7-11700 but the success rate is much lower on both processors. This
paper concentrates on improving the CT algorithm.

3 Feasibility Analysis

This section conducts a systematic analysis on the feasibility of the CT algorithm
on different cache architectures. For the first time, the CT algorithm is found
infeasible on two inclusive cache architectures.
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3.1 Threat Model

For an eviction set search algorithm, we define a successful attack as finding
an eviction set. We assume that the search algorithm is run by an attacker in a
restricted user mode environment with the following capabilities and limitations:

– The targeted LLC is shared between the attacker and her victim.
– The amount of memory acquirable by the attacker is not limited by the

system, so the attacker can access an arbitraily large range of addresses.
– The attacker either runs in the same core with her victim or occupies a

separate core.
– The attacker can flush her own data out of the LLC.
– The attacker can accurately trick her victim into accessing a target address

without incurring a large amount of noise.
– Some parameters regarding the cache system are made available, such as the

replacement policy, the inclusiveness relation, and the number of sets and
ways of each cache level, but neither the virtual to physical page mapping
nor the Intel complex addressing scheme [17] is reverse-engineered.

3.2 Necessary Working Conditions

Algorithm 1 illustrates the baseline CT algorithm. Different with other pa-
pers [20,23], we explicitly specify the cores running the victim and the attacker.
When Ca = Cv, the attacker and her victim are running on the same core or
even in the same process/thread. This is the typical case for cache side-channel
attacks that tries to break the user-mode address randomization [8], leak infor-
mation through transient execution [14, 15], and constantly hammer a targeted
DRAM row [9]. We call this the single-core case while the traditional cross-core
(process) attack as the cross-core case. As we will soon discover in Section 3.3,
CT may fail to work on some inclusive cache architectures when running in the
single-core case while remains feasible for cross-core.

According to Algorithm 1, a random address a is found congruent with the
targeted address x only if accessing a (line 6) causes a miss in the targeted cache

Algorithm 1: The baseline CT algorithm
Input: x, target address; W , number of ways; (Ca, Cv), cores running the attacker and

her victim.
Output: E, an eviction set for x.

1 function ct(x, W , Ca, Cv)
2 E ← ∅ // eviction set
3 Cv:access(x)
4 while |E| < W do
5 a ← random()
6 Ca:access(a)
7 if not Cv:probe(x) then
8 E

⋃
{a}

9 end
10 end
11 return E
12 end
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x a0 a1 a2

Ca:L1
LRU MRU

LLC a3 a4 a5 a6

a4 a5 a6 xCv:L1
LRU MRU

LRU MRU

a3 ???

(a) Before accessing a7.

x a0 a1 a2

Ca:L1
LRU MRU

LLC a3 a4 a5 a6

a4 a5 a6 xCv:L1
LRU MRU

LRU MRU

???

a7

a7

(b) After accessing a7.

Fig. 1. Purging x (cross-core case) after accessing a7 by Ca in a 2-level inclusive cache
architecture. (WL1 = 4,WLLC = 8, all caches use LRU)

set and the cache block containing x is evicted for refilling a. In addition, the
eviction of x can be observed by probing x (code highlighted in blue): a timed
access of x. If the probe latency is longer than a pre-defined threshold, x is
assumed missing and a is identified as congruent. Two necessary conditions for
the success of CT can be derived from Algorithm 1:

Condition 1: Inclusion victim effect. When an LLC is the targeted cache,
the targeted cache block stored in a private L1 cache (the potential inclusion
victim [12]), such as the x stored in Cv:L1 depicted in Fig. 1a, must be purged
from the cache architecture when its copy in the LLC is evicted due to a conflict,
such as the access of a7 by Ca shown in Fig. 1b. In other words, CT works only
when the targeted LLC is inclusive. Note that this condition is required for the
single-core case as well, since x is also purged by a conflict in the LLC.

Condition 2: Cache filter effect. When the CT algorithm is used to target
an LLC adopting LRU/RRIP replacement policies, the probing of x is observed
by the LLC only after x is successfully evicted in the LLC, such as probing x
after accessing a7 as shown in Fig. 1b. The cache filter effect is a by-product
of the hierarchical cache architecture where memory accesses hitting in private
caches are invisible to the LLC. When the LLC adopts PLRU/RRIP replacement
policies, the target address x is possible to be evicted by a fresh access of a
new random address a only when x is pushed to the LRU position, as shown
in Fig. 1a, by a number of accesses (random addresses) to the cache set after
the previous access of x is observed by the LLC. According to Algorithm 1,
x is accessed once in the probe for each random address. All of these accesses
must be filtered from the LLC (served by private L1/L2 caches); otherwise, x is
repeatedly accessed in the LLC and cannot be pushed to the LRU position. This
is the first time that such condition has been discovered and we will show in the
next section (Section 3.3) why CT fails on some inclusive cache architectures
(satisfying condition 1) due to the lack of this cache filter effect.

3.3 Feasibility on Different Cache Architectures

Utilizing the two necessary conditions discovered in Section 3.2, we have con-
ducted a systematic survey on the feasibility of CT on different cache architec-
tures. We consider the following cache parameters:

– Cache levels: cache architectures that have two or three levels of caches.
– Inclusiveness: inclusive (L1 ⊆ LLC), exclusive (L1 �= LLC) or non-

inclusive (L1 � LLC) relation between cache levels.
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Table 2. Feasibility on different cache architectures.

Architecture Example Attack Feasible

Exclusive or Non-inclusive LLCa. AMD Zen 2 and later (Ryzen-7
5700G)

cross-core No
single-core No

Inclusive LLCb with private caches
using LRU/RRIP.

Intel Processors (i7-6700 and
Xeon 4110b)

cross-core Yes
single-core Yes

Three levels of inclusive caches
using LRU/RRIP.

Early quad/hexa-core processors
(Intel Dunnington [2, 25])

cross-core Yes
single-core No

Inclusive LLC using LRU/RRIP
with private caches using random.

A customized Rocket-Chip
processor (Section 5.1)

cross-core Yes
single-core No

aA non-inclusive LLC may adopt an inclusive directory and CT becomes feasible, such as the Intel
Xeon processors [35]. These cache architectures are counted as inclusive LLCs without
differentiating the directory from the cache.
bInclude the non-inclusive LLCs adopting inclusive directories.

x

x a0 a1 a2

L1

LRU MRU

L2

LLC

a3 a4 a5 a6

a4 a5 a6

x???????? a0 a1 a2 a3 a4 a5 a6

(a) Before accessing a7.

a0 a1 a2

L1

LRU MRU

L2

LLC

a3 a4 a5 a6

a5 a6

x??????? a0 a1 a2 a3 a4 a5 a6 a7

a7

a7

x

xa4

(b) After accessing a7.

Fig. 2. A failing example of single-core CT in a 3-level inclusive cache using LRU.
(WL1 = 4,WL2 = 8,WLLC = 16)

– Cache sets and ways: when the LLC is inclusive, it is assumed that the
number of ways in the LLC (WLLC) is no less than it in in private caches:
WLLC ≥ WL2 if L1 ⊆ L2 or WLLC ≥ WL1 +WL2 otherwise.

– Replacement policy: the replacement policy of individual cache can be
independently selected among LRU, RRIP or random.

– Attack scenario: both cross-core and single-core attacks are considered.

In total, we have surveyed 168 different cache architectures (scenarios) and iden-
tified four categories of representative cache architectures as revealed in Table 2:

Exclusive or Non-inclusive LLC: When the LLC is exclusive or non-
inclusive, the target x stored in L1 cannot become an inclusion victim and CT
fails to work. Nearly all recent AMD Zen 2 and later processors fall in this cate-
gory and are naturally immune to the CT algorithm. Intel Xeon processors adopt
a non-inclusive LLC but utilize an inclusive directory. Due the inclusiveness of
the directory, they are still vulnerable to CT. We count them as inclusive LLCs.

Inclusive LLC with private caches using LRU/RRIP: This is the
common category for nearly all Intel processors. The inclusive LLC ensures the
inclusion victim effect. As for the cache fitler effect, since LRU/RRIP is adopted
by the private caches, the repeatedly probing of x ensures that x is pinned in
the L1 and all accesses to x are invisible to LLC until x is evicted from the LLC.
Note that we deliberately leave an exception here for simplicity. As described by
the next category, a three-level inclusive LLC using LRU/RRIP can break the
condition for the cache filter effect.

Three levels of inclusive caches using LRU/RRIP: This is an excep-
tion of the previous category. CT works in the cross-core case but fails in the
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single-core case due to the lack of the filter effect. A failing example is presented
in Fig. 2. After accessing seven congruent addresses (a0 to a6) and probing x,
the state of the three-level cache is depicted in Fig. 2a. Note the repeated prob-
ing of x is filtered by L1 and invisible to both L2 and LLC. As a result, x is
pushed to the LRU position in L2. As demonstrated in Fig. 2b, the following
access of a7 thus evicts x from L2, which consequently purges x also from L1 as
it is an inclusion victim. As x is purges from both L1 and L2, the probing of x
is observed by LLC, which moves x to the MRU position in LLC and CT fails.
The rooting cause is that the probing of x is invisible to the inclusive L2 while
WL2 < WLLC. Early generations of the Intel quad/hexa-core multiprocessors,
such as the Intel Dunnington architecture [2, 25] adopts such a three-level in-
clusive cache architecture. The L2 cache in later generations becomes exclusive,
which unfortunately makes them vulnerable to single-core CT.

Inclusive LLC using LRU/RRIP with private caches using random:
This architecture is uncommon as most L1 caches adopt LRU/RRIP replacement
policies. However, the single-core CT fails in such an architecture as x is likely
evicted from the private caches before it is evicted from the LLC due to the
random replacement, which makes the following probing of x observed by the
LLC. CT therefore fails due to the lack of the filter effect. In Section 5.1, we
have configured the cache architecture of a dual-core Rocket-Chip accordingly
as a demonstrative example for the failing of single-core CT.

4 Performance Optimization

This section begins with a performance analysis of the baseline CT algorithm.
Based on the analysis, three optimization techniques are proposed to improve
the efficiency of the CT algorithm.

4.1 Performance Analysis of the Baseline Algorithm

Let us consider a cross-core attack on a two-level inclusive cache using the LRU
replacement policy. The latency (L) of searching one eviction set of W congruent
addresses can be estimated as:

L = (NRA +W ) · tmem + (Nv −W ) · tL1 +Nv ·∆cross (1)

where NRA and Nv are the numbers of accessing random addresses and the
victim address x, respectively, while tmem, tL1 and ∆cross are the time for one
memory access, the time for one access hitting in L1, and the time overhead for
one cross-core access, respectively. The total number of LLC misses is NRA +W
and Nv −W times of probing x should hit in L1 due to the perfect filter effect.

Due to the LRU replacement policy, the target address x is evicted from the
LLC every time when W congruent random addresses are accessed. A total of
W 2 congruent random addresses are searched before obtaining an eviction set.
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We call this number NCA. Since random address is a congruent address with x
by a probability of 1/S, NRA and Nv can be estimated as:

NRA = Nv = NCA · S = SW 2 (2)

where S is the number of LLC sets. Using Equation 1, L is rewritten to:

L = (SW 2 +W ) · tmem + (SW 2 −W ) · tL1 + SW 2 · tcross (3)

= SW 2 · [tmem + (tL1 +∆cross)] +W · (tmem − tL1) (4)
= S ·NCA · (tmem + tv) +W ·∆miss (5)

where tv and ∆miss are the time for one (cross-core) probing of x and the time
overhead of one cache (both L1 and LLC) miss, respectively. According to Equa-
tion 5, the key for reducing L is to decrease NCA, the number of congruent
random addresses requiring to be accessed, as all others are constants.

Equation 5 holds true for cross-core attacks on all feasible cache architec-
tures, even when the LLC adopts the random replacement policy. In this case,
Equation 2 remains the same as a random address is a congruent address with x
by a probability of 1/S, accessing a congruent address evicts x by a probability
of 1/W , and x is evicted for W times during the whole search. Consequently,
Equation 4 and 5 remain untouched

For single-core attacks, Equation 5 remains valid as long as the L1 adopts
LRU/RRIP replacement policies because LRU/RRIP guarantees the perfect fil-
ter effect. tv is reduced to tL1 as the cross-core overhead is removed. When both
L1 and LLC adopt the random replacement policy, accessing a random address
evicts x from the L1 cache by a probability of 1/(SL1 · WL1). Therefore, extra
latency is introduced in Equation 4 and 5:

L = SW 2 · (tmem + tL1) +W · (tmem − tL1) +
SW 2

SL1 ·WL1
· (tLLC − tL1) (6)

= S ·NCA · (tmem + tv) +W ·∆miss +
S ·NCA

SL1 ·WL1
·∆L1-miss (7)

where tv = tL1 and ∆L1-miss = tLLC−tL1, which is the time overhead of accessing
LLC when L1 misses. Similarly, the key for reducing L is to decrease NCA as all
others are constants.

4.2 Cacheback : Reducing the Number of Random Accesses

Cacheback is an optimization capable of reducing NCA when the LLC adopts
an LRU/RRIP replacement policy. In the baseline CT algorithm, every time the
target address x is evicted from the LLC, a total of W congruent addresses are
accessed but only the last one is identified by the algorithm, because it finally
evicts x. When a number of congruent addresses are identified and stored in
E (line 8 in Algorithm 1), these addresses can be used to push x to the LRU
position and reduce the total number of congruent addresses (NCA) needed in the
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Algorithm 2: Cacheback after a successful probe
1 if not Cv:probe(x) then
2 E

⋃
{a}

3 for e in E do
4 Ca:access(e)
5 end
6 end

L1

LRU MRU

L2

LLC e0 e1 e2e3 e4 e5 e6 a3

x

e8 e9e7 e10e11 a0 a1 a2

e8 e9 e10e11 a3a0 a1 a2

e5 e6 e7 e2

x

(a) After accessing a3.

L1

LRU MRU

L2

LLC e0 e1e2e4 e5 e6

x

e8 e9e7 e10e11 a0 a1 a2

e2a1 a2

x

e0 e1a0 a3

e9 e10e11 e8

a3

(b) After accessing e2.

Fig. 3. Problem of cacheback when the order observed by LLC (L2) mismatching with
the program order. (According to i7-6700, WL1 = 8,WL2 = 4,WLLC = 16, L2 is
exclusive, L2 and LLC adopt RRIP)

search. This cacheback procedure is described in the code extraction of the probe
illustrated in Algorithm 2 (replacing the code highlighted blue in Algorithm 1)
with the optimization highlighted in red. After the i-th congruent address (ei) is
identified by CT, the number of congruent addresses needed for identifying the
next one is reduced to W − i. Therefore, NCA is reduced to:

NCA =
W−1∑
i=0

(W − i) =
W 2 +W

2
(8)

Compared with Equation 2, the total number of congruent addresses needed in
the search is roughly reduced by half, so does the search latency.

This optimization is first proposed in the Prime+Scope attack [20]. By further
investigation, we find out that the optimization works but not as effective as it
should be. There are two reasons for this reduced efficiency: mismatching access
order and broken filter effect. Let us consider an example of single-core attack
on a three-level cache depicted in Fig. 3. The access order observed by the LLC
might not match with the access order issued by the program. As a result, when
the target address x is evicted by accessing address a3 in Fig. 3a, the access order
observed (more importantly the replacement order) by L2 and LLC mismatches
with the program order for address e2,3 assuming 12 congruent addresses (e0 to
e11) have been identified, stored in E , and used for cacheback. a3 is identified as a
congruent address and stored in E after probing x (refill x to L1 and LLC as well).
According to the cacheback optimization, e0 to e11, along with a3 are accessed

3 Many reasons can cause the mismatch in access order. The filter effect itself is a po-
tential cause as soon shown in Fig. 3b. The imperfect pseudo-LRU used in hardware
and the RRIP derivative policies used in L2 and LLC [31] also cause mismatching
replacement order and access order. Finally, the L2 in this case (also in modern
Intel processor) is exclusive, whose replacement order is also affected by the block
swapping between L2 and L1 when a block hits in L2.
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Algorithm 3: Flush before cacheback
1 if not Cv:probe(x) then
2 E

⋃
{a}

3 for e in E do
4 Ca:flush(e)
5 end
6 for e in E do
7 Ca:access(e)
8 end
9 end

Algorithm 4: Interleavedly re-access target during cacheback
1 if not Cv:probe(x) then
2 E

⋃
{a}

3 for e in E do
4 Ca:flush(e)
5 end
6 for e in E do
7 Ca:access(e)
8 Cv:access(x) // single-core, Cv = Ca

9 end
10 end

to push x towards the LRU position in LLC. When the cacheback proceeds to
e2, this address hits in L2 and is swapped to L1 rather than accessing from LLC
due to the order mismatch. Consequently, the access of e2 is invisible to LLC,
reducing the effectiveness of the cacheback and the access order in L2 and LLC
diverse further away from the program order. To avoid the mismatching access
order, we propose to flush all the addresses stored in E before caching them back,
as highlighted in the code extraction of the probe part illustrated in Algorithm 3
(replacing the code highlighted blue in Algorithm 1). In this way, each accessing
of ei forces an insertion at the MRU position in the LLC.

The other problem is the broken filter effect in single-core CT attack when
the number of addresses in E is larger than the associativity of the inner caches:
|E| ≥ WL1 +WL2 for the cache architecture shown in Fig. 3. Let us consider the
situation after the cacheback process is finished, the target x is actually evicted
from L1 and L2, because the total number of addresses in E becomes 13 after
adding a3. As a result, LLC observes a re-access of x soon after probing for the
next random address. This would put x to the unfavorable MRU position if LLC
adopts the LRU replacement. It is even worse for the RRIP replacement policy as
a re-access of x promotes it to higher replacement priority [13], which would fail
the CT algorithm. To avoid such problem, we propose to interleavedly re-access
the target address x during the cacheback process, as shown in Algorithm 4
(replacing the code highlighted blue in Algorithm 1). In this way, CT ensures
that x is never evicted from L1.

4.3 Extended Probing : Increasing the Probability of Probing

Cacheback is effective only when the LLC adopts an LRU/RRIP replacement
policy. If the policy is random, the probability of evicting the target address x
is independent for every random address being tested. Cacheback is therefore
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Algorithm 5: Extended probing
1 r = TRUE
2 r = r and Cv:probe(x)
3 for e in E do
4 r = r and Ca:probe(e)
5 end
6 if not r then
7 E

⋃
{a}

8 end

useless. In this situation, we propose to directly improve the probability of iden-
tifying a congruent address in the probing. Instead of probing only the target
address x, an attacker can additionally probe all the found congruent addresses
stored in E , as they all stored in the same LLC cache set. Algorithm 5 demon-
strates the probe (code highlighted blue in Algorithm 1) optimized with the
extend probing. If any of the target address x or the addresses stored in E is
probed missing in the LLC, r becomes FALSE, and the random address a is then
identified as congruent and added to E .

Assuming the size of E is |E|, the probability of identifying a congruent ad-
dress increases from 1

W to 1+|E|
W , which approaches to 64% when |E| = 15 for a

16-way LLC. Consequently, NCA is reduced from 256 to 54.1, achieving a 79%
reduction. However, the search latency does not drop proportionally to the re-
duction of NCA. In fact, the latency benefit eventually drops to negative with
the increasing of |E|, because the total number of accesses issued by probes rises
proportionally to |E|. They incur a significant latency overhead when |E| → W .
When |E| < WL1, addresses in E likely hit in L1. The extra accesses introduced
by the extended probing are served by L1 and the latency overhead is small.
When |E| ≥ WL1, the extended probing begins to experience significant amount
of L1 misses. The latency overhead would gradually becomes intolerable. There
should be an optimal number of addresses applied with the extended probing.

4.4 Surrogate Targets: Reducing Victim Accesses

The final optimization is related to reduce the number of probing the target
address x. In certain attack scenarios, tricking the victim to probe the tar-
get address x (normally cross-core) is a time consuming and noisy procedure
(∆cross � tL1 in Equation 4), especially when the victim is non-cooperative or
the victim probe is likely bulky (containing unrelated code). As a result, the total
time required for constructing an eviction might not be decided by the complex-
ity of the search algorithm but largely by the number of victim accesses [22].

According to Equation 2, the number of victim access Nv = NCA·S, which is a
fairly large number. We would like to significantly reduce Nv. Instead of probing
the target address x, an attacker can replace x with a found congruent address
as the surrogate target, such as e0 stored in E . The number of total victim access
Nv is therefore reduced to the number of victim accesses required for identifying
the first congruent address, which is only S ·W . Note that this effectively convert
an originally cross-core attack into a single-core one. Therefore, it is viable only
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Table 3. Cache misses incurred by testing 1000 random addresses.

Scenario C0 L1 miss C0 L2 miss C1 L1 miss C1 L2 miss LLC miss

cross-core 1000 ± 0.0 1000 ± 0.0 1.3 ± 0.5 1.3 ± 0.5 1001 ± 0.5
single-core 1016 ± 1.3 1016 ± 1.3 0 ± 0 0 ± 0 1000 ± 0.03

for the cache architectures feasible for the single-core case. It is also worthwhile
to point out, this technique is universally effective for all inserting algorithms.

5 Performance Evaluation

The performance of CT with various optimizations is evaluated by running them
on actual processors whenever possible. The two assumed failing cache architec-
tures for the single-core case (Section 3.3) are first verified. Consequently, the
speed benefits of the optimizations proposed in Section 4 are measured.

5.1 Feasibility Verification

It is widely understand that CT fails on exclusive/non-inclusive cache architec-
tures. This section concentrates on verifying of the two inclusive cache architec-
tures identified in Table 2 (Section 3.3) where the single-core CT fails.

For the three levels of inclusive caches using LRU/RRIP, we verify
the failing single-core case using a behavioral cache model [27] as we do not have
any of the early Intel machines or any open processor implementation adopting
a three-level cache architecture. The cache model is configured with two cores.
(Ca, Cv) = (C0, C1) for the cross-core case. Each core contains a 64-set 8-way L1
and an private 512-set 8-way L2, while a 4096-set 12-way LLC is shared between
cores. All caches adopt the LRU replacement policy.

The baseline CT is used to test 1000 random addresses for both cross-core
and single-core cases. Complying with the analysis provided in Table 2, 1∼2
congruent addresses are found in the cross-core case but none in the single-core
case. Table 3 reveals the cache misses recorded in all caches. In the cross-core
case, testing 1000 random addresses incurs ∼1001 misses in the LLC, where the
extra 1∼2 misses are caused by the eviction of the target addresses x from the
LLC, which is confirmed by the matching missing number on core C1 (Cv). In
the single-core case, the number of cache misses incurred by testing 1000 random
addresses is ∼1016 on L1 but exactly 1000 on LLC. The 16 extra misses on L1
is caused by the eviction of the target address x from the L2, which would lead
to re-accessing x on the LLC (broken filter effect). As a result, x is never pushed
to the LRU position in the LLC, and CT fails.

For the inclusive LLC using LRU/RRIP with private caches using
random, we manage to configure a dual-core Rocket-Chip [3,4] with a two-level
cache architecture where the 1024-set 16-way LLC is inclusive using LRU while
the 64-set 8-way L1 uses random. The Rocket-Chip is ported to a FPGA dev
board, runs at 50MHz, and boots with a Linux kernel (ver. 5.11.0).
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Fig. 5. Search latency and success rate on Intel i7-6700 when various cacheback opti-
mizations are applied.

The baseline CT algorithm runs on this dual-core Rocket-Chip for both cross-
core and single-core cases. The cross-core case successfully finds eviction sets with
a probability of 13% while the single-core case fails, complying with Table 2. To
verify this result, the latency distribution of probing the target address x has
been collected and depicted in Fig. 4. For the cross-core case, 99.5% probes hit
in L1 (∼4 cycles), while ∼0.4% probes miss in LLC (>45 cycles). The tested CT
algorithm uses random addresses sharing the same page offset with the target
address x, providing a theoretical conflicting rate of 1/256 (0.391%). The 0.4%
LLC miss rate matches perfectly with the theory. For the single-core case, only
87.4% probes hit in L1, 12.4% probes hit in LLC (∼25 cycles), and none misses
in the LLC. Due to the random replacement policy used in L1, the target address
x shall be evicted from the L1 by a probability of 1/8 (12.5%), in theory. This
matches with the 12.4% probes hitting in the LLC. Due to this effect, x is never
pushed to the LRU position in LLC, and CT fails.

5.2 Speed Optimization Results

Cacheback (Section 4.2) reduces NAC along with the search latency in inclusive
LLCs adopting LRU/RRIP replacement policies. We use Intel i7-6700 as our de-
fault processor for analyzing the different techniques for improving the efficiency
of cacheback while the final performance of CT with the optimized cacheback is
compared on all the four Intel processors.

Fig. 5 demonstrates the search latency and success rate on Inel i7-6700
when different optimization techniques are applied to the cacheback process. In
the cross-core case, applying the basic cacheback alone without flushing before
cacheback (labeled as “flush”) or interleavedly re-access (labeled as “int-re-acc”)
already raises the success rate from 22% to 28% and reduces the search latency
from 49ms to 46ms. Since the target address x is accessed by Cv rather than
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Table 4. Cross-core CT on Intel processors using cacheback and surrogate targets.

CPU Baseline Cacheback Surrogate Target

latency rate latency rate latency rate victim-acc. reduction

i7-3770 13 ± 4.5ms 80% 9.5 ± 7.6ms 81% 6.4 ± 2.6ms 64% 3.4K 89%
i7-6700 49 ± 47ms 22% 46 ± 54ms 28% 31 ± 44ms 16% 44K 68%
i7-9700 44 ± 39ms 20% 33 ± 39ms 24% 29 ± 36ms 22% 43K 62%
i7-11700 72 ± 54ms 4.8% 69 ± 58ms 6.6% 63 ± 50ms 2.3% 125K 37%

Ca, caching back E would not evict x out of the Cv:L1 and the thrashing access
pattern observed by the private L1 and L2 caches means the benefit of flush is
marginal. As shown in Fig. 5, flush reduces the search latency but also incurs
a drop on the success rate. int-re-acc is unnecessary for the cross-core case. We
therefore choose the basic cacheback (without flush or int-re-acc) as the default
cacheback optimized CT algorithm. In the single-core case, caching back E has a
much higher probability to evict the target address x out of the private L1 and
L2 caches than in the cross-core case. Consequently, applying cacheback itself
leads to an substantial drop on the success rate. By applying both flush and
int-re-acc, the success rate is raised from 16% to 19% while the search latency
drops from 23ms to 15ms. We consequently define the cacheback with both flush
and int-re-acc as the default cacheback optimized CT algorithm for single-core.

Fig. 6 demonstrates the performance improvement of cacheback optimized
CT compared with the baseline CT on all the four Intel processors. The detail
performance figures are also revealed in Table 4 for the cross-care case and
Table 5 for the single-core case. The success rate is improved substantially on
the more recent processors (later than the 6th generation) and this increase is
most visible for the latest i7-11700 where the success rate is raised by 90% for the
single-core case. As for the search latency, cacheback is able to reduce the search
latency for all processors earlier than the 9th generation. Overall, cacheback is
able to significantly improve the speed performance of CT on all the four tested
Inel processors.

The surrogate targets (Section 4.4) optimization can significantly reduce
the number of victim accesses by replacing the probing target from the target
address x to the first found congruent address e0 stored in E . We have tested the
CT using surrogate targets on the four Intel processors and the detailed result
is revealed in the right-most columns in Table 4. The number of victim accesses
is reduced by 37% to, as high as, 89%. This reduction proves the effectiveness
of the optimization. The search latency is also significantly reduced to the range
achieved by the single-core case. The reason is simply, once the probe target is
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Table 5. Single-core CT on Intel processors using cacheback.

CPU Baseline Cacheback

latency rate latency rate

i7-3770 6.0 ± 3.4ms 69% 5.1 ± 5.8ms 65%
i7-6700 23 ± 21ms 16% 15 ± 19ms 19%
i7-9700 20 ± 17ms 21% 16 ± 18ms 25%
i7-11700 12 ± 4.4ms 2.1% 13 ± 9.8ms 3.9%
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Fig. 7. Success rate and search latency (both single-test and accumulated) of CT run-
ning a dual-core Rocket-Chip (L1 LRU and LLC random) with extended probing.

replaced with e0, the time consuming cross-core probe becomes the much faster
single-core probe. However, the success rate drops to slightly lower than the
single-core case. The success rate of single-core case is typically lower than the
cross-core case due to its higher noise level. In addition, probing the surrogate
targets suffers from a slightly reduced success rate as the found e0 might not be
congruent with x by a small probability due to false-positive errors.

Finally, we demonstrate the performance benefit of the extended probing
(Section 4.3) again using a dual-core Rocket-Chip and configuring the replace-
ment policies of the L1 cache to LRU and the LLC to random. Fig. 7 depicts the
success rate and the search latency when the probing target is extended with 0
to 16 found congruent addresses stored in E . The search latency is labeled as
the “single-test latency” while the accumulated latency for eventually finding an
eviction set (latency divided by success rate) is labeled as the “accu. latency”. For
both cross-core and single-core cases, extending the probe with found congruent
addresses reduces the single-test search latency by increasing the success prob-
ability of probes. However, the success rate gradually drops with the number
of extended probed addresses due to the increased probability of self-evicting
the probe targets. The overall impact of applying extended probing is better
presented by the accumulated search latency for finding an eviction set. Extend-
ing the probe with 2 to 6 addresses reduces the accumulated latency by around
20% for the cross-core case while extending the probe with 4 addresses reduces
the accumulated latency by 18% for the single-core case. The result confirms
that extending the probe with a small number of found congruent addresses can
improve speed when the LLC adopts the random replacement policy.
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6 Conclusion

In this paper, we have conducted the first systematic feasibility analysis of the CT
algorithm. Besides the commonly known failing case where the LLC is exclusive
or non-inclusive, two inclusive cache architectures are identified and verified
as failing cases for the single-core CT. Three optimizations have been studied.
The performance of the cacheback optimization has been significantly improved
(especially for the single-core CT) by introducing flushing before cache back and
interleaved re-access during the cacheback. The other two are newly proposed
in this paper. Extended probing is effective in reducing the search latency by
increasing the success probability of probes on cache architectures where the LLC
adopts the random replacement policy. Surrogate targets is effective in reducing
the number of victim accesses, which is hugely beneficial when the cross-core
probing of the victim address is time consuming.
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Abstract. Fully Homomorphic Encryption (FHE) allows for data pro-
cessing while it remains encrypted, enabling privacy-preserving outsourced
computation. However, FHE faces challenges in real-world applications,
such as communication overhead and storage limitations, due to the large
size of its evaluation key.
This paper revisits existing key switching algorithms widely used in FHE,
which may account for over 90% of the total evaluation key size. Although
these algorithms work towards the same goal, they differ significantly in
functionality, computational complexity, noise management and key size.
We close their functional gap and reanalyze them under a common stan-
dard, proposing theorems and comparative results to provide a flexible
time-space trade-off when designing FHE applications.
To validate the efficacy of our theoretical results, we propose a light-key
bootstrapping method using a lower-sized key switching variant. This
approach reduces the key size of the well-known GINX bootstrapping by
a factor of 88.8%. It also outperforms the state-of-the-art light-key FHE
by reducing 48.4% bootstrapping key size and 8% transfer key size.

Keywords: FHE · Key Switching · Light-Key Bootstrapping.

1 Introduction

Fully Homomorphic Encryption (FHE) allows data to be processed while en-
crypted, enabling users to delegate computation to an untrusted party without
the risk of data leakage. This opens up the potential for privacy-preserving out-
sourced computation in various applications, such as cloud computing [1,19],
the internet of things (IoT) [26,29] and machine learning [20,10]. The process
involves the client (data owner) encrypting their sensitive data, generating the
necessary evaluation keys for homomorphic operations, and transmitting them
to the server (computing party). The server performs homomorphic evaluations
on the ciphertext and returns the encrypted results, as shown in fig.1.

One issue faced by Fully Homomorphic Encryption (FHE) is the storage and
the communication cost. FHE is based on lattice encryption schemes, resulting in
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Fig. 1. Client-server model of FHE applications. Evk denotes the evaluation keys.

large ciphertext and key sizes. In word-wise encryption schemes, the evaluation
keys often have sizes of gigabytes [14,4,16,17]. While FHEW-like bit-wise encryp-
tion schemes reduce the evaluation key size by one order of magnitude, they still
face limitations in real-world applications due to their key size of about 200 MB.
More precisely, there is a strong preference for clients to generate and transmit
keys with the smallest possible size. This is due to the fact that clients typically
operate on devices with constrained computing power and limited storage space,
sometimes even on mobile devices [13,28].

From the server’s perspective, research has demonstrated that hardware ac-
celeration can yield over a ten times boost in the efficiency of homomorphic en-
cryption operations [15,30,25]. However, these solutions are memory-constrained
due to their limited on-chip storage. These challenges promote us to explore tech-
niques to reduce the size of evaluation keys.

This paper concentrates on the key switching algorithm, whose key size may
account for over 90 % of the total evaluation key in FHEW-like schemes, as
shown in tab.1.

Methods Evaluation key size Key switching key size Transfer key size

GINX ([21]) 250 MB 229.1 MB (91.6%) 16.48 MB

LFHE ([18]) 175 MB 84.6 MB (48.3%) 881 KB

GINXour 27.91 MB 27.2 KB (0.1 %) 13.96 MB

LFHEour 90.38 MB 54.2 KB (0.06 %) 810.1 KB

Table 1. The proportion of key switching key size in the total evaluation key size of
different bootstrapping methods. The parameters resources is within brackets. In the
transfer model [18], the transfer key is a seed of the evaluation key. Sec.6.4 provides a
detailed description of the transfer model.

Key switching is an essential operation in FHEW-like cryptosystems that
enables changing the encryption key without revealing the plaintext. Various
types of key switching have been described in this literature, including LWE-
to-(R)LWE key switching, and RLWE-to-RLWE key switching. Chillotti et al.
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shows that the former scheme can evaluate a linear Lipschitz morphism on ci-
phertext almost for free during switching keys [7]. Depending on the confidential-
ity of the morphism, it can be further divided into public functional key switching
and private functional key switching. Even for the same switching type, there
are different computation methods, these algorithms differ in functionality, key
size, computational complexity, and noise management. A unified comparison
is currently lacking, and there is no theoretical basis for selecting proper key
switching algorithms when designing FHE applications. This motivates us to
comprehensively revisit known key switching algorithms.

Functional Key Switching Algorithms. Our first contribution is to fill the
functional gap in key switching algorithms. TFHE’s key switching can compute
a linear Lipschitz morphism while switching keys [7]. This property is not pre-
sented in the LWE-to-LWE key switching proposed by Chen et al. [3], or the
commonly used RLWE-to-RLWE key switching algorithm. We fill this gap by
decomposing all key switching algorithms into gadget products3, and embedding
the linear Lipschitz morphism in it. The linear property ensures that the mor-
phism can be correctly calculated by scalar multiplication, while the Lipschitz
property helps manage noise growth. As a result, we provide functional variants
of all known key switching algorithms, which may have independent interests
beyond this paper. For instance, we demonstrate that the scheme switching al-
gorithm [9] (or the same EvalSquareMult algorithm [18]) can be regarded as a
specific case of our proposed RLWE-to-RLWE private functional key switching
algorithm for the morphism f(x) = sk · x, where sk is the secret key.

Comparison Between Key Switching Algorithms. Comparing key switch-
ing algorithms can be challenging since they are proposed and analyzed using
different baselines, such as algebraic structures, the key distributions, and the
gadget decomposition methods4. In this work, we present a comprehensive re-
analysis of the existing key switching algorithms and our proposed functional
variants under a common standard. We use the power of two cyclotomic ring,
which is commonly used in FHE schemes, binary key distribution, and the canon-
ical approximate gadget decomposition [7]. We propose noise growth formulas
and provide performance data in terms of key sizes and computational com-
plexity. Our work serves as a theoretical basis for the practical selection of key
switching algorithms when designing FHE applications.

Light-Key Bootstrapping Algorithm. To validate the efficacy of our the-
oretical results, we propose the light-key bootstrapping variants using a lower-
sized key switching algorithm. For the well-known GINX bootstrapping, this
approach reduces the bootstrapping key size by 88.8 % and the transfer key

3 The gadget product is the computational units for scalar multiplication in FHEW-
like cryptosystems

4 The gadget decomposition is a technique used to decompose large numbers into
smaller digits. This helps control error growth in FHE algorithms.
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size by 15.3 %. For the state-of-the-art light-key bootstrapping, this approach
outperforms Kim et al.’s LFHE method [18] by reducing 48.4 % bootstrapping
key size and 8 % transfer key size.

Related Work. Fig.1 illustrates that the client must generate and transmit
two components: the ciphertext and the evaluation keys. This paper focuses on
reducing the size of the evaluation key. However, the ciphertext size is also sig-
nificantly larger than plaintext due to the lattice-based encryption. Currently,
Naehrig et al. have introduced techniques named hybrid homomorphic encryp-
tion (HHE or transciphering) [24,2,11,8]. This technique allows the client to
encrypt messages with a symmetric cipher. The server then evaluates the de-
cryption circuit homomorphically to obtain the ciphertext under HE form for
further processing. Our future work involves integrating HHE with our research,
to develop fully homomorphic encryption applications with minimal transmis-
sion size.

Organization. The rest of the paper is organized as follows: sec.2 reviews
the notations and crypto primitives; sec.3 revisits the gadget product as the
basic computational unit of key switching algorithms; sec.4 and sec.5 analyzes
the LWE-to-LWE key switching algorithms and RLWE-to-RLWE key switching
algorithms, respectively; sec.6 constructs the light-key bootstrapping algorithm
based on the analysis results; sec.7 concludes the paper.

2 Preliminaries

2.1 Notations

Let A be a set. Define An as the set of vectors with n elements in A, Aq as the
set A module q, where the elements’ scope is [−q/2, q/2) ∩ A. Use Z to denote
the set of integers, R to denote the set of real numbers, and B = Z2 represents
the set of binary numbers. Denote R as the set of integer coefficient polynomials
modulo XN + 1, where N is a power of 2 Then R is the 2N -th cyclotomic ring.

Use regular letters to represent (modular) integers like a ∈ Zq, while bold
letters to represent polynomials a ∈ R or vectors a ∈ Zn. The notation ai refers
to the i-th coefficient/term of a. The floor, ceiling, and rounding functions are
written as ⌊·⌋, ⌈·⌉ ⌊·⌉, respectively. A function f is R-Lipschitz means that it
satisfies ∥f(x)− f(y)∥∞ ≤ R∥x− y∥∞, where ∥ · ∥∞ is the infinity norm.

2.2 Gadget Decomposition

Given a gadget vector v = (v0, v1, ..., vl−1), the gadget decomposition of a ring
element t ∈ R is to find (t0, ..., tl−1) to minimize the decomposition error
εgadget(t) =

∑
i viti − t. ϵ denotes its infinite norm, that is, ∥

∑
i viti − t∥∞ ≤ ϵ.

In this paper, we use the canonical approximate gadget decomposition, where
v = (⌈ q

Bl ⌉, ⌈ q
Bl ⌉B, ..., ⌈ q

Bl ⌉Bl−1), thus ϵ ≤ 1
2⌈

q
Bl ⌉. We say B is the gadget base

and l is the gadget length.
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2.3 Learning with Errors

The security of FHEW-like cryptosystem is based on the (ring) learning with
errors problem [27,22]. We summarize the three kinds of ciphertexts as follow:

– LWE: Giving positive integers n and q, the LWE encryption of the message
m ∈ Z is a vector (a, b) ∈ Zn+1

q , where b = −a · sk + m + e. The vector
a is uniformly sampled from Zn

q , the secret key sk is sampled from a key
distribution χ, the error e is sampled from an error distribution χ′.

– RLWE: RLWE is a ring version of LWE on Rq. The RLWE encryption of
the message m ∈ Rq is a pair (a,b) ∈ Rn+1

q , where b = −a ·sk+m+e. The
vector a is uniformly sampled from Rq, the secret key sk is sampled from a
key distribution χ, and each coefficient of the error ei is sampled from χ′.

– RGSW: The RGSW encryption of the message m ∈ Rq can be expressed
as: RGSWsk(m) = (RLWE′

sk(sk ·m),RLWE′
sk(m)), where RLWE′ is the

gadget RLWE ciphertext defined as follows:

Given a gadget vector v = (v0, v1, ..., vl−1), the notion (R)LWE′ refers to the
gadget (R)LWE ciphertext is defined as:

LWE′
sk(m) = (LWEsk(v0 ·m),LWEsk(v1 ·m), ...,LWEsk(vl−1 ·m)),

RLWE′
sk(m) = (RLWEsk(v0 ·m),RLWEsk(v1 ·m), ...,RLWEsk(vl−1 ·m)).

Remark 1. These definitions (following Micciancio and Polyakov [23]) use differ-
ent notions compared to the original TFHE papers [5,6,7]. Specifically, TFHE
uses real torus T = R/Z and TN [X] = R/Z to describe the message and ci-
phertext spaces, but implements T by Zq with q = 232 or q = 264. Thus we
straightforwardly use Zq instead of T.

Remark 2. In FHEW-like cryptosystem, the gadget (R)LWE is mainly used as
the evaluation key and appears as an auxiliary input in algorithms such as key
switching. To simplify the presentation and facilitate the understanding of the
key switching algorithm, which is the main focus of this paper, we provide a
formal definition and notation of gadget (R)LWE.

2.4 Bootstrapping

The error rate of the LWE/RLWE ciphertext will significantly affect the decryp-

tion failure probability, which can be calculated by 1−erf
(

q

8
√
2σ

)
, where σ is the

standard deviation of the error. We then introduce the bootstrapping algorithm
to reduce the error rate. FHEW-like bootstrapping can evaluate a 1-in/1-out
LUT function while refreshing ciphertext noise. It typically contains the follow-
ing operations: blind rotation (BR), sample extraction (SE), key switching, and
modulus switching (MS).
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As the goal of bootstrapping is to refresh the noise in the ciphertext, it is
necessary to pay extra attention and precisely control the noise generated in each
step of the bootstrapping algorithm itself. The basic strategy is to execute the
BR step, which mainly generates the new noise, under a large modulus. Then
recovering the LWE ciphertext form through SE, reducing the modulus while
eliminating the blind rotation noise size through MS, and recovering the original
key through key switching algorithm. We introduce two typical bootstrapping
work flows as follows:

GINX Bootstrapping [5,6,7]. LWE571,211
BR−−→ RLWE1024,225

SE−→ LWE1024,225

MS−−→ LWE1024,214
LtL−−→ LWE571,214

MS−−→ LWE571,211 .

Remark 3. The above parameters are taken from Lee’s recent article [21], with a
security level of 128-bit. Due to the update of attack methods, the security level
of the parameters in TFHE articles [5,6,7] has been reduced to 115-bit.

LFHE Bootstrapping [18]. LWE571,211
BR−−→ RLWE2048,254

MS−−→ RLWE2048,227

RtR−−→ RLWE1024,227
SE−→ LWE1024,227

MS−−→ LWE1024,214
LtL−−→ LWE571,214

MS−−→
LWE571,211 .

To display the switching of the keys and modulus, we use the form (R)LWEn,q

to represent ciphertexts, where n is the dimension of the secret key vector (or
polynomial) and q represents the modulus of the ciphertext. LtL stands for LWE
to LWE key switching, and both of the above bootstrapping algorithms use its
storage version (for a summary and comparison between different versions, see
sec. 4). RtR stands for RLWE to RLWE key switching.

3 Gadget Products

The gadget product is used to calculate the scalar multiplication in FHEW-like
cryptosystem. It works by gadget decomposing the plaintext scalar and then
multiplying the corresponding gadget (R)LWE ciphertexts. This algorithm can
reduce the noise growth of scalar multiplication and is widely used in core algo-
rithms such as external product [7] and key switching. This section summarizes
three types of gadget products, and analyze their differences in terms of noise
growth, auxiliary input size and computational complexity. The first one is the
canonical gadget product primarily used for external product. It was first ab-
stracted as a separate algorithm by Micheli et al. in 2023 [9].

Gadget Product: The canonical gadget product ⊙ : Z× (R)LWE
′ → (R)LWE

is defined as:
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t⊙ (R)LWE
′
sk(m) :=

l−1∑
i=0

ti · (R)LWEsk (vi ·m)

= (R)LWEsk

(
l−1∑
i=0

vi · ti ·m

)

= (R)LWEsk (t ·m+ εgadget(t) ·m) ,

Lemma 1. [18] Let B and l denote the base and the length of the gadget decom-
position, respectively, then the error variance of the result of the gadget product
is bounded by

σ2
⊙,input ≤

1

12
lB2σ2

input +
1

3
Var(m)ϵ2

where σ2
input is the error variance of the input LWE′ ciphertext, and Var(m) is

the variance of the message m.

Lemma.1 is derived from [18] proposition.1 with the fact ϵ ≤ 1
2⌈

q
Bl ⌉. This

method use the modular multiplication to compute the gadget product. However,
for a fixed input (R)LWE

′
sk(m), there is an time-space trade-off that reduces

the computational complexity by using additional storage. Specifically, since the
range of ti is bounded by the gadget base B, one can pre-compute and store all
possible values of (R)LWE

′
sk(vi · ti · m), then use modular addition instead of

modular multiplication. This method was first used in the FHEW bootstrapping
algorithm proposed by Ducas et al. in 2015 [12], which inspired us to summarize
a store version of the gadget product. We denote this method using operator ⊕:

Gadget Product (Store Version): The store version ⊕ : Z × (R)LWE
′ →

(R)LWE is defined as:

t⊕ (R)LWE
′
sk(m) :=

l−1∑
i=0

(R)LWE
′
sk(vi · ti ·m)

= (R)LWEsk

(
l−1∑
i=0

vi · ti ·m

)

= (R)LWEsk (t ·m+ εgadget(t) ·m) ,

Corollary 1. Let B and l denote the base and the length of the gadget decom-
position, respectively, then the error variance of the result of the gadget product
(store version) is bounded by

σ2
⊕,input ≤ lσ2

input +
1

3
Var(m)ϵ2

where σ2
input is the error variance of the input LWE′ ciphertext, and Var(m) is

the variance of the message m.

Session 9 - 4 The 26th Annual International Conference on Information Security and Cryptology

ICISC 2023610



8 Ruida Wang et al.

The store version of gadget product use l times modular addition instead of
modular multiplication. Thus corollary.1 can be directly derived from lemma.1
by replacing multiplication error growth with addition error growth.

Lastly, we introduce the ring version of the gadget product, denoted by ⊙R:

Gadget Product (Ring Version): The Ring gadget product ⊙R : R ×
RLWE′ → RLWE is defined as:

t⊙R RLWE′
sk(m) :=

l−1∑
i=0

ti · RLWEsk (vi ·m)

= RLWEsk

(
l−1∑
i=0

vi · ti ·m

)

= RLWEsk (t ·m+ εgadget(t) ·m) ,

Corollary 2. Let n denote the dimension of the ring polynomial of RLWE ci-
phertexts, B and l denote the base and the length of the gadget decomposition,
respectively, then the error variance of the result of the gadget product is bounded
by

σ2
⊙R,input ≤

1

12
nlB2σ2

input +
1

3
nVar(m)ϵ2

where σ2
input is the error variance of the input RLWE′ ciphertext, and Var(m) is

the variance of m.

This algorithm is a ring version of the gadget product. Notice that since
polynomial dimension n causes an exponential increase in polynomial gadget
decomposition results, it is impractical to accelerate computation by pre-storing
all possible RLWE′

sk(vi · ti · m). In other words, the store version of the ring
gadget product is not practical and we do not consider it. The error growth of
the ring gadget product needs to take into account the expansion factor of the
ring. In this paper, we use a power-of-two cyclotomic ring, with an expansion
factor of

√
n for the two-norm, resulting in a factor of n when evaluating the

noise variance. Then corollary.2 can be derived from lemma.1.

Comparison. The computational complexity and auxiliary input size of the
three gadget products are listed in tab.2. From lemma.1 and the corollaries in
this section, we can conclude that in terms of error growth, ⊙R = ⊙ > ⊕. From
tab.2, it is evident that in terms of computational complexity, ⊙R > ⊙ > ⊕, in
terms of the size of auxiliary inputs, ⊕ > ⊙R = ⊙.

As the key switching algorithm is always a combination of scalar multiplica-
tion and addition, these algorithms can be re-written using the three types of
gadget products. This novel perspective makes it easier to examine key switch-
ing algorithms, provides insights into their comparison in terms of correctness,
error growth, computational complexity, and key size. Our analysis can serve as
a guideline for time-space trade-offs in the implementation of the key switching.
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Calculation Computation Complexity Auxiliary Input (in (R)LWE′)

⊙ ln MM 1

⊕ l MA B

⊙R l NTT+ln MM 1

Table 2. Comparison between different version of the gadget product, where l and
B are the gadget length and base, MA and MM denote the modular addition and
modular multiplication operations. NTT is the number theoretic transform algorithm
(with O(ln log n) MM computational complexity) used in polynomial multiplication.

We then revisit LWE-to-LWE key switching algorithms in sec.4, and RLWE-to-
RLWE key switching algorithms in sec.5.

4 LWE-to-LWE Key Switching

Chillotti et al. proposed in the TFHE series [5,6,7] that their key switching
algorithm can calculate a R-Lipschitz linear morphism while switching keys.
This section generalizes all existing LWE-to-LWE key switching algorithms into
functional versions, and classifies key switching algorithms into public functional
key switching and private functional key switching (following Chilloti et al. [7])
based on whether the Lipschitz morphism needs to be kept confidential.

Fig. 2. Six LWE-to-LWE key switching algorithms revisited in this section.

4.1 Public Functional Key Switching

LWE-to-LWE Using Canonical Gadget Product.

– Input: LWEsk(m) = (a, b), and a public R-Lipschitz linear morphism f :
Z → Z

– Switching key:LtLK = LWE′
sk′(ski)i∈[1,n]

– Output: LWEsk′(f(m))
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– Algorithm:

LtLfsk→sk′(LWEsk(m)) :=

n∑
i=1

f(ai)⊙ LWE′
sk′(ski) + (0, f(b)).

This algorithm was first proposed by Chillotti et al. [7], and we formalize it
using gadget product. We then re-analyze the error growth of this algorithm,
and update the theorem 4.1 in [7] for two reasons.

Firstly, TFHE used binary gadget decomposition for scalars in the key switch-
ing algorithm. But currently FHEW-like cryptosystems generally use the stan-
dard approximate gadget decomposition (power-of-B), as what we considered.
Secondly, TFHE utilized the torus algebraic structure in its theoretical analysis,
rather than the power of 2 cyclotomic ring used in the implementation. Thus it
did not consider the coefficient 1/12 when calculating the variance of the uniform
distribution, resulting in a less compact error bound in theorem 4.1 [7].

Correctness and error analysis:

Theorem 1. Let n denote the dimension of the LWE ciphertexts, B and l de-
note the base and the length of the gadget decomposition, respectively, then the
error variance of the result of the LWE to LWE public functional key switching
algorithm is bounded by:

σ2
LtL ≤ 1

12
nlB2σ2

LtLK +
1

6
nϵ2 +R2σ2

input,

where ϵ is the gadget decomposition error, σ2
input is the error variance of the

input LWE ciphertext, and σ2
LtLK is the error variance of the switching key.

Proof. Basing the correctness of the gadget product, we have,

n∑
i=1

f(ai)⊙ LWE′
sk′(ski) + (0, f(b))

= LWEsk′

(
n∑

i=1

f(ai · ski) + f(b)

)

= LWEsk′ (f(m) + f(e)) ,

then we measure the error variance based on lemma.1:

σ2
LtL = nσ2

⊙,LtLK + Var(f(e)) ≤ 1

12
nlB2σ2

LtLK +
1

6
nϵ2 +R2σ2

input.

Store Version. As we analyzed in sec.3, the LtL algorithm, which uses the
canonical gadget product, also has a corresponding store version. It only requires
modifications to the auxiliary input and calculation method:
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– Switching key:LtLK = LWE′
sk′(j · ski)i∈[1,n],j∈[0,B−1]

– Algorithm:

LtLfsk→sk′(LWEsk(m)) :=

n∑
i=1

f(ai)⊕ LWE′
sk′(ski) + (0, f(b)).

It can be derived from tab.2 that, the store version is faster and has smaller
noise growth compared to the canonical LtL algorithm. However, the trade-off
is an increase in key size by a factor of B, where B is the base for gadget
decomposition.

LWE-to-LWE Using Ring Gadget Product.

– Input: LWEs⃗k(m) = (⃗a, b), and a public R-Lipschitz linear morphism f :
Z → Z

– Switching key: LtL2K = RLWE′
sk′(sk), where sk =

∑l−1
i=0 skiX

−i, sk′ =∑l−1
i=0 sk

′
iX

−i

– Output: LWE
s⃗k

′(f(m)) = (⃗a′, b′)
– Algorithm:

(a′,b′) :=

n∑
i=1

f(ai)X
i ⊙R RLWE′

sk′(sk) + (0, f(b)),

LtL2
f

s⃗k→s⃗k
′(LWEs⃗k(m)) := (a′0, a

′
1, ..., a

′
n−1, b

′
0).

Remark 4. This algorithm involves the conversion between vectors and polyno-
mials. Thus to avoid confusion, we use a⃗ to represent vectors in this algorithm,
while a to represent polynomials. The notation ai is the i-th term of the vector
a⃗, and [a]i is the i-th coefficient of the polynomial a.

This switching method was proposed by Chen et al. [3]. We formalize it using
ring gadget product, and first extend it to the functional version. Therefore, the
error growth of this algorithm must take into account the Lipschitz morphism.
In addition, Chen et al. only considered the exact gadget decomposition, which
is a special case (q ≤ Bl) of the canonical approximate gadget decomposition we
use. This also prompts us to re-analyze the error.

Correctness and error analysis:

Theorem 2. Let n denote the dimension of the LWE ciphertexts, B and l de-
note the base and the length of the gadget decomposition, respectively, then the
error variance of the result of the LWE to LWE using RtR algorithm is bounded
by:

σ2
LtL2

≤ 1

12
nlB2σ2

LtL2K +
1

6
nϵ2 +R2σ2

input,

where σ2
input is the error variance of the input LWE ciphertext, and σ2

LtL2K
is

the error variance of the switching key.
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Method Computation complexity Key size (in bits)

LtL,⊙ O(ln2) MM ln(n+ 1) log q

LtL,⊕ (ln+ n+ 1) MA Bln(n+ 1) log q

LtL2,⊙R O(ln log n) MM 2ln log q

Table 3. Comparison between different version of the public LWE-to-LWE key switch-
ing, where q is the ciphertext modulus, l and B are the gadget length and base, MA
and MM denote the modular addition and modular multiplication operations.

Proof. Basing the correctness of the ring gadget product, we have,

b′0 +

n∑
i=1

a′isk
′
i = [b′ + a′ · sk′]0

=

n∑
i=1

f(ai · ski) + f(b)

= f(m) + f(e),

thus (a′0, a
′
1, ..., a

′
n−1, b

′
0) is the LWE ciphertext of f(m) under secret key s⃗k

′
,

then we measure the error variance based on corollary.2:

σ2
LtL2

= σ2
⊙R,LtL2K + Var(f(e)) ≤ 1

12
nlB2σ2

LtLK +
1

6
nϵ2 +R2σ2

input

Comparison. The computational complexity and key size of LWE-to-LWE
public functional key switching algorithms are listed in tab.3. From the theorems
in this section, we can conclude that in terms of error growth, we have (LtL,⊙) =
(LtL2,⊙R) > (LtL,⊕). From tab.2, it is evident that (LtL,⊙) > (LtL2,⊙R) >
(LtL,⊕) in computational complexity. In terms of the key size, we have (LtL,⊕) >
(LtL,⊙) > (LtL2,⊙R).

Comparison results indicate that (LtL,⊙) is inferior to (LtL2,⊙R) in all as-
pects. Thus when we care more about the computational efficiency and error
control of the algorithm, (LtL,⊕) is the best choice. On the other hand, if key
size (which affects transfer size and storage space) is of greater concern, we
should use (LtL2,⊙R) as the substitute.

4.2 Private Functional Key Switching

In the public functional key switching algorithm, the Lipschitz morphism f is
used as a public input. However, f should be kept confidential in some cases.
For example, it is related to the secret key or derived from a protected model.
Chillotti et al. proposed private functional key switching algorithm for this sit-
uation [7], where the morphism f is secretly encoded within the algorithm’s
switching key. In this section, we first revisit this canonical algorithm. Then we
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introduce two novel algorithms. The first is the store version of private functional
key switching, which we extended based on the method of Ducas et al. [12]. The
second is the ring version, extended based on Chen et al.’s methods [3].

Private LWE-to-LWE Using Canonical Gadget Product.

– Input: LWEsk(m) = (a, b)

– Switching key: PLtLK = (LWE′
sk′(f(ski))i∈[1,n],LWE′

sk′(f(1))), where f :
Z → Z is a private R-Lipschitz linear morphism

– Output: LWEsk′(f(m)) = (a′, b′)

– Algorithm:

PLtLfsk→sk′(LWEsk(m)) :=
n∑

i=1

ai ⊙ LWE′
sk′(f(ski)) + b⊙ LWE′

sk′(f(1)).

Store Version. This version only requires modifications to the switching key
and calculation method:

– Switching key:PLtLK = (LWE′
sk′(j · f(ski)),LWE′

sk′(j · f(1))), where i ∈
[1, n], j ∈ [0, B − 1], f : Z → Z is a private R-Lipschitz linear morphism

– Algorithm:

PLtLfsk→sk′(LWEsk(m)) :=

n∑
i=1

ai ⊕ LWE′
sk′(f(ski)) + b⊕ LWE′

sk′(f(1)).

Private LWE-to-LWE Using Ring Gadget Product.

– Input: LWEs⃗k(m) = (⃗a, b)

– Switching key: LtL2K = (RLWE′
sk′(sk),RLWE′

sk′(f(1))), where sk =
∑l−1

i=0

f(ski)X
−i, sk′ =

∑l−1
i=0 sk

′
iX

−i, f : Z → Z is a private R-Lipschitz linear
morphism

– Output: LWE
s⃗k

′(f(m)) = (⃗a′, b′)

– Algorithm:

(a′,b′) :=

n∑
i=1

aiX
i ⊙R RLWE′

sk′(sk) + b⊙R RLWE′
sk′(f(1)),

LtL2
f

s⃗k→s⃗k
′(LWEs⃗k(m)) := (a′0, a

′
1, ..., a

′
n−1, b

′
0).
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Method Computation complexity Key size (in bits)

PLtL,⊙ O(ln2) MM l(n+ 1)2 log q

PLtL,⊕ (ln+ n+ l + 1) MA Bl(n+ 1)2 log q

PLtL2,⊙R O(ln log n) MM 2l(n+ 1) log q

Table 4. Comparison between different versions of the private LWE-to-LWE key
switching, where q is the ciphertext modulus, l and B are the gadget length and base,
MA and MM denote the modular addition and modular multiplication operations.

Correctness, Error Growth and Comparison. The correctness and error
analysis of these algorithms are similar to those in section 4.1. For self com-
pleteness, we include them in A.1. The computational complexity and key size
of LWE-to-LWE private functional key switching algorithms are listed in tab.4.

A comparison of tab.3 and tab.4 reveals that the computational complexity
and key size of private algorithms are both larger than the corresponding public
algorithms. The comparison results between these three methods are similar to
those in sec.4.1: (PLtL,⊕) is more suitable for computation-priority scenarios,
while (PLtL2,⊙R) is more suitable for storage-priority scenarios.

5 RLWE-to-RLWE Key Switching

Besides LWE-to-LWE key switching, LWE-to-RLWE and RLWE-to-RLWE key
switching are also largely described in the literature. However, LWE-to-RLWE
algorithms are highly similar to LWE-to-LWE algorithms. Therefore, we put
the whole section in the Appendix A.3 for readers to refer to the algorithms
and theorems. RLWE-to-RLWE key switching is different. To the best of our
knowledge, it can only be calculated through ring gadget product.

In this section, we extend this method into functional versions, which support
calculation of both public and private Lipschitz functions. We also prove that
the widely-used scheme switching algorithm [9] (or EvalSquareMult algorithm
[18]) is a special case of our extended private functional key switching algorithm.

5.1 Public Functional Key Switching

RLWE-to-RLWE Using Ring Gadget Product.

– Input: RLWEsk(m) = (a,b), and a public R-Lipschitz linear morphism f :
R → R

– Switching key: RtRK = RLWE′
sk′(sk)

– Output: RLWEsk′(f(m)) = (a′,b′)
– Algorithm:

RtRsk→sk′(RLWEsk(m)) := f(a)⊙R RLWE′
sk′ (sk) + (0, f(b)).
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Correctness and error analysis:

Theorem 3. Let n denote the dimension of the ring polynomial of RLWE ci-
phertexts, B and l denote the base and the length of the gadget decomposition,
respectively, then the error variance of the result of the LWE to LWE public
functional key switching algorithm is bounded by:

σ2
RtR ≤ 1

12
nlB2σ2

RtRK +
1

6
nϵ2 + σ2

input,

where σ2
input is the error variance of the input RLWE ciphertext, and σ2

RtLR is
the error variance of the switching key.

Proof. Basing the correctness of the Ring gadget product, we have,

f(a)⊙R RLWE′
sk′ (sk) + (0, f(b))

= RLWEsk′ (f(a · sk) + f(b))

= RLWEsk′ (f(m) + f(e)) .

then we measure the error variance based on lemma.2:

σ2
RtR = σ2

⊙R,RtRK + Var(e) ≤ 1

12
nlB2σ2

RtRK +
1

6
nϵ2 +R2σ2

input.

5.2 Private Functional Key Switching

Private RLWE-to-RLWE Using Ring Gadget Product.

– Input: RLWEsk(m) = (a,b)
– Switching key: RtRK = (RLWE′

sk′(f(sk)),RLWE′
sk′(f(1)), where f : R →

R is a private R-Lipschitz linear morphism
– Output: RLWEsk′(f(m)) = (a′,b′)
– Algorithm:

RtRsk→sk′(RLWEsk(m)) := a⊙RRLWE′
sk′ (f(sk))+b⊙RRLWE′

sk′ (f(1)) .

The correctness and error analysis of this algorithm is similar to theorem.3.
We put it in A.2 for self completeness. When the private Lipschitz morphism is
f(x) = sk·x, our algorithm becomes: a⊙RRLWE′

sk′

(
sk2)

)
+b⊙RRLWE′

sk′ (sk) =

a ⊙R RLWE′
sk′

(
sk2)

)
+ (b, 0), where the right side is the well-known scheme

switching algorithm [9] (or EvalSquareMult algorithm [18]).

6 Light-Key Bootstrapping

To illustrate the effectiveness of our result, we apply the above analysis to con-
struct light-key bootstrapping algorithms. First, we modify the classical GINX
bootstrapping [7], for which our method provides a time-space trade-off. We then
improve the LFHE (light-key FHE) bootstrapping proposed by Kim et al. [18],
which is specifically designed to reduce the key size. We optimize their result
and yield the bootstrapping algorithm with the smallest key.
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Parameters Q QRtR QLtL q N NRtR n lbr lak lsqk lRtR lLtL
GINX [21] 25 − 14 11 1024 − 571 4 − − − 2

GINX our 25 − 15 11 1024 − 571 4 − − − 13

LFHE [18] 54 27 14 11 2048 1024 571 3 5 2 2 3

LFHE our 54 27 15 11 2048 1024 571 3 5 2 2 13

Table 5. Security and Parameters.

6.1 Security and Parameters

GINX bootstrapping algorithm use (LtL,⊕) for key switching due to its higher
efficiency and lower noise growth. However, the large key size of (LtL,⊕) results
in the key switching key occupying 91.6 % of the GINX bootstrapping key (see
tab.1). LFHE replace part of the key switching from (LtL,⊕) to (RtR,⊙R), which
has a smaller key size. However, it still retains an (LtL,⊕) step, so that the key
switching key still occupies 48.3 % of the LFHE bootstrapping key.

In order to construct light-key bootstrapping algorithms, our idea is to use
(LtL2,⊙R) to replace (LtL,⊕) in GINX and LFHE bootstrapping. However, a
direct adoption would not work since the noise growth of (LtL2,⊙R) is much
higher than that of (LtL,⊕) under the same parameters. Therefore, to ensure
algorithm security and control noise introduced by bootstrapping itself, we made
necessary adjustments to the bootstrapping parameters, see tab.6.1. This set of
parameters ensures that the security level of algorithms exceeds 128-bit 5, and
the decryption failure rate due to noise accumulation is less than 2−32 6.

q and n denotes the modulus and dimension of the ciphertext before boot-
strapping. Q, N , lbr, lak, and lsqk are the parameters used for blind rotation,
representing the modulus and ring dimension of the blind rotation key, and the
gadget length in blind rotation, automorphism, and SquareKeyMult (the latter
two are used in LFHE), respectively. QRtR, NRtR, and lRtR denote the modulus,
ring dimension, and gadget decomposition length of the RtR key switching key.
QLtL and lLtL represent the modulus and gadget decomposition length of the LtL2
key switching key.

6.2 Work Flow

The improved GINX and LFHE bootstrapping are shown as follows (all abbre-
viations are defined in previous section, or check sec.2.4 for explanations):

GINXour : LWE571,211
BR−−→ RLWE1024,225

SE−→ LWE1024,225
MS−−→ LWE1024,215

LtL2−−→ LWE571,215
MS−−→ LWE571,211

LFHEour : LWE571,211
BR−−→ RLWE2048,254

MS−−→ RLWE2048,227
RtR−−→ RLWE1024,227

SE−→ LWE1024,227
MS−−→ LWE1024,215

LtL2−−→ LWE571,215
MS−−→ LWE571,211

5 test by LWE estimator, https://bitbucket.org/malb/lwe-estimator/src/master/
6 calculate by 1− erf

(
q

8
√

2σ

)
, where erf represents the Gaussian error function.
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Fig. 3. The transfer model of TFHE bootstrapping.

6.3 Key Size

This section analyze the bootstrapping key size. Since the modulus switching
and sample extraction algorithms do not require evaluation keys, the bootstrap-
ping key includes two parts: the blind rotation key and the key switching key.

GINXour : The blind rotation key contains n RGSW ciphertexts, with each
having 4lbrN logQ bits. This results in a blind rotation key size of 27.88 MB.
We use LtL2 instead of LtL1, the key contains 1 RLWE′ ciphertext with a size
of 2nlLtL logQLtL bits. Thus the key switching key size is 27.2 KB. The total key
size is 27.91 MB.

LFHEour : The blind rotation key also contains n RGSW ciphertexts, resulting
in a blind rotation key size of 90.33 MB. The RtR key switching key contains 1
RLWE′ ciphertext with a size of 2NlRtR logQRtR bits, resulting in a key size of
27 KB. The LtL2 key switching key size is 27.2 KB. The total is 90.38 MB.

6.4 Transfer Model and Transfer Key Size

LFHE [18] proposed a transfer model, see fig.3. The client transmits a transfer
key (a seed) to the server. Then the server runs the reconstruction algorithm to
obtain the complete bootstrapping key, and performs the bootstrapping algo-
rithm. In this model, client and server utilize a common reference string (CRS)
to generate the a-components of each transferred LWE and RLWE ciphertext.
Thus only the b(or b for RLWE)-components of the ciphertext needs to be trans-
mitted. LFHE’s blind rotation algorithm is specifically designed for the transfer
model and uses a pached blind rotation key to reduce the bootstrapping transfer
key size to within 1 MB. We also calculate the transfer key size of our improved
algorithms under the transfer model.

GINXour : The blind rotation key contains n RGSW ciphertexts, with each
needing to transfer 2lbrN logQ bits. This results in a blind rotation transfer key
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Methods Transfer key size Bootstrapping key size

GINX 16.48 MB 250 MB

GINXour 13.96 MB 27.91 MB

LFHE 881 KB 175 MB

LFHEour 810.1 KB 90.38 MB

Table 6. Transfer key size and the bootstrapping key size in different methods.

size of 13.94 MB. We use LtL2 instead of LtL1, the key contains 1 RLWE′ cipher-
text, with a transfer key size of nlLtL logQLtL bits. This results in a key switching
transfer key size of 13.6 KB. The total is 13.96 MB.

LFHEour : The packed blind rotation key contains 1 RLWE ciphertext and
(logN+1) RLWE′ ciphertexts. Each RLWE ciphertext needs to transfer N logQ
bits, each RLWE′ ciphertext needs to transferNlak(lsqk) logQ bits. This results in
a blind rotation transfer key size of 783 KB. The RtR key switching key contains
1 RLWE′ ciphertext and has a transfer size of NlRtR logQRtR bits, resulting in
a transfer key size of 13.5 KB. The LtL2 transfer key size is 13.6 KB. The total
key size is 810.1 KB.

For GINX bootstrapping, our method reduces the bootstrapping key size by
88.8 % and the transfer key size by 15.3 %. We do not want to oversell this result,
but take it as a trade-off method towards practical TFHE applications. For
LFHE bootstrapping, our method outperforms Kim’s method [18] by reducing
48.4% bootstrapping key size and 8 % transfer key size.

7 Conclusion

The key switching algorithm is crucial in real-world fully homomorphic encryp-
tion (FHE) applications due to its significant impact on the key size and effi-
ciency of the FHE system. This paper revisits currently known key switching
algorithms, expands their functionality, carefully recalculates the error growth,
and provide a comparison of different algorithms under the same benchmark. Our
analysis is applied to the bootstrapping algorithm, resulting in optimal light-key
FHE. This paper can be served as an reference for the time-space trade-off of
key switching algorithms and assists to build FHE applications with different
computational and storage requirements.
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A Appendix

A.1 LWE-to-LWE Key Switching

Private LWE-to-LWE Using Canonical Gadget Product

Theorem 4. Let n denote the dimension of the LWE ciphertexts, B and l de-
note the base and the length of the gadget decomposition, respectively, then the
error variance of the result of the LWE to LWE public functional key switching
algorithm is bounded by:

σ2
PLtL ≤ 1

12
(n+ 1)lB2σ2

LtLK +
1

6
R2nϵ2 ++

1

3
nVar(f(1))ϵ2 +R2σ2

input,

where σ2
input is the error variance of the input LWE ciphertext, and σ2

LtLK is
the error variance of the switching key.

Proof. Basing the correctness of the gadget product, we have,

n∑
i=1

ai ⊙ LWE′
sk′(f(ski)) + b⊙ LWE′

sk′(f(1))

= LWEsk′

(
n∑

i=1

f(ai · ski) + f(b)

)

= LWEsk′ (f(m) + f(e)) ,

then we measure the error variance based on lemma.1:

σ2
PLtL =

n∑
i=1

σ2
⊙,LWE′

sk′ (f(ski))
+ σ2

⊙,LWE′
sk′ (f(1))

+ Var(f(e))

≤ 1

12
(n+ 1)lB2σ2

LtLK +
1

3
nVar(f(ski)ϵ

2 +
1

3
nVar(f(1))ϵ2 +R2σ2

input.

≤ 1

12
(n+ 1)lB2σ2

LtLK +
1

6
R2nϵ2 ++

1

3
nVar(f(1))ϵ2 +R2σ2

input.

Private LWE-to-LWE Using Ring Gadget Product

Theorem 5. Let n denote the dimension of the LWE ciphertexts, B and l de-
note the base and the length of the gadget decomposition, respectively, then the
error variance of the result of the LWE to LWE using RtR algorithm is bounded
by:

σ2
PLtL2

≤ 1

6
NlB2σ2

LtL2K +
1

6
R2nϵ2 +

1

3
nVar(f(1))ϵ2 +R2σ2

input,

where σ2
input is the error variance of the input LWE ciphertext, and σ2

PLtL2K
is

the error variance of the switching key.

Session 9 - 4 The 26th Annual International Conference on Information Security and Cryptology

ICISC 2023624



22 Ruida Wang et al.

Proof. Basing the correctness of the ring gadget product, we have,

b′0 +
n∑

i=1

a′isk
′
i = [b′ + a′ · sk′]0 =

n∑
i=1

f(ai · ski) + f(b) = f(m) + f(e),

thus (a′0, a
′
1, ..., a

′
n−1, b

′
0) is the LWE ciphertext of f(m) under secret key s⃗k

′
,

then we measure the error variance based on corollary.2:

σ2
LtL2

= σ2
⊙R,RLWE′

sk′ (sk)
+ σ2

⊙R,RLWE′
sk′ (f(1))

+ Var(f(e))

≤ 1

6
NlB2σ2

LtL2K +
1

3
nVar(f(ski)ϵ

2 +
1

3
nVar(f(1))ϵ2 +R2σ2

input

≤ 1

6
NlB2σ2

LtL2K +
1

6
R2nϵ2 +

1

3
nVar(f(1))ϵ2 +R2σ2

input.

A.2 RLWE-to-RLWE Key Switching

Private RLWE-to-RLWE

Theorem 6. Let n denote the dimension of the ring polynomial of RLWE ci-
phertexts, B and l denote the base and the length of the gadget decomposition,
respectively, then the error variance of the result of the LWE to LWE public
functional key switching algorithm is bounded by:

σ2
RtR ≤ 1

12
nlB2σ2

RtRK +
1

6
nϵ2 + σ2

input,

where σ2
input is the error variance of the input RLWE ciphertext, and σ2

RtLR is
the error variance of the switching key.

Proof. Basing the correctness of the Ring gadget product, we have,

a⊙R RLWE′
sk′ (f(sk)) + b⊙R RLWE′

sk′ (f(1))

= RLWEsk′ (f(a · sk) + f(b))

= RLWEsk′ (f(m) + f(e)) .

then we measure the error variance based on lemma.2:

σ2
RtR = σ2

⊙R,RLWE′
sk′ (f(sk))

+ σ2
⊙R,RLWE′

sk′ (f(1))
+ Var(f(e))

≤ 1

6
nlB2σ2

RtRK +
1

3
nVar(f(sk))ϵ2 +

1

3
nVar(f(1))ϵ2 +R2σ2

input

≤ 1

6
nlB2σ2

RtRK +
1

6
R2nϵ2 +

1

3
nVar(f(1))ϵ2 +R2σ2

input

A.3 LWE-to-RLWE Key Switching

Public LWE-to-RLWE Functional Key Switching
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Input: LWEsk(m) = (a, b), and a public R-Lipschitz morphism f : Z → Z
Switching key: LtRK = RLWE′

sk′(ski)i∈[1,n]

Output: RLWEsk′(f(m)) = (a′,b′)
Algorithm:

LtRf
sk→sk′(LWEsk(m)) :=

n∑
i=1

f(ai)⊙ RLWE′
sk′(ski) + (0, f(b)).

Correctness and error analysis:

Theorem 7. Let n denote the dimension of the LWE ciphertexts, B and l de-
note the base and the length of the gadget decomposition, respectively, then the
error variance of the result of the LWE to LWE public functional key switching
algorithm is bounded by:

σ2
LtR ≤ 1

12
nlB2σ2

LtRK +
1

6
nϵ2 +R2σ2

input,

where σ2
input is the error variance of the input LWE ciphertext, and σ2

LtLK is
the error variance of the switching key.

Proof. Basing the correctness of the gadget product, we have,

n∑
i=1

f(ai)⊙ RLWE′
sk′(ski) + (0, f(b))

= RLWEsk′

(
n∑

i=1

f(ai · ski) + f(b)

)

= RLWEsk′ (f(m) + f(e)) ,

then we measure the error variance based on lemma.1:

σ2
LtR = nσ2

⊙,LtRK + Var(f(e)) ≤ 1

12
nlB2σ2

LtLK +
1

6
nϵ2 +R2σ2

input

Private LWE-to-RLWE Functional Key Switching

Input: LWEsk(m) = (a, b)
Switching key: PLtRK = (RLWE′

sk′(f(ski))i∈[1,n],RLWE′
sk′(f(1))), where f :

Z → Z is a private R-Lipschitz linear morphism
Output: RLWEsk′(f(m)) = (a′,b′)
Algorithm:

PLtRf
sk→sk′(LWEsk(m)) :=

n∑
i=1

ai ⊙ RLWE′
sk′(f(ski)) + b⊙ RLWE′

sk′(f(1)).

Correctness and error analysis:
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Theorem 8. Let n denote the dimension of the LWE ciphertexts, B and l de-
note the base and the length of the gadget decomposition, respectively, then the
error variance of the result of the LWE to LWE public functional key switching
algorithm is bounded by:

σ2
PLtR ≤ 1

12
(n+ 1)lB2σ2

LtLK +
1

6
R2(n+ 1)ϵ2 +R2σ2

input,

where σ2
input is the error variance of the input LWE ciphertext, and σ2

LtLK is
the error variance of the switching key.

Proof. Basing the correctness of the gadget product, we have,

n∑
i=1

ai ⊙ RLWE′
sk′(f(ski)) + b⊙ RLWE′

sk′(f(1))

= RLWEsk′

(
n∑

i=1

f(ai · ski) + f(b)

)

= RLWEsk′ (f(m) + f(e)) ,

then we measure the error variance based on lemma.1:

σ2
PLtR = (n+ 1)σ2

⊙,PLtRK + Var(f(e))

≤ 1

12
(n+ 1)lB2σ2

LtLK +
1

6
R2(n+ 1)ϵ2 +R2σ2

input.
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