1. Introduction

In a scenario of severe accident in Light Water Reactors (LWRs) leads to major core damage and its subsequent melting. This molten core will eventually flow into the lower plenum of the reactor vessel. In case of insufficient cooling, the vessel wall will be damaged causing breach by high temperature melt which will be released into the reactor cavity. In the wet cavity strategy, the discharged high temperature corium can be adequately cooled by low-temperature coolant water. This fuel-coolant interaction (FCI) will allow the corium to break and settle on the bottom of the reactor cavity forming a porous debris bed. For adequate assessment of coolability of relocated corium, it is necessary to thoroughly understand the relevant processes of debris bed formation, including melt jet breakup and particle sedimentation, and the structural characteristics of the resulting debris bed [1-2].

If the natural circulation is not sufficient in removing the decay heat produced by the debris, then dry-out, reheating and re-melting of the debris bed is expected to occur. In such a case, attack of molten core materials on the reactor containment basement presents a credible threat to containment integrity. The amount of heat which can be removed by the natural circulation coolant water inside the containment from the debris bed is depending among other factors, upon the properties of the bed as porous debris bed media. It is reported earlier [3] that debris agglomeration and especially formation of “cake” regions can significantly increase hydraulic resistance for the coolant flow and thus negatively affect coolability of the debris bed.

Many reports suggested that, if the melt is not completely solidified prior to settlement on top of the debris bed, then agglomeration of the debris and even “cake” formation is possible [4-9]. Many researchers have observed the formation of agglomeration of the debris particles and “cake” formation in fuel-coolant interaction (FCI) experiments with prototypic corium mixtures [4, 6, 7, 10] (e.g. in FARO [4, 10], CCM [6] and CWTI [7] tests) and with corium simulant materials (e.g. DEFOR-E [11] and DEFOR-S [9] tests). The most comprehensive information was presented in FARO tests [4, 10]. It suggests that the particle agglomeration decreases as a function of the pool depth, however there exist a high uncertainty in the findings [12].

Debris agglomeration and ‘cake’ formation have been reported earlier in DEFOR tests [9, 11] in which subcooling of water was lower than 30°C and water pool depth was not sufficient to achieve complete solidification of the melt. Agglomerate can be defined as a lump of particles which are soldered together by liquid melt, although some individual particles can also be observed. A cake formation can be observed when no separate solid particles are distinguishable after solidification and the melt does not have open porosity for coolant ingress. A debris cake is basically a piece of solid melt with some shrinkage cavities. In debris cake formation, the fraction of liquid melt during solidification process will be quite large. The formation of particle agglomeration or cake is an unfavorable condition as such high volume debris mass has very high heat capacities which may not be sufficiently cooled by the natural circulation of water inside the containment. Eventually, such adverse condition poses threat to the containment integrity and also chances of particle re-melt due to decay heat.

An experimental facility named MATE (Melt jet breakup Analysis with Thermal Effect) was set up at POSTECH, Korea, for the investigation of the jet breakup length and particle size distribution. The facility is capable of a gravitationally delivering melt jet (nozzle diameter of 14–35 mm) of metal alloy with low melting point into a water pool with a depth of 1.5 m. The melt jet behavior before its entry into the water, i.e., the jet diameter, jet velocity and fluctuation of the jet diameter was observed using high speed cameras. The influence of the estimation methods for the jet diameter and the jet breakup length on the uncertainty in the non-dimensional jet breakup length was reported in previous works [13-14]. Also, a comparison of the previous and present data, using a consistent analysis method, was provided.

Here, first systematic experimental research was conducted to study the particle size distribution and agglomerated debris using an interference grid for melt jet fragmentation. The test data is valuable for understanding of the basic phenomena and development of the models for melt jet fragmentation using
interference grid. Comparison of present data with previous work [4, 10] (FARO tests) is also presented.

2. Test facility and instrumentation

Fig. 1 presents the schematic of the MATE facility. MATE facility consists of two parts: a water pool and a crucible for the melt jet generation and discharge. The water pool is a rectangular vessel with the cross sectional dimensions of 0.55m×0.55m (width×length) and a height of 2 m, and can heat water up to the saturation temperature at the ambient pressure. A steam generator is used to heat up the water pool up to saturation level. The main frame of the pool is made of stainless steel and polycarbonate plates that are attached for visualization. The crucible is made of stainless steel, and can melt a maximum load volume of 4 liters and reach a temperature of 350 °C.

A plug system and a slide gate system are used as nozzle opening system of the crucible. During the melting stage of the Bi-Sn alloy, the plug blocked the nozzle inside the crucible (Fig. 2) and the argon gas was injected continuously in order to prevent the oxidation of the melt. After the target melt temperature was reached, the experiments were commenced by pulling the plug upward using an air cylinder. The molten metal was then released into the water pool under the force of gravity, at the ambient pressure. The inlet of the melt release nozzle was designed with a bell mouth profile. The Bi-Sn alloy at the eutectic composition (58:42 wt%, melting temperature: 138 °C) was used as a simulant of corium. The Bi-Sn alloy has a density of 8750 kg/m3 and a surface tension of approximately 0.4 N/m which are comparable to those of corium. The Bi-Sn alloy is more effective for the visualization than the high melting temperature materials, e.g. oxide materials. Since the Bi-Sn alloy has relatively lower temperature than corium, the water pool was heated to saturated temperature to simulate the intense vapor generation.

Two high speed cameras and three video recorders are used for the visualization of experiments. One high speed camera (lower) which covers the entire area of the water pool at 200–500 fps with a high resolution of approximately 0.5 mm/pixel is used the measurement of the jet breakup length. Another high speed camera (upper) having a high resolution of approximately 0.25 mm/pixel was used to observe the smaller area near the water surface at 500–2000 fps for the measurement of the jet diameter and velocity before its entry into water. Before every test run, a calibration image was obtained with a reference ruler using the lower high speed camera before the ejection of melt. The reference ruler was positioned along the center axis of a water cameras, where the melt jet flows down.

Fig. 1: Schematic design of MATE facility

Fig. 2: Nozzle opening system plug and slide gate system

Fig. 3: (a) Mesh grid specification (b) mounting of grid in MATE tank

Fig. 3 (a) is a conceptual diagram of the underwater interference grid (mesh structure). Basically, it consists of a standardized mesh structure to be made using a SS-304 wire and a SS 304 frame. In the case of generally
distributed commercial mesh, the thickness of the wire itself is thinner than the grid spacing. So in order to maintain the integrity of the grid according to contact with the high temperature melt and in consideration of the suitability of installation, the grid structure was made in house with the specification shown in Fig 3 (b). The spacing between the grids was maintained at 4 mm and a stainless steel wire having an outer diameter of 2 mm was used as a material for manufacturing the grid. Considering the size of the MATE tank and the size of the jet, the size of the grid structure was determined to be 200 mm in width and 200 mm in length. Under these conditions, the grid structure was designed so that approximately \(\frac{200}{(4+2) \sim 33} \) 33 grid spaces were arranged in a line both horizontally and vertically.

3. Results and Discussion

3.1 MATE-MM-1 test case (Failed test)

Table 1: Test case experimental conditions MATE-MM-1

<table>
<thead>
<tr>
<th>Test case</th>
<th>Grid position (cm)</th>
<th>Pressure (bar)</th>
<th>Nozzle dia. (mm)</th>
<th>Melt Mass</th>
<th>Water Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM-1</td>
<td>15</td>
<td>2</td>
<td>14</td>
<td>4 kg</td>
<td>Saturated</td>
</tr>
</tbody>
</table>

Fig. 4: (a) Agglomerated debris cake formation: Failed MATE MM - 1 tests (b) weight of MATE MM – 1 cake (c) total weight of MATE MM – 1

Table 1 lists the experimental conditions for the MATE-MM-1 test case. The failure of the slide gate system during MATE-MM-1 test resulted in a failed test case but it presented a very interesting observation. Due to the failure of the slide gate system, initially a very small orifice is available for liquid melt to pass through the crucible nozzle. It resulted in melt release in the form of droplets and patches rather than a continuous melt jet. Due to this, the melt droplets drops into the tank and solidified over the grid as pressure was not sufficient enough to pass through the grid. After a certain time period the slide gate opened partially more and the size of the patches increases. Since the grid has been covered with solidified melt already, the incoming melts starts depositing over solidified debris over the grid and a cake formation is observed as shown in Fig. 4.

Table 2: Test case experimental conditions MATE-MM-2

<table>
<thead>
<tr>
<th>Test case</th>
<th>Grid position (cm)</th>
<th>Pressure (bar)</th>
<th>Nozzle dia. (mm)</th>
<th>Melt Mass</th>
<th>Water Temp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM-2</td>
<td>15</td>
<td>2</td>
<td>14</td>
<td>10.4 kg</td>
<td>Saturated</td>
</tr>
</tbody>
</table>

Fig. 5: Snapshots of melt jet progression during MATE-MM-2 (b) debris particle sedimentation over grid (c) weight of the melt particles deposited over the grid (d) spreading pattern in the tank bottom

3.2 MATE-MM-2 test case

Table 2 lists the experimental conditions for the MATE-MM-2 test case. For this case, higher melt mass was used. When the melt temperature reaches 300°C,
The MATE-MM tests provide first systematic experimental data about the particle size distribution and agglomerated debris using an interference grid for melt jet fragmentation. One of the main findings in the MATE-MM tests is that fraction of agglomerated debris above 5 mm reduced greatly. While a very small fraction of debris particles were found deposited over the grid. Also the fraction of agglomerated debris particles has been significantly reduced compared to previous work at similar pool depth due to the use of interference grid.

Acknowledgement

This work was supported by KOREA HYDRO & NUCLEAR POWER CO., LTD (No. 2018-RFP-Safety-5). Authors are thankful to Seokwon Whang from DANE, POSTECH for his assistance during experiments.

REFERENCES

