Automatic Discriminator of Abnormal Chromosomes Using Deep Learning Algorithms

S. S. Jang¹, S. G. Shin¹, M. J. Lee¹, S. S. Han¹, C. H. Choi¹, S. K. Kim¹, W. S. Cho¹, S. H. Kim²⁰, Y. R. Kang², W. S. Jo², S. K. Jeong² and S. J. Oh²

¹Department of Advanced Nuclear Engineering, POSTECH, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Korea
²Dongnam Inst. Of Radiological & Medical Science, 40 Jwadong-Gil, Jangan-Eup, Gijang-Gun, Busan, Korea
²⁰songhyunkim@postech.ac.kr

1. Introduction

Radiation dose estimation is an important procedure for not only radiological operators but also persons who are exposed by a background or artificial radiations such as cosmic rays, specific soils, and medical exposures. One of the renowned methods of biological dose estimation is Dicentric Chromosome Assay (DCA) discriminating the abnormal chromosomes whether cells have aberration chromosomes or not. Although the previous studies suggested the method to automatically estimate the radiation exposure with DCA [1-5], they still have lower accuracy than manual analysis and require human intervention.

We developed an automatic system of discriminating the abnormal chromosomes using an object detection algorithm based on deep learning method. In this research, Feature Pyramid Network (FPN) [6] was adopted and the chromosome data which were provided from Dongnam Institute of Radiological & Medical Sciences (DIRAMS) were used to train the neural network.

2. Method

2.1. Scope of chromosome discriminating algorithms

The automatic system, which is under development in our research group, conducts DCA using FPN algorithm. The architecture of FPN [6-7] is shown in Figure 1. Inception-Resnet v2 [8] was used as a backbone network to extract feature maps.

![Figure 1. Architecture of faster FPN.](image)

Figure 2. shows various cases discriminated by the network such as normal, dicentric, overlapped chromosomes and fragments. The training data consist of images and annotations with information on locations and sizes of the chromosomes.

To overcome the lack of data and improve the performance of the trained network, the data were augmented by flipping the images horizontally, vertically as shown in Figure 3.

Figure 2. (a) normal, (b) dicentric, (c) overlapped, chromosome images, and (d) fragment images.

Figure 3. (a) original, (b) horizontal flipped, and (c) vertical flipped images.

2.2. Hyperparameter settings

The training was iterating for 200,000 steps using Adam optimizer [9] with momentum 0.9, input image size 1,280 x 1,024, and batch size 1. We also used learning rate scheduler that is cyclical with minimum learning rate 5×10^{-5}, maximum learning rate 1×10^{-4} and cycle length 50,000 that decays by 0.25 every cycle lengths. The parameters chosen for the machine learning are summarized in Table 1.

<table>
<thead>
<tr>
<th>Image size</th>
<th>1,280 x 1,024</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step</td>
<td>200,000</td>
</tr>
<tr>
<td>Batch size</td>
<td>1</td>
</tr>
<tr>
<td>Optimizer</td>
<td>Adam</td>
</tr>
<tr>
<td>Optimizer momentum</td>
<td>0.9</td>
</tr>
<tr>
<td>Learning rate scheduler type</td>
<td>Cyclical</td>
</tr>
<tr>
<td>Minimum learning rate</td>
<td>5e-5</td>
</tr>
<tr>
<td>Maximum learning rate</td>
<td>1e-4</td>
</tr>
<tr>
<td>Cycle length</td>
<td>50,000</td>
</tr>
<tr>
<td>Magnitude of decay</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Table 1. Hyperparameter information for training the discriminating networks
2.3. Performance estimation of the neural networks

For estimating the performance of networks, we have used precision and recall values as criteria. As shown in Table 2, precision and recall are defined as the proportion of the correct detections to all detections and all ground truths respectively. We set the standards for correct detections using Intersection over Union (IoU) value defined as the proportion of intersection area to union area of prediction box and ground truth box.

Table 2. Classification result matrix and definition of precision and recall

<table>
<thead>
<tr>
<th>Ground Truth</th>
<th>Prediction result</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>TP</td>
<td>FN</td>
</tr>
<tr>
<td>Negative</td>
<td>FP</td>
<td>TN</td>
</tr>
</tbody>
</table>

\[
\text{Precision} = \frac{TP}{TP + FP} = \frac{TP}{\text{all detections}}
\]

\[
\text{Recall} = \frac{TP}{TP + FN} = \frac{TP}{\text{all ground truths}}
\]

3. Test and results

In the experiments, all networks were trained on single NVIDIA Titan V100 GPU and 2 Inter(R) Xeon(R) Gold 6136 CPUs at 3.000 GHz. 9,904 and 1,219 images were used to train and validate the network, respectively. The model parameters were saved at the step having the lowest validation loss.

During the inference stage, a multi-scale strategy was used to improve the detection accuracy. 1,178 images were used to test the performance of the algorithm, and the results were obtained as shown in Figure 4. The network yields both precision and recall values over 0.9. The results are summarized in Table 3.

![Figure 4. Samples of abnormal chromosomes detections](image)

4. Conclusion

In this study, an automatic system was proposed for discriminating the abnormal chromosomes with the object detection algorithm. The network yields a precision of 90.35% and a recall of 90.56%, respectively. These results showed that the deep learning network has an outstanding performance to distinguish the available data for DCA, and the automatic discriminator can be directly utilized for reducing the estimation time and resources.

Acknowledgment

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Ministry of Science and ICT of Korea (MSIT) (NRF-2018M2C7A1A02071506).

REFERENCES