Vibration System Analysis of Radial Magnetic Bearing for MMR Condition

Dokyu Kim a, SeungJoon Baik b, Jeong Ik Lee a*

aDepartment of Nuclear and Quantum Engineering, KAIST, Daejeon, South Korea
bKorea Atomic Energy Research Institute, Daejeon, South Korea
Corresponding author : jeongiklee@kaist.ac.kr

1. Introduction

The attention on the distributed power generation with nuclear energy is increasing due to the electricity grid decentralization and demand for mobile power generation without emission of CO2. A concept of fully modularized fast reactor with a supercritical CO2 (S-CO2) cooled direct Brayton cycle, namely KAIST Micro Modular Reactor (MMR), for 10 MWe power output is being developed for the distributed power generation with the nuclear energy. Furthermore, MMR can be applied to marine propulsion. This is to substitute a diesel engine to meet newly released International Maritime Organization (IMO) regulation on greenhouse gas emission [1].

In the proposed MMR, an appropriate bearing technology to levitate the shaft in the turbomachinery is required. It should be hermetic so that lubrication fluid is not necessary because it forces to add oil supply and sealing sub-system [2, 3]. Since gas bearing does not have enough load to support MMR turbomachinery shaft, magnetic bearing is a proper choice as supported by the previous research [4].

However, an instability issue with magnetic bearing levitation was repeatedly mentioned under S-CO2 high speed operating conditions. Due to this instability, the shaft eccentricity can grow until the clearance disappears leading to rotor and stator contact. On the other hand, much higher speed operating in air condition does not have the same issue [5].

In former study, the S-CO2 lubrication pressure distribution in the radial magnetic bearing geometry under uniform circular motion was analyzed. To verify the model results, the shaft trajectory data from the experiments was compared.

In this study, to understand various forces measured from the experiments, the data is further analyzed with Fast Fourier Transform (FFT) method and 2nd order fitting. The instability is discussed in terms of the state space and force distribution.

2. Methods and Results

2.1 Description of Fluid Force in S-CO2 condition

An Active-control Magnetic Bearing (AMB) levitates a rotating shaft with electromagnets with magnetic force. The force from an electromagnet is expressed as in eq. (1). The AMB’s 8 electromagnets are located as shown in Fig. 1. The empty space in Fig. 1 is filled with the working fluid. The fluid can generate vortices and it can destabilize the shaft.

\[f = \frac{B^2 A_g}{2\mu_0} = \frac{\mu^2 B^2 A_g}{2\mu_0 l_g^2} \]

(1)

The fluid force is caused by pressure distribution around the shaft. From the former research, this distribution when the shaft center has uniform circular motion is analyzed by using Reynolds equation and Ng-Pan Turbulence model with constant \(k_x \) (2) [7, 8]. The geometry where this equation is applied numerically is described in Fig. 2. The analyzed range is summarized in Table I. The fluid force for various thermal properties is shown in Fig 3 and 4.

![Fig. 1. Electromagnets in the magnetic bearing [6]](image)

![Fig. 2. Coordinate (left) and node (right) description of the unbalanced shaft and the stator](image)

Table I. Operation condition range of the model

<table>
<thead>
<tr>
<th>Supply temperature</th>
<th>20 ~ 50 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply pressure</td>
<td>70 ~ 100bar</td>
</tr>
<tr>
<td>Rotational speed</td>
<td>30000 RPM</td>
</tr>
<tr>
<td>Eccentricity ratio</td>
<td>0.07</td>
</tr>
</tbody>
</table>
Those contours show that the lubrication performance has high sensitivity to the fluid conditions. This is more clearly shown from the results of air condition. The significant difference between the S-CO$_2$ condition and high density air is the spatial density change as shown in Fig 5. The forces of both conditions are summarized in Table II.

Table II. Force on the shaft, $\varepsilon = 0.25$ and 30,000 RPM

<table>
<thead>
<tr>
<th>Thermal condition</th>
<th>F_x (N)</th>
<th>F_z (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air at 8 MPa, -143 $^\circ$C</td>
<td>35.3</td>
<td>-1433.6</td>
</tr>
<tr>
<td>CO$_2$ at 8 MPa, 35 $^\circ$C</td>
<td>265.2</td>
<td>-1344.7</td>
</tr>
</tbody>
</table>

2.2 Experimental analysis of magnetic bearing instability

From the lubrication model results, it is concluded that the fluid conditions affect the lubrication performance, especially the density change. Therefore, during the experiment, the CO$_2$’s thermal state is controlled by S-CO$_2$ pressurizing experiment (S-CO$_2$PE) facility. The AMB test rig consists of the compressor and the AMB. The impeller is removed so only the bearing effect is expected to be dominant.

The tests were proceeded with 8 MPa & 36 $^\circ$C (350kg/m3) conditions. The one shaft trajectory is shown in Fig. 6. It is observed that the shaft motion does not keep single revolving center when the RPM increases.

The difference of the shaft trajectory from air test and S-CO$_2$ test is analyzed with Fast Fourier Transform (FFT). The FFT waterfall plot is shown in Fig. 7 for air test and Fig. 8 for S-CO$_2$ test.

From this relationship, the stiffness is estimated to be 6.47 N/μm. However, F_{LUB} does not have strong correlation with ε. To explain this, the correlation between F_{LUB} and the electromagnets’ array is analyzed.
as shown in Figs. 9 and 10. F_{LUB} in these figures have a period same as electromagnets’ array.

Fig. 9. $F_{LUB,rad}$’s distribution with angular position

Ir

Fig. 10. $F_{LUB,ang}$’s distribution with angular position

Also, the damping in F_{LUB} is obtained. For this goal, the net force is fitted with shaft position and velocity as shown in Fig. 11 and eqs. (3) to (5) [9].

Fig. 11. 2nd order system fitting of the $F_{net,x}$

\[
\dot{X} = AX + Bu \\
X = \begin{pmatrix} \dot{x} \\ \dot{y} \\ x \\ y \end{pmatrix} \\
A = \begin{pmatrix} C_{xx} & -C_{xy} & -K_{xx} & -K_{xy} \\ C_{yx} & C_{yy} & K_{yx} & K_{yy} \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \tag{3}
\]

From Fig. 18, It is shown that the 2nd order system can explain the relationship between the shaft net force and the shaft trajectory. This 2nd order system fitting is planned to be analyzed with control theory in the future.

3. Summary and Conclusions

From the developed lubrication model, it is concluded that the instability of the AMB control can be caused by S-CO2’s physical properties. Tests for various RPMs were performed for verifying the model and the instability sources. The comparison between the model and the tests shows that the spatial change of the fluid density could cause the instability.

The test results with shaft trajectory is analyzed in frequency domain and the forces exerted to the shaft is obtained and compared with model results. This shows significant difference between air and S-CO2 conditions. In addition, the F_{LUB} is influenced by electromagnets. Obtained forces are considered as a 2nd order vibration system. This system is planned to be analyzed with control theory in the near future. Furthermore, the magnetic bearing’s stiffness and damping coefficient will be analyzed for the transient model development. With this, dynamics of the shaft can be established for several different conditions. Well validated model can be adapted to MMR with transient operation. After developing an accurate model, the control logic of the magnetic bearing can be finally suggested.

REFERENCES